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Preface

Since the publication of the second edition of this book, many important advances
have taken place in the field of optical testing. On one hand, the requirements for
faster and more precise tests are stronger than ever; on the other hand, the new
technological tools permit us to do these tasks much better than before. The need to
describe these advances in this book would lead us to a thicker and hence more
expensive book. This was not compatible with our desire to keep the price as low as
possible, and therefore several new things had to be done. One of them was to reduce
the description of some of the most mathematical sections in the book so as leaving
space for some more applied subjects. Another modification was to reduce as much
as possible the number of references at the end of each chapter, leaving only the most
relevant ones. To compensate it, a CD with the complete and almost exhaustive list of
references is included in the book. Another advantage of this is that the full list of
references is properly classified by topics or its possible applications. Since many
publications may have two, three or more subjects, it is included in each of these
sections. For example, a publication may describe a test that is useful for testing flats,
spheres, and prisms, In that case, this publication is present in all of these sections. A
reader with a particular optical tests need, may find some help by using this reference
list in PDF format. The list of publications in optical testing is so large that it is
impossible to expect that no important reference is missing. If so, the Editor
apologizes for overlooking any important reference. Of course the list may be
updated every one or two years.

In the CD, which is included in the book, the reader will also find two programs for
Windows, which may be useful when teaching or working in optical testing. One of
these programs displays on the screen of the computer some of the most common
interferogram types, test patterns, or transverse or wave aberration functions. These
images as well as their associated numerical results can be saved in computer files.
The other program helps in the design of phase shifting algorithms with the desired
properties by using its Fourier mathematical representation.

Some classic chapters where no important recent advances have taken place
remain almost the same, but most chapters are substantially modified, updated and
enlarged, describing the most important new developments.

In the process of revising the book many important people have contributed, for
example, the highly important work of authors of each chapter. A book like this
would have been absolutely impossible without their fundamental contributions. The
Editor is deeply thankful to all of them. Also, many other people, colleagues, and

Xvii
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friends contributed with many constructive criticisms and suggestions and some
times with hard work, preparing figures, or collecting references. The help of my
secretary Marisa and my student Armando GOomez has been extremely useful.
Finally, I cannot conclude without acknowledging the support and encouragement
of my wife Isabel and all my family with whom I am indebted and grateful.

DANIEL MALACARA
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Newton, Fizeau, and Haidinger
Interferometers

M. V. Mantravadi and D. Malacara

1.1. INTRODUCTION

This chapter has been updated by the second author; it includes much of the material
from the previous version of the book. Newton, Fizeau, and Haidinger interferom-
eters are among the simplest and most powerful tools available to a working optician.
With very little effort, these interferometers can be set up in an optical workshop for
routine testing of optical components to an accuracy of a fraction of the wavelength
of light. Even though these instruments are simple in application and interpretation,
the physical principles underlying them involve a certain appreciation and applica-
tion of physical optics. In this chapter, we examine the various aspects of these
interferometers and also consider the recent application of laser sources to them. The
absolute testing of flats will also be considered in this chapter.

1.2. NEWTON INTERFEROMETER

We will take the liberty of calling any arrangement of two surfaces in contact
illuminated by a monochromatic source of light a Newton interferometer. Thus,
the familiar setup to obtain Newton rings in the college physical optics experiment is
also a Newton interferometer; the only difference being the large air gap as one
moves away from the point of contact, as seen in Figure 1.1. Because of this, it is
sometimes necessary to view these Newton rings through a magnifier or even a low-
power microscope. In the optical workshop, we are generally concerned that an
optical flat, one being fabricated, is matching the accurate surface of another
reference flat or that a curved spherical surface is matching the correspondingly
opposite curved spherical master surface. Under these conditions, the air gap is
seldom more than a few wavelengths of light in thickness. In the various forms of the

Optical Shop Testing, Third Edition Edited by Daniel Malacara
Copyright © 2007 John Wiley & Sons, Inc.
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Observing
eye

- Magnifier focused
7 on the air gap

Monochromatic
extended
light source

|
Air N Convex surface
gap plane surface

FIGURE 1.1. Illustration of the setup for Newton rings. A plano-convex lens of about 1 or 2 m in focal
length is placed with its convex surface in contact with the plano surface of an optical flat and illuminated by
monochromatic light.

Beam
divider

Newton interferometer, we are mainly interested in determining the nonuniformity of
this air gap thickness by observing and interpreting Newton fringes. A simple way to
observe these Newton fringes is illustrated in Figure 1.2. Any light source such as a
sodium vapor lamp, low-pressure mercury vapor lamp, or helium discharge lamp can
be used in the setup. Under certain situations, even an ordinary tungsten lamp can
serve this purpose.

Let us first see what happens when two perfect optical flats are placed one
over the other with only a thin air gap between them as illustrated in Figure 1.3.
The surfaces are not exactly parallel, so that the air gap is thinner on the left than on
the right. Generally this separation is not zero at any place, unless the surfaces are
extremely clean, and one presses very hard to get them in close contact. Hence, we
may imagine that the two planes are projected backward, as shown in Figure 1.3, and
they meet at a line of intersection. Let the monochromatic light of wavelength A be
incident on the optical flat combination having an angle o between them, almost
normally. If the air gap is x at a given point, the two reflected rays will have an
optical path difference (OPD) equal to 2x. One of the reflected rays is reflected
internally on one of the surfaces, while the other is reflected externally. We know
that in dielectrics, like glass, one of these two reflected rays, and only one of them,
has a phase change by 180°. In this case it is the reflected ray on the bottom surface
which will have this phase change. Thus, the phase difference between the two
reflected rays will produce a dark fringe when the optical path difference is an
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Monochromatic
'''''''''''''''''''''''''' extended
Ll light source
Observing Beam
eye divider
% % Collimator
ar N X

N N

FIGURE 1.2. A simple arrangement to observe the Newton fringes in the optical workshop. With this
arrangement plane and long radius spherical surfaces can be tested.

integer multiple of the wavelength. We may easily conclude that if the separation x is
zero, there is a dark fringe.
Hence the dark fringes may be represented by

20x = n4, (1.1)

where n is an integer, and the bright fringes may be represented by

2ax+%:n/l. (1.2)
Each of these equations represents a system of equally spaced straight fringes, and
the distance d between two consecutive bright or dark fringes is

A
d= T (1.3)
Thus the appearance of the fringes is as shown in Figure 1.3, when two good optical
flats are put in contact with each other, forming a small air wedge, and are viewed in
monochromatic light.

Now let us see what the appearance of Newton fringes is when one surface is
optically flat while the other surface is not. Several situations are possible and in fact
occur in actual practice. When one starts making a surface a plane, it does not turn out
to be a plane on the first try; probably it becomes spherical with a long radius of
curvature. It is necessary to test the surface from time to time with a reference flat to
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Line of intersection

of the air wedge
me=a
Air
gap

Phase difference
T ar

FIGURE 1.3. The principle of the formation of straight, equally spaced fringes between two optically
plane surfaces when the air gap is in the form of a wedge. The fringes are parallel to the line of intersection of
the two plane surfaces.

ascertain its deviation from flatness. Let us consider a spherical surface of large
radius of curvature R in contact with the optical flat.

Then the sag of the surface is given by x?/2R, where x is the distance measured
from the center of symmetry. Hence the OPD is given by x*>/R + 4/2, and the
positions of the dark fringes are expressed by

Hence the distance of the nth dark fringe from the center is given by
X, = VnRA. (1.5)

From this, it is easy to show that the distance between the (n + 1)th and the nth fringe
is given by

Xui1 — Xp = VRA(Vn+ 1 —/n), (1.6)
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FIGURE 1.4. Appearance of the Newton fringes when a long radius of curvature is kept on a good optical
flat. This situation is for a surface deviating 24 from the plane at its maximum.

and similarly the distance between the (n + 2)th and the (n + 1)th fringe is given by
Xni2 — X1 = VRA(VR+2 —+vn+1). (1.7)

From Egs. (1.6) and (1.7) we can form the ratio

Xp+1 — Xn 1
- =~ 14— 1.8
Xn42 — Xn—1 * 2n (18)

Thus, it is seen that when we look at fringes with large values of n, they appear to
be almost equally spaced. Hence, when we are testing for the presence of curvature in
the surface, it is desirable to manipulate the plates in such a way that we see the
fringes with lower order n. In Figure 1.4, the appearance of Newton fringes is shown
when the maximum value of x? /2R is 2 4. Thus, there will be four circular fringes in
this situation. If the maximum value of x> /2R is 4/2, we have just one circular fringe.
Thus, by observation of full circular fringes, we can detect a maximum error of 1/2 in
the flatness of the surface. If the maximum error is less than 1/2, we have to adopt a
different procedure. In this case, the center of the symmetry of the circular fringes is
displaced sideways by suitable manipulation of the two components. Thus, we obtain
fringes in the aperture of the two surfaces in contact with a larger value of n; these
fringes are arcs of circles, and their separations are almost, but not exactly, equal. Let
us take as examples of maximum value x?>/2R = //4 and //8. Figures 1.5 and 1.6,
respectively, illustrate the appearance of the fringes in these two cases. As can be
inferred, the fringes become straighter and straighter as the value of R increases.

In the optical workshop, it is also necessary to know whether the surface that is
being tested is concave or convex with respect to the reference optical flat. This can
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FIGURE 1.5. Appearance of the Newton fringes when a surface of long radius of curvature is kept on a
good optical flat. This situation is for a surface deviating by 4/4 from the plane at its maximum. The center of
symmetry of the fringes is outside the aperture of the surfaces, and hence only arcs of circles are seen.

be easily judged by several procedures. One simple method involves pressing near
the edge of the top flat gently by means of a wooden stick or pencil. If the surface is
convex, the center of the fringe system moves toward the point of the application of
pressure. If the surface is concave, the center of the fringe system moves away from
the point of the application of pressure, as shown in Figure 1.7 (a).

A second very simple method is to press near the center of the ring system on the
top flat, as shown in Figure 1.7 (b). If the surface is convex, the center of the fringe is
not displaced but the diameter of the circular fringes is increased.

FIGURE 1.6. Same as Figure 1.5 except that the maximum error is /8 and some tilt is introduced.
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(b) Enlargement or contraction of rings

FIGURE 1.7. Two methods to determine whether the surface under test is convex or concave with respect
to the surface: (a) by pressing near the edge and (b) by pressing near the center of the top plate.

Another method of deciding whether the surface is convex or concave involves the
use of a source of white light. If slight pressure is applied at the center of the surfaces,
the air gap at this point tends to become almost zero when the surface is convex.
Hence the fringe at this point is dark, and the first bright fringe will be almost
colorless or white. The next bright fringe is tinged bluish on the inside and reddish on
the outside. On the contrary, if the surface is concave, the contact is not a point
contact but occurs along a circle, and the air gap thickness tends to become zero
along this circle. The dark fringe will be along this circle, and the sequence of colored
fringes will be the same as before as one proceeds from the black fringe. This
situation is illustrated in Figures 1.8 and 1.9. This procedure is not very easy to
perform unless the surfaces are clean and is not generally recommended.

A fourth and simpler procedure is based on the movement of the fringe pattern as
one moves the eye from a normal to an oblique viewing position. Before explaining
this procedure, it is necessary to find a simple expression for the optical path
difference between the two reflected rays at an air gap of thickness ¢ and an angle
of incidence 0. This is illustrated in Figure 1.10, where it can be seen that

2t
OPD = —— —2rtanfsin @ = 2z cos 6. (1.9)
cos

Thus, the OPD at the normal of incidence, namely 2¢, is always greater than the OPD
at an angle 0 for the same value of air gap thickness z. Using this fact, let us see what
happens when we have a convex contact between the two surfaces. The air gap
increases as we go away from the point of contact. When we view the fringes
obliquely, the OPD at a particular point is decreased, and consequently the fringes
appear to move away from the center as we move our eye from the normal to oblique
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Blue

Almost white

Convex (central contact)

FIGURE 1.8. Convex contact and appearance of the colored fringes with white light illumination.
Pressure is applied at the center.

Almost white

Concave (edge contact)

FIGURE 1.9. Convex contact and appearance of the colored fringes with white light illumination.
Pressure is applied at the center.
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OPD = AB++BC—-AD =2t cos 0

FIGURE 1.10. Ray diagram for calculation of the optical path difference between two reflected rays from
an air gap of thickness 7 and angle of incidence 0.

position. The reverse of this situation occurs for a concave surface in contact with a
plane surface.

We may consider many other situations where the surfaces are not plane or
spherical. The nature and the appearance of such fringes when viewed are given in
the usual manner in Table 1.1.

We have mentioned that the reference surface is a flat surface against which a
nearly plane surface that is being made is tested. By the same procedure, spherical or
cylindrical surfaces having long radii of curvature can be tested. However, when such
surfaces have very short radii of curvature, it is necessary to use special illumination,
which will be discussed in Section 1.2 on the Fizeau interferometer.

1.2.1. Source and Observer’s Pupil Size Considerations

The OPD given in Eq. (1.9) shows that this value depends on the angle of the reflected
rays being observed, which for small angles 0 can be approximated by

OPD = 27 cos 0 =~ 2t — 10°. (1.10)

Now, in the Newton interferometer we are interested in measuring glasses where ¢ is
not constant and thus 6 is not constant either. Hence, to reduce the influence of 0, as
much as possible, we should have

A
10* <= 1.11
<z (111)
where 1/k is the maximum allowed error due to variations in 0. Typically, to have a

reasonably small error, we at least require that

A
2

<Z. :
10 <3 (1.12)
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TABLE 1.1. Nature of Newton fringes for different surfaces
with reference to a standard flat.

Appearance of the Newton fringes

S. No. Surface type Without tilt With tilt
1 Plane Q @
2 Almost plane Q @
S
3 Spherical ' @
4 Conical @
5 Cylindrical ﬂﬂ::[ﬂ} ‘Hm:)
6 Astigmatic
(curvatures of '((@)) ‘(((@
same sign)
7 Astigmatic
(curvatures of @@(& @
opposite sign)
8 Highly irregular @

Thus, to ensure a small error, both ¢ and 6 should be small. Regarding the value of 7,
we may safely assume that the value of ¢ should never exceed a few wavelengths in
the gap. If the surfaces are clean, then flat ¢ should not exceed about 64. With this
maximum value of 7, the maximum allowed value of 0 is such that 0? < 1/24 or
0 < 0.2. For example, let us set the accuracy, to which the thickness ¢ is to be
assessed, to be equal to 4/20, thus, writing Eq. (1.12) as

z@zgz% or 20 <0.2. (1.13)

From the foregoing analysis, it can be seen that the illumination angle on the two flats
in contact should never exceed 0.2 rad or 12° approximately.

The size of the light source becomes irrelevant if the angular diameter of the
entrance pupil of the observer, as seen from the flats, is smaller than this value. The
light source can thus be extended to any size. It is only necessary that the observation,
visual or photographic, is made nearly perpendicular to the flats and from a minimum
distance, such that it is roughly five times the diameter of the optical flats in contact.
To obtain higher accuracy, the distance from which the observation is made has to be
larger. Alternatively, a collimating lens can be used and the entrance pupil of the
observing eye or camera is then placed at the focus of the collimator.
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If the observing distance is not large enough, equal thickness fringes will not be
observed. Instead, localized fringes will appear. These fringes are called localized
because they seem to be located either above or below the air gap. The fringes are
localized in the region where corresponding rays from the two virtual images of the
light source intersect each other. It has been shown that this condition may be derived
from the van Cittert—Zernike theorem (Wyant, 1978; Simon and Comatri, 1987;
Hariharan and Steel, 1989).

1.2.2. Some Suitable Light Sources

For setting up a Newton interferometer, we require a suitable monochromatic source.
Several sources are available and are convenient. One source is, of course, a sodium
vapor lamp, which does not require any filter. Another source is a low-pressure mer-
cury vapor lamp with a glass envelope to absorb the ultraviolet light. A third possible
source is a helium discharge lamp in the form of a zigzag discharge tube and with a
ground glass to diffuse the light. Table 1.2 gives the various wavelengths that can be

TABLE 1.2. Characteristics, such as wavelength, of various lamps suitable as light
sources in Newton’s interferometer.

Serial Wavelength(s)
number Lamp type normally used (nm) Remarks

1 Sodium vapor 589.3 The wavelength is the average
of the doublet 589.0 and
589.6 nm. Warm-up time is
about 10 min.

2 Low-pressure 546.1 Because of other wavelengths

mercury vapor of mercury vapor present,

the fringes must be viewed
through the green filter,
isolating the 546.1 nm line.
There is no warm-up time.
Tube lights without fluorescent
coating can be used.

3 Low-pressure 587.6 Because of other wavelengths

helium discharge of helium discharge present,

a yellow filter must be used
to view the fringes.There
is no warm-up time.

4 Thallium vapor 535.0 Characteristics are similar
to those of the sodium
vapor lamp. Warm-up
time is about 10 min.

5 Cadmium vapor 643.8 Red filter to view the fringes
is required. Warm-up
time is about 10 min.
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used in these different spectral lamps. Even an ordinary fluorescent lamp with a plastic
or glass green filter in front of the lamp works, but the fringe visibility is not high.

1.2.3. Materials for the Optical Flats

The optical flats are generally made of glass, fused silica, or more recently developed
zero expansion materials such as CerVit and ULE glass. Small optical flats of less
than 5 cm in diameter can be made of glass; they reach homogeneous temperature
conditions reasonably quickly after some handling. It is preferable to make optical
flats of larger sizes from fused silica or zero expansion materials. Table 1.3 gives
relevant information regarding the materials commonly used for making optical flats.
When making a reference optical flat, it is necessary to consider carefully not only
the material to be used but also the weight, size, testing methods, and many other
important parameters (Primak 1984, 1989a, 1989b; Schulz and Schwider 1987).

1.2.4. Simple Procedure for Estimating Peak Error
Generally, optical surfaces are made to an accuracy ranging from a peak error of 24

on the lower accuracy side to 4/100 on the higher side. It is possible by means of the

TABLE 1.3. Materials used for making optical flats and their properties.

Serial Coefficient of linear
number Material expansion (per °C) Remarks
1 BK7, BSC 75-80 x 1077 These are borosilicate glasses

that can be obtained with a high
degree of homogeneity.

2 Pyrex 25-30 x 1077 This is also a borosilicate glass but
has higher silica content. Several
manufacturers make similar type of
glass under different brand names.
This is a good material for making
general quality optical flats
and test plates.

3 Fused silica 6 x 1077 This is generally the best quartz

or quartz material for making optical flats.
Different grades of the material are
available, based mainly on the
degree of homogeneity.

4 CerVit, Zerodur 0-1 x 1077 This material and similar ones made
by different companies under
different trade names have practically
zero expansion at normal ambient
temperatures.

5 ULE fused silica  0-1 x 1077 This is a mixture of silica
with about 7% titania.
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FIGURE 1.11. Newton fringes for an optical flat showing peak error of 1/20.

Newton interferometer to estimate peak errors up to about 4/10 by visual observation
alone. Beyond that, it is advisable to obtain a photograph of the fringe system and to
make measurements on this photograph. Figure 1.11 shows a typical interferogram as
viewed in a Newton interferometer. Here, we have a peak error much less than 1/4.
Consequently, the top plate is tilted slightly to obtain the almost straight fringes. The
central diametral fringe is observed against a straight reference line such as the
reference grid kept in the Newton interferometer in Figure 1.2. By means of this grid
of straight lines, it is possible to estimate the deviation of the fringe from its
straightness and also from the fringe spacing. The optical path difference is 2¢, so
the separation between two consecutive fringes implies a change in the value of ¢
equal to A/2. Thus, if the maximum fringe deviation from the straightness of the
fringes is d/k with d being the fringe separation, the peak error is given by

pea o~ (4) (1) (18

In Figure 1.11 k = 2.5 mm and d = 25 mm; hence, we can say that the peak error is
2/20. Even in this case, it is desirable to know whether the surface is convex or
concave, and for this purpose we can use the procedure described earlier. The only
difference is that we have to imagine the center of the fringe system to be outside the
aperture of the two flats in contact.

1.2.5. Measurement of Spherical Surfaces

Probably one of the most common applications of the Newton interferometer is the
testing of the faces of small lenses while they are being polished. A small test plate
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FIGURE 1.12. Test plates to test spherical surfaces with Newton fringes.

with the opposite radius of curvature is made according to the required accuracy and
then placed over the surface under test. A test plate is useful not only to detect surface
irregularities but also to check the deviation of the radius of curvature from the
desired value (Karow 1979).

The observation should be made in such a way that the light is reflected almost
perpendicular to the interferometer surfaces. Convex surfaces can be tested with the
test plate shown in Figure 1.12(a), with a radius of curvature r in the upper surface
given by

_(N-DR+TIL

1.15
NL+R+T ~ ( )

where N is the refractive index of the test plate glass. Concave surfaces can be tested
as in Figure 1.12 (b). In this case, the radius of curvature r of the upper surface is

It is important to remember that the fringes are localized very near to the inter-
ferometer surfaces, and therefore the eye should be focused at that plane.

The radius of curvature is checked by counting the number of circular fringes. The
relation between the deviation in the radius of curvature and the number of rings can
be derived with the help of Figure 1.13, where it can be shown that the distance
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Ar
r+Ar

FIGURE 1.13. Geometry to find the separation between two spherical surfaces with different radii of
curvature measured along the radius of one of them.

¢ between the two surfaces, measured perpendicularly to one of the surfaces, is given
by

1 cosO)rar]
_COS)””] (1.17)

= (r+Ar)q 1 - _X
e=(r+Ar)q1 [l AP

If either Ar or the angle 0 is small, this expression may be accurately represented by
¢ = (1—cos0)Ar. (1.18)
Since the number of fringes n is given by n = 2¢/4, we can also write

n 2(1—cosf)
R Sl i 1.19
Ar A ( )
If D is the diameter of the surface, the angle 0 is defined as sin § = D/2r. Therefore, a
relation can be established between the increment per ring in the radius of curvature
and the surface ratio r/D, as shown in Table 1.4.

1.2.6. Measurement of Aspheric Surfaces

Malacara and Cornejo (1970) used the method of Newton fringes to determine the
aspheric profile of a surface that deviates markedly from a spherical surface. This
method is useful if the aspheric deviates from the nearest spherical by a few
wavelengths of light (say, 10-204). The method consists in using a spherical test
plate in contact with the aspherical surface and finding the position of the fringes by
means of a measuring microscope. From these position values, one can then obtain
the actual air gap as a function of the distance, and a plot can be made and compared
with the required aspheric plot. Figure 1.14 shows a typical schematic arrangement
for this method.

It is important to consider that the surface under test probably does not have
rotational symmetry. Therefore, the measurements must be made along several
diameters in order to obtain the complete information about the whole surface.
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TABLE 1.4. Radius of curvature increment per fringe for
several values of the power ratio r/D of the spherical surface
being tested with newton fringes.

r/D Ar/n (cm)
1.0 0.00020
2.0 0.00086
3.0 0.00195
4.0 0.00348
5.0 0.00545
6.0 0.00785
7.0 0.01069
8.0 0.01397
9.0 0.01768
10.0 0.02183
20.0 0.08736
30.0 0.19661
40.0 0.34970
50.0 0.54666
60.0 0.78712
70.0 1.07033
80.0 1.39665
90.0 1.77559
100.0 2.18144
Low power
traveling
microscope
——] Reticle

Monochromatic ez
light source

Aspheric surface
under test

Spherical
test plate

FIGURE 1.14. Schematic arrangement showing the method of measuring aspheric surfaces with a
spherical test plate using Newton fringes.
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Instead of directly measuring the fringe positions with a microscope, a photograph
can be taken, and then the fringe positions can be measured with more conventional
procedures.

If the reference surface is spherical and the surface under test is aspherical
(hyperboloid or paraboloid), the ideal fringe patterns will be those of a Twyman—
Green interferometer for spherical aberration as described in Chapter 2.

The reference surface may also be another aspherical surface that exactly matches
the ideal configuration of the surface under test. This procedure is useful when a
convex aspheric is to be made, since a concave aspheric can be made and tested more
easily than a convex surface. The advantage of this method is that a null test is
obtained. It has the disadvantage that the relative centering of the surfaces is very
critical because both surfaces have well-defined axes, and these must coincide while
testing. This problem is not serious, however, because the centering can be achieved
with some experience and with some device that permits careful adjustment.

When mathematically interpreting the interferograms, it should be remembered
that the OPD is measured perpendicularly to the surfaces, whereas the surface sagitta
z is given along the optical axis. Therefore the OPD is given by 2(z; — z2) cos 6,
where sinf = Sc.

1.2.7. Measurement of Flatness of Opaque Surfaces

Sometimes we encounter plane surfaces generated on such metal substrates as steel,
brass, and copper. An optical flat made of glass should be put on top of such objects
for viewing Newton fringes. It is not always the case that the metal object is in the
form of a parallel plate. The plane surface may be generated on an otherwise irregular
component, and hence some means of holding the component while testing becomes
necessary. This can be avoided if we can put the object on top of the optical flat and
observe the fringes through the bottom side of the flat. This sort of arrangement is
shown in Figure 1.15. Since most metal surfaces have reflectivities that are quite high
compared to the value for a glass surface, the contrast of the fringes is not very good.
To improve this situation, the optical flat is coated with a thin evaporated film of
chromium or inconel having a reflectivity of about 30-40%. This brings about the
formation of sharper, more visible fringes.

It is necessary to point out that if the object is very heavy, it will bend the optical
flat and the measurement will not be accurate. Therefore, this kind of arrangement is
suitable for testing only small, light opaque objects. In dealing with heavy objects, it
is preferable to place the optical flat on top of the object.

1.3. FIZEAU INTERFEROMETER

In the Newton interferometer, the air gap between the surfaces is very small, and of
the order of a few wavelengths of light. Sometimes it is convenient to obtain fringes
similar to the ones obtained in the Newton interferometer, but with a much larger air
gap. When the air gap is larger, the surfaces need not be cleaned as thoroughly as they
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FIGURE 1.15. Schematic arrangement showing the method of testing opaque plane surfaces on irregular
objects by placing them on top of the optical flat.

must be before being tested in the Newton interferometer. Also, due to the larger gap,
the requirements for the collimation and size of the light source become stronger.
This is called a Fizeau interferometer.

The Fizeau interferometer is one of the most popular instruments for testing
optical elements. Some of its main applications will be described here, but the basic
configurations used for most typical optical elements are identical to the ones used
with the Twyman-Green interferometer to be described in Chapter 2. The reader is
referred to that chapter for more details.

1.3.1. The Basic Fizeau Interferometer

From the foregoing considerations, it is seen that we should have a collimating
system and a smaller light source in a Fizeau interferometer. Figure 1.16 shows the
schematic arrangement of a Fizeau interferometer using a lens for collimation. The
optical flat that serves as the reference is generally mounted along with the lens and is
preadjusted so that the image of the pinhole reflected by the reference surface falls on
the pinhole itself. Either the back side of the flat is antireflection coated or (more
conveniently) the reference optical flat is made in the form of a wedge (about 10—
20 min of arc) so that the reflection from the back surface can be isolated. To view the
fringes, a beam divider is located close to the pinhole. The surface under test is kept
below the reference flat, and the air gap is adjusted to the smallest value possible;
then the air wedge is gradually reduced by manipulating the flat under test. When the
air wedge is very large, two distinct images of the pinhole by the two surfaces can be
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Interferogram

Eye or
imaging
system

|
| ) Surface
| Collimator under test
Monochromatic | ] %
point \ y
light source SN =—= — —
—————— 7 |
Beam N ’
splitter ] Z.
Reference

flat

FIGURE 1.16. Schematic arrangement of a Fizeau interferometer using a lens for collimation of light.

seen in the plane P in Figure 1.16. By making use of screws provided to tilt the flat
under test, one can observe the movement of the image of the pinhole and can stop
when it coincides with that of the reference flat. Then the observer places his eye at
the plane P and sees, localized at the air gap, the fringes due to variation in the air gap
thickness. Further adjustment, while looking at the fringes, can be made to alter the
number and direction of the fringes. The interpretation of these fringes is exactly the
same as that for Newton and Twyman-Green fringes.

Figure 1.17 is a schematic of a Fizeau interferometer using a concave mirror as the
collimating element. If a long focal length is chosen for the concave mirror, a
spherical mirror can be used. For shorter focal lengths, an off-axis paraboloidal

Interferogram
Eye or Concave
imaging collimating
system mirror
Monochromatic
point
light source &
Beam =
Surface splitter
under test
/1
V4
Reference
flat

FIGURE 1.17. Schematic arrangement of a Fizeau interferometer using a concave mirror for collimation
of the illuminating beam.



20 NEWTON, FIZEAU, AND HAIDINGER INTERFEROMETERS

mirror may be required. Both the schemes of Figures 1.16 and 1.17 may be arranged
in either a vertical (upright and inverted) or a horizontal layout. In the vertical
situation the optical flats are horizontal, whereas in the horizontal layout the optical
flats stand on their edges.

If the optical system or element under test has a high reflectivity and the reference
flat is not coated, then the two interfering beams will have quite different intensities,
and thus the fringes will have a poor contrast. On the contrary, if the reference flat is
coated with a high reflectivity, but smaller than 100% to allow some light to be
transmitted, a confusing system of fringes will appear because of multiple reflections.
Commonly, to obtain two-beam interference fringes effectively, the reference surface
must be uncoated. Then, to match the intensities, either the reflectivity of the optical
element under test also has to be low or the amplitude of the beam under test has to be
attenuated. The fact that the two surfaces reflecting the interfering beams have a low
reflectivity makes it very important to take all necessary precautions to avoid spurious
reflections at some other surfaces, mainly when a laser light source is used.

1.3.2. Coherence Requirements for the Light Source

As in the Newton interferometer, in the Fizeau interferometer the maximum allowed
angular size of the light source to be used depends on the length of the air gap.
For instance, if the air gap between the flats is 5 mm, and taking 2 = 5 x 10~*mm,
the permissible value of 26 given by Eq. (1.12) is 0.01 rad. Such a small angle can
be obtained by using a collimator with the entrance pupil of the observer located at
the focus, to observe the angle almost perpendicularly to the air gap for all points of
the observed flats. Also, either the pupil of the observer or the light source has to be
extremely small. Frequently the pupil of the eye has a diameter larger than required,
so that it is simpler to have a light source with a pinhole. The larger the air gap is, the
smaller the pinhole has to be.

When plane surfaces are tested in the Fizeau interferometer the air gap can be
made quite small if desired. The total optical path difference involved does not
exceed a few millimeters. Thus, a small low-pressure mercury vapor lamp can be
used with a green filter as the source of light. When testing for the wedge of thick
plates of glass, the OPD is larger due to the thickness. For gas or metal vapor lamp,
this OPD is about the maximum we can use. For plates of greater thickness, the
contrast of the interference fringes is greatly reduced because the lamp does not give
a very sharp spectral line with a large temporal coherence. Similarly, the same
situation of low contrast occurs when thick glass shells are tested or when spherical
test plates are tested with one test plate.

This limitation can be eliminated, however, if we can use a source of very high
monochromaticity. Fortunately, such a source, the laser, has recently become avail-
able. For our application, the low-power (2 mW) helium—neon gas laser operating in
a single mode TEMoo and with a wavelength of emission at 632.8 nm is ideal. With
this as the source of light, we can tolerate an OPD of at least 2 m and obtain Fizeau
fringes of high contrast. Even larger OPDs are possible provided that a properly
stabilized laser is chosen and vibration isolation is provided for the instrument.
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Most of the coherence requirements for Fizeau interferometers are similar to the
requirements for Twyman—Green interferometers as described in section 2.3. There,
it is pointed out that a gas laser has perfect spatial coherence, and can have almost
perfect temporal coherence and thus we might think that this is the ideal light source
for interferometry, but this is not always the case. The reason is that many unwanted
reflections from other surfaces in the optical system may produce a lot of spurious
fringes that can appear. Also, the laser light produces scattering waves from many
small pieces of dust or scratches in the optical elements. To solve this problem, the
light source can be extended even when using a laser by introducing a thin rotatory
half ground glass close to the point light source. Deck et al. (2000) have proposed an
annular shape for the light source by using a diffracting element to produce a small
cone of light illuminating the rotating ground glass. The effect of the spurious
reflections has been studied by several researchers, for example by Ai and Wyant
(1988 and 1993) and by Novak and Wyant (1997).

Another possible effect to be taken into account is that some optical elements or
systems to be tested may be retroreflectors, either in one dimension like a porro
prism, or in two dimensions like a cube corner prism. The retroreflection has
associated an inversal, reversal, or both (which is equivalent to a 180° rotation) of
the wavefront. A point of view is that then the interference takes place between two
different points on the wavefront, symmetrically placed with respect to the optical
axis if the wavefront was rotated, or symmetrically placed with respect to the
inversion or reversion axis. The fringes will have a good contrast only if the spatial
coherence of the wavefront is high enough. This condition imposes a stronger
requirement on the small size of the point light source.

Another equivalent explanation for this retroreflection effect is illustrated in
Figure 1.18. Let us consider the pinhole on the light source to have a small finite

Reference Retroreflected
wavefront wavefront
Incident \\ f
wavefront
206

L Retroreflecting
Reference system ]
flat (porro or cube corner prism)

FIGURE 1.18. Interference between the reference wavefront and the wavefront retroreflected by a porro
prism under test. Both wavefronts originate at one point on the edge of the small light source. The angle
between these two wavefronts reduces the contrast of the fringes.
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size and a flat collimated incidence wavefront coming from the edge of that
pinhole at a small angle 6. It is easy to see that the two interfering wavefronts
will not be parallel to each other, but will make an angle 20 between them. Of
course, there are infinite number of wavefronts coming from different points at the
pinhole of the light source, all with different orientations and angles, smaller than
0. This multiplicity of wavefronts with different angles will reduce the contrast of
the fringes from a maximum at the center where all the wavefronts intersect,
decreasing towards the edge of the pupil. This effect is also present for the same
reason in the Twyman—Green interferometer as described in Chapter 2 in more
detail.

The strong spatial coherence requirements when a retroreflecting system is tested
is difficult to satisfy with gas or metal vapor lamps, but with gas lasers it is always
fulfilled.

1.3.3. Quality of Collimation Lens Required

We shall briefly examine the quality of collimating lens required for the Fizeau
interferometer. Basically, we are interested in determining the variation in air gap
thickness. However, the OPD is a function of not only the air gap thickness but also
the angle of illumination, and at a particular point this is 2¢ cos 6. The air gap ¢ varies
because of the surface defects of the flats under test, while the variation of 0 is due to
the finite size of the source and the aberration of the collimating lens.

For Fizeau interferometers using conventional sources of light, the maximum air
gap that is useful is 50 mm. Also, in this case we have to consider the size of the
source and the aberration of the lens separately. The effect of the size of the source is
mainly on the visibility of the Fizeau fringes. The excess optical path difference 10?
should be less than 1/4 for good contrast of the Fizeau fringes and the pinhole is
chosen to satisfy this condition. The effect of the pinhole is uniform over the entire
area of the Fizeau fringes. On the contrary, the effect of aberration in the collimating
lens is not uniform. Thus, we have to consider the angular aberration of the lens and
its effect. If ¢ is the maximum angular aberration of the lens, then #¢* should be less
than kA, where k is a small fraction that depends on the accuracy required in the
instrument. Thus, let us set kK = 0.001, so that the contribution of t(,‘bz is 0.0014.
Taking a maximum value of + = 50 mm for the ordinary source situation, we have

or
¢ = 107 rad. (1.20)
This angular aberration is quite large, being of the order of 20 s of arc. Hence,

suitable lenses or mirror systems can be designed for the purpose (Taylor, 1957;
Yoder, 1957; Murty and Shukla, 1970).
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1.3.4. Liquid Reference Flats

It is well known that a liquid surface can be used as a reference flat. Basically the
liquid surface has a radius of curvature equal to that of the earth. If the radius of the
earth is taken as 6400 km, the sag of the surface is (Grigor’ev et al., 1986; Ketelsen
and Anderson 1988)

¥ ¥

= 1.21
2R 2x64x109 (1.21)
where 2y is the diameter of the liquid surface considered. If we stipulate that this
should not exceed A/100 (2 = 5 x 10~*), then

y? < 6.4 x 10*

or
2y <512 mm (1.22)

Thus, a liquid surface of about 0.5 m diameter has a peak error of only /100 as
compared to an ideal flat. Therefore, it has been a very attractive proposition to build
liquid flats as standard references. In practice, however, there are many problems,
mainly in isolating the disturbing influence of vibrations. It is also necessary to
exclude the region near the wall of the vessel that holds the liquid and to make sure
that no dust particles are settling down on the surface. Possible liquids that can be
useful for the purpose are clear and viscous, such as glycerin, certain mineral oils,
and bleached castor oil. Water is probably not suitable because of its low viscosity.
Mercury may not be suitable because of its high reflectivity; the two interfering
beams will have very unequal intensities, resulting in poor contrast of the fringes
unless the surface under test is also suitably coated. However, mercury has been used
as a true horizontal reference plane reflecting surface in certain surveying and
astronomical instruments.

1.3.5. Fizeau Interferometer with Laser Source

We shall now describe a Fizeau interferometer using a source such as the helium—
neon gas laser of about 2 mW power lasing at 632.8 nm in the single mode. A
schematic diagram is shown in Figure 1.19. A very well corrected objective serves to
collimate the light from the pinhole, illuminated by a combination of the laser and a
microscope objective. Between the collimating objective and the pinhole (spatial
filter), a beam divider is placed so that the fringes can be observed from the side. It is
also desirable to provide a screen, upon which the Fizeau fringes are projected, to
avoid looking into the instrument as is normally done when conventional light
sources are used. The laser has a high radiance compared to other sources, and a
direct view may be dangerous to the eye under some circumstances. The reference
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FIGURE1.19. Schematic arrangement of a Fizeau interferometer using a laser source. The scheme shown
here is for plane surfaces. The system is easily aligned with the help of a sliding negative lens.

plane surface is permanently adjusted so that the reflected image of the pinhole is
autocollimated. The surface under test is adjusted until the image reflected from it
also comes into coincidence with the pinhole. To facilitate preliminary adjustment,
the screen is used to project the two pinhole images from the two reflecting plane
surfaces. This is accomplished by removing the negative lens between the beam
divider and the ground glass screen. The pinhole image from the reference surface is
at the center of the screen, whereas the one from the surface under test is somewhere
on the screen; by manipulation of this surface, the two spots of light on the screen can
be brought into coincidence. Then the negative lens is inserted in the path, and the
Fizeau fringes are projected on the screen. These fringes can be further adjusted in
direction and number as required. By the use of another beam divider, it is possible to
divert part of the beam to a camera for taking a photograph of the fringe pattern. The
whole instrument must be mounted on a suitable vibration-isolated platform.

This instrument can be used for various other applications that are normally not
possible with conventional sources of light. We describe some such applications in
the sections that follow. In addition, many possibilities exist for other applications
depending on the particular situations involved.

Several commercial Fizeau interferometers have been available for several years,
but probably the two most widely known are the Zygo interferometer (Forman,
1979), shown in Figure 1.20, and the Wyko interferometer, shown in Figure 1.21.

1.3.6. Multiple-Beam Fizeau Setup

If, instead of two-beam fringes, multiple-beam fringes of very good sharpness are
required, the reference optical flat and the optical flat under test are coated with a
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FIGURE 1.20. Fizeau interferometer manufactured by Zygo Corp. (Courtesy of Zigo Corp.).

reflecting material of about 80-90% reflectivity (see Chapter 6) such as aluminum or
silver. If higher reflectivities are required, multilayer dielectric coatings can be
applied. In fact, the instrument may be provided with several reference flats having

coatings of different reflectivities.
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FIGURE 1.21. Fizeau interferometer manufactured by Wyko Corp. (Courtesy of Wyko Corp.).
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1.3.7. Testing Nearly Parallel Plates

In many applications, glass plates having surfaces that are both plane and parallel are
required. In such cases, the small wedge angle of the plate can be determined by the
Fizeau interferometer, and the reference flat of the interferometer need not be used
since the fringes are formed between the surfaces of the plate being tested. If « is the
angle of the wedge and N is the refractive index of the glass, the angle between the
front- and back-reflected wavefronts is given by 2ne, and hence the fringes can be
expressed as

A
2No. = — 1.2
No. 7 (1.23)

where d is the distance between two consecutive bright or dark fringes. Hence the
angle « is given by

o= (1.24)

To determine the thinner side of the wedge, a simple method is to touch the plate
with a hot rod or even with a finger. Because of the slight local expansion, the
thickness of the plate increases slightly. Hence a straight fringe passing through the
region will form a kink pointing toward the thin side, as shown in Figure 1.22. For
instance, if we take N = 1.5, 1 =5 x 10~*mm, and « = 5 x 107° (1 s of arc), we
get for d a value of about 33 mm. Hence a plate of 33 mm diameter, showing one
fringe, has a wedge angle of 1 s of arc. If the plate also has some surface errors, we

FIGURE 1.22. Kink formation in the straight Fizeau fringes of a slightly wedged plate, obtained by
locally heating the plate. The kink is pointing toward the thin side of the wedge.
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get curved fringes, indicating both surface and wedge errors. If the surfaces are
independently tested and found to be flat, and even in this situation one is getting
curved fringes, these should be attributed to variation of the refractive index inside
the plate in an irregular manner. In fact, by combining the tests on the Newton
interferometer and the Fizeau interferometer for a parallel plate, it is possible to
evaluate the refractive index variation (inhomogeneity) (Murty, 1963; Murty,
1964a; Forman, 1964).

1.3.8. Testing the Inhomogeneity of Large Glass or Fused Quartz Samples

The sample is made in the form of a parallel plate. The surfaces should be made as flat
as possible with a peak error of not more than 1. Then the plate is sandwiched
between two well-made parallel plates of glass with a suitable oil matching the
refractive index of the sample. This will make the small surface errors of the sample
negligible, and only straight fringe deformation due to the inhomogeneity of the
sample will be seen. If the sandwich is kept in the cavity formed by the two coated
mirrors, very sharp dark fringes on a bright background are obtained. If, for instance,
the maximum fringe deviation from straightness is k and the distance between two
fringes is d, the optical path difference is (k/d)A. Now the OPD due to the inhomo-
geneity AN and thickness 7 of the sample is given by 2AN - ¢, and hence

- (4)(2) 025

As an example, if k/d =0.25, 1=632.8nm, and =350mm, we have
AN = 1.6 x 107®. Thus a maximum variation of 1.6 x 10~% may be expected in
the sample for the direction in which it has been tested. Figure 1.23 shows the
schematic arrangement of the Fizeau interferometer for the method just described.
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FIGURE 1.23. Schematic arrangement of a Fizeau interferometer for testing the homogeneity of solid
samples of glass, fused quartz, and so on.
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1.3.9. Testing the Parallelism and Flatness of the Faces of Rods, Bars, and
Plates

Frequently, the need for testing the parallelism and the flatness of two opposite faces
in a rod, plate, or bar arises. If the plate to be tested is transparent and has a highly
homogeneous refractive index, the problem is not so complicated. If the refractive
index of the material is inhomogeneous or if it is not transparent, special techniques
have to be developed.

Vannoni and Molezini (2004) described a configuration for this purpose, as
illustrated in Figure 1.24. The first step is to adjust the interferometer to produce
the minimum number of fringes without the plate or rod to be tested. The field of view
will show the fringes due to any possible defect in the right angle prism. Then the
plate is inserted as shown in the figure.

1.3.10. Testing Cube Corner and Right-Angle Prisms

In their retro-reflective configuration, if the right angles of cube comer and right-
angle prisms are exact without any error, they reflect an incident plane wavefront as a
single emerging plane wavefront. Otherwise the reflected wavefront consists of
several plane wavefronts with different tilts, making possible the measurement of
the prism errors. Because of the total internal reflection, the intensity of reflected
light from these prisms is very high, nearly 100%. Since the reference flat is not
coated, the fringes will have a poor contrast. To optimize the fringe contrast, either
the reflectivity of the optical element under test also has to be low or the amplitude of
the beam under test has to be attenuated.

To reduce the effective reflectivity of the right angle or cube prism, we can
introduce a parallel plate of glass coated with a metallic film having a transmis-
sion between 20% and 30%. In this case the intensities of the two beams matched
reasonably well, and we get a good contrast of two-beam fringes. The coated
plate between the prism and the uncoated reference flat should be tilted
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FIGURE 1.24. Schematic arrangement to test an opaque bar or rod for flatness and parallelism of the two
opposite faces.
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FIGURE 1.25. Schematic arrangement of a Fizeau interferometer for testing cube corner prisms and
right-angle prisms. Here an absorbing plate is inserted between the prisms and the reference flat surface to
equalize the intensities of the two interfering beams.

sufficiently to avoid the directly reflected beam. This method is shown schema-
tically in Figure 1.25.

Another possible method is to reduce the reflectivity of one of the total reflecting
surfaces. This can be done by constructing a special cell in which the prism is
mounted, and behind one reflecting surface, a thin layer of water or some other
suitable liquid is in contact with the surface. Thus, in effect, the refractive index
difference is reduced at one total internal reflecting surface, and hence, the intensity
of the wavefront reflected from the prism matches that of an uncoated flat. This
method is shown schematically in Figure 1.26.
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FIGURE 1.26. A scheme for reducing the intensity of reflected light from the corner cube prism and the
right-angle prism. One of the total internally reflecting faces is brought into contact with water or some other
liquid by the use of a cell behind it.
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The interferograms obtained when testing of these prisms are identical to those in
the Twyman—Green interferogram. For more details please see Chapter 2.

1.3.11. Fizeau Interferometer for Curved Surfaces

Just as collimated light is employed for testing optical flats on the Fizeau inter-
ferometer, it is possible to use either divergent or convergent light for testing curved
surfaces. Figure 1.27 shows an arrangement for testing a concave surface against a
reference convex surface. The point source of light is located at the center of the
curvature of the convex reference surface. The concave surface under test is adjusted
until its center of curvature, too, almost coincides with the point source of light. The
procedure is exactly the same as before except that to achieve the uniform air gap, we
have to provide some translational motion also (Moore and Slaymaker, 1980).

The same setup can be used very easily for checking the uniformity of the
thickness (concentricity) of spherical shells. In this case the interfering beams are
obtained from the front and back of the two spherical concentric surfaces. Figure 1.28
shows this setup for testing the concentricity of a spherical shell. If the radii of
curvature are correct but the shell has a wedge (the centers of curvature are laterally
displaced), we get straight fringes characteristic of the wedge. The hot rod or finger
touch procedure described in Section 1.2.3 can be adopted to determine which side is
thinner. If the two radii are not of proper value (,/r| — r, # t, where r| and r, are the
two radii and ¢ is the center thickness), the value of 7 is not constant over the entire
shell. Hence, we get circular fringes like Newton fringes. If in addition a wedge is
present, the center of these circular fringes will be decentered with respect to the
center of the shell. In this situation also, we can adopt the hot rod or finger touch
procedure to decide whether the shell is thin at the edge or at the center.
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FIGURE 1.27. Fizeau interferometer set up for curved surfaces. Here the convex surface is the reference
surface and the concave surface is under test.
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FIGURE 1.28. Fizeau interferometer setup for testing the concentricity of the spherical shell.
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We can also have an arrangement for testing convex surfaces against a concave
reference surface, as shown schematically in Figure 1.29. Here we use a lens or a
group of lenses at finite conjugate distances such that the point source of light is at
one conjugate, whereas the common center of curvature of the test surface and the
reference surface is at the other conjugate. The concave reference surface is fixed to
the instrument, while the convex surface under test is manipulated in the usual
manner to obtain a uniform air gap.
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FIGURE 1.29.

surface.

Fizeau interferometer setup for testing a convex surface against a concave reference
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FIGURE 1.30. Schematic diagram of a Fizeau interferometer for testing a concave surface using a
concave reference surface or a flat reference surface.

1.3.12. Testing Concave and Convex Surfaces

The reference surface is again the uncoated flat surface that is part of the Fizeau
interferometer. The collimated light from the instrument, after passing through the
optical flat, is again focused by the use of another highly corrected lens. If the
surface is concave, it is set up as shown in Figure 1.30; if convex, as shown in
Figure 1.31. When the surface is spherical and the center of curvature coincides
with the focus of the lens, a plane wavefront is reflected back. Hence, we should
obtain straight fringes due to the interference of the two beams. If the optical
reference flat and the spherical surfaces are coated with high reflecting material,
we can get very sharp, multiple-beam Fizeau fringes. If the surfaces are not
spherical but are aspheric, appropriate null lenses must be used in the interfe-
rometer. This setup can also be used to measure the radius of curvature if a length-
measuring arrangement is provided.

The testing of convex surfaces with the Fizeau interferometer presents many
interesting problems, mainly if the surface is large and/or aspheric, which have been
analyzed by several authors, for example by Burge (1995).

Another interferometer, which may be considered as a Fizeau interferometer, was
devised by Shack (Shack and Hopkins, 1979; Smith, 1979). The difference is that this
scheme uses a He—Ne laser source to give very large coherence length. Hence, the
separation between the convex reference surface and the concave surface under test
can be very large (typically several meters). Also, the convex reference surface
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FIGURE 1.31. Schematic diagram of a Fizeau interferometer for testing a convex surface using a flat

concave reference surface or a flat reference surface.

becomes a part of the instrument and can be of very short radius of curvature. The
scheme, in fact, incorporates the device in the form of a beam-divider cube with one
of the faces made into a convex spherical surface. The Shack interferometer is shown
schematically in Figure 1.32. It is possible to test a large aspherical surface with this
interferometer if a suitable null corrector is inserted between the interferometer and
the surface under test.

1.4. HALDINGER INTERFEROMETER

With the Newton and Fizeau interferometers, we are basically interested in finding
the variation in the air gap thickness. In these cases, the fringes are referred to as
fringes of equal thickness. If, however, the thickness of the air gap is uniform and it is
illuminated by a source of large angular size, we get what are called fringes of equal
inclination. These fringes are formed at infinity, and a suitable lens can be used to
focus them on its focal plane. If the parallel gap is that of air, we have the simple
relation 2f cos f = n4, as given in Eq. (1.9), from which we can easily see that, for a
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FIGURE 1.32. Schematics of a Shack—-Fizeau interferometer.

constant value of ¢, we obtain fringes of equal inclination that are circles and are
formed at infinity.

If the air gap is replaced by a solid plate such as a very good parallel plate of glass,
Eq. (1.9) is modified slightly to include the effect of the refractive index N of the plate
and becomes

2Ntcos 0 = ni (1.26)

where 6’ is the angle of refraction inside the glass plate. For small values of 0°, we
may approximate this expression as

2Nt = (i) 0% = n) (1.27)

To see Haidinger fringes with simple equipment, the following method, illustrated in
Figure 1.33 may be adopted. A parallel plate of glass is kept on a black paper and is
illuminated by the diffuse light reflected from a white card at 45°. At the center of the
white card is a small hole through which we look at the plate. With relaxed
accommodation our eyes are essentially focused at infinity, i, and we see a system
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FIGURE 1.33. A simple arrangement to see Haidinger fringes for a nearly parallel glass plate.

of concentric circular fringes. For the light source we can use a sodium or even a
fluorescent lamp.

In the situation where the laser is the source of light, there is a much higher
limit for the value of ¢. Even though several meters can be used for 7, we shall set
t = 1000 mm. In this case, using 4 = 632.8 nm, we get for ¢ an upper limit of 5 s
of arc. Hence it is not difficult to design a collimating system to satisfy this
condition.

Another aspect that is important, especially with large values of 7, is the lateral
shear one can get in the instrument. To avoid this, the autocollimated pinhole images
must coincide with the pinhole itself. Similarly, if the collimating lens is not properly
collimated, either a convergent or a divergent beam will emerge. The collimation
may be accurately performed by using any of the various devices available, such as
the plane parallel plate shearing interferometer (Murty, 1964b).

A somewhat better method is to use a lens for focusing the system of Haidinger
fringes on its focal plane. This requires a setup almost identical to that for the Fizeau
interferometer. The only difference is that, instead of a pinhole, a wider aperture is
used to have a large angular size for the source. The Haidinger fringes are then
formed in the focal plane of the lens.

1.4.1. Applications of Haidinger Fringes

The Haidinger fringes may be used as a complementary test to that provided by
the Fizeau interferometer. If we are testing a nearly parallel plate, we can find its
wedge angle either by the Fizeau or by the Haidinger method. In the Haidinger
method we look for the stability of the concentric fringes as we move our line of
sight across the plate with a small aperture. If 7 is slowly varying, the center of the
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circular fringe system also appears to change. If ¢ is decreasing, we are moving
toward the thinner side of the wedge, and in this case the circular Haidinger
fringes appear to expand from the center. On the contrary, the fringes appear to
converge to the center if we are moving toward the thick side of the wedge. If we
note how many times the center of the fringe system has gone through bright and
dark cycles, we can also estimate the wedge angle in the same manner as for the
Fizeau situation.

1.4.2. Use of Laser Source for Haidinger Interferometer

A helium—neon laser source of low power is very useful for this interferom-
eter, as it is for the Fizeau instrument. It enables the fringes to be projected on a
screen. In this case, the laser can be made to give effectively a point source of
light, and consequently, the Haidinger fringes can be considered as the inter-
ference from two point sources that are coherent to each other. Hence it is
possible to obtain the circular fringes even at a finite distance from the two
coherent point sources, and no lens is needed to form the fringes in its focal
plane. Figure 1.34 shows the two point images of a point source reflected from a
glass plate having a wedge. For the purpose of analysis, it is sufficient for us to
consider two point sources of light that are coherent to each other. Then, if we
place a screen sufficiently far away and perpendicular to the line joining the two
sources, we get a system of concentric circular fringes similar to Newton’s rings
and the center of the fringes is collinear with the two point sources. Also, for a
glass plate of refractive index N, the distance between the virtual point sources is
2t/N, where 1 is the thickness of the plate. Now, if the glass plate has a small
wedge, the two virtual sources will also have a slight lateral displacement with
respect to each other; this is given by 2Nor, where o is the wedge angle and r is
the distance of the point source from the wedged plate. These various parameters
are illustrated in Figure 1.34.

To apply this theory in practice, several methods are available. One method,
proposed by Wasilik et al. (1971), is illustrated in Figure 1.35. The laser beam is
allowed to pass through a small hole in a white cardboard and is then incident on
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FIGURE 1.34. Various parameters related to the formation of two virtual coherent sources from a single
point source by a wedged plate.
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FIGURE 1.35. A schematic arrangement for observing the Haidinger fringes and measuring the
displacement of the center. Here a laser beam is passed through a cardboard, and the Haidinger fringes
are observed around the hole on the cardboard.

the glass plate under test. To provide some divergence for the laser beam, a
negative or positive lens of about 50—100 mm focal length is introduced centrally
behind the cardboard. The lens can be fixed in such a manner that it does not
deviate the beam but only expands it slightly. This cardboard may be made
specially, along with the lens, to fit on the laser. Several concentric circles with
known spacing may be drawn on the cardboard for measuring purposes. The plate
under test is kept on a platform that can be tilted. The plate is adjusted until the
spot of laser light reflected from it goes back through the hole in the cardboard. In
this situation concentric circular Haidinger fringes will be seen on the cardboard
surrounding the hole. If the plate is free from the wedge, the center of the
Haidinger fringe system coincides with the center of the hole. If the plate has a
wedge, the center of the Haidinger fringe system is displaced with respect to the
center of the hole. An approximate formula relating this displacement to the
wedge angle of the wedged glass plate is as follows:

_ 2N*ru
ot

d

(1.28)

where d = displacement of the Haidinger fringe system,
o = wedge angle of the plate,
t = thickness of the glass plate,
N =refractive index of the glass plate,
r = distance of the point source from the glass plate.

For example, if a =1s of arc (5 x 10‘6rad), N =15, r=1000mm, and
t = 10 mm, we have d = 2.25 mm, which can be easily detected. Hence this method
is quite sensitive and useful.

Another method is illustrated in Figure 1.36. Here the laser beam passes
through the wedged-glass plate and falls on a specially prepared ground-glass
plate in the center of which a small concave or convex reflector of about
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FIGURE 1.36. A schematic arrangement for observing the Haidinger fringes and measuring the
displacement of the center. Here the laser beam is directed back into the wedged glass plate by a small
concave or convex mirror on the ground glass. The Haidinger fringes are formed on the ground glass.

50-100 mm radius of curvature is cemented. The size of the reflector should be
slightly greater than the spot size of the laser. Thus, the laser beam is reflected
back onto the glass plate. The wedged plate is adjusted until the reflected spot
from it coincides with the small reflecting mirror on the ground glass. Now,
Haidinger fringes can be seen on the ground glass, and the center of the fringe
system is displaced with respect to the mirror on the ground glass. The same
formula, Eq. (1.28), is also valid for this case.

A third method utilizes a beam divider, as shown in Figure 1.37. The laser
beam passes through the beam divider, which after reflection from the wedged
plate is again reflected at the beam divider and finally falls on a ground-glass
screen. The plate under test is adjusted until the laser spot reflected from it goes
back on itself. After the position of the spot on the ground glass has been noted, a
negative or positive lens is introduced into the laser beam close to the laser side.
This widens the beam sufficiently so that circular Haidinger fringes can be seen on

White card with Beam
central hole divider Wedge
under test
Gas laser
light beam N
Low power N
positive lens
Ground glass
screen

FIGURE 1.37. A schematic arrangement for observing the Haidinger fringes and measuring the
displacement of the center. Here the fringes are observed on the ground glass and by means of a beam
divider, the central obscuration is avoided.
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the ground-glass screen. The displacement of the center of the Haidinger fringe
system is measured, and the same formula, Eq. (1.28), can be used for calculating
the wedge angle .

1.4.3. Other Applications of Haidinger Fringes

We have discussed earlier the application of Haidinger fringes for the determination
of the very small wedge angle of a nearly parallel plate of glass. There are many types
of prisms that can be reduced to equivalent parallel plates and hence can be tested
for deviation from their nominal angles. A typical example is a right-angle prism
with nominal angles of 90°, 45°, and 45°. In such a prism, it is usually required that
the 90° angle be very close to its nominal value and that the two 45° angles be
equal to each other. In addition, all the faces of the prism should be perpendicular
to a base plane. If not, we say that the prism has pyramidal error that is objec-
tionable in many applications. Figure 1.38 shows how the right-angle prism can be
treated as an equivalent parallel plate with a very small wedge angle. If the beam is
incident first on the face AC, the beam returning after reflection from the face BC
is nearly parallel to the one reflected from the face AC, and hence Haidinger
fringes are seen as a result of the interference between these two beams. This
arrangement checks the equality of the angles A and B. If there were no pyramidal
error and the two angles are equal, the center of the Haidinger fringes will be
exactly at the center of the beam spot. If the angles are equal but there is a
pyramidal error, the center of the Haidinger fringes will be displaced vertically.
If both errors are present, the center will be displaced both vertically and horizon-
tally. The effect of the pyramidal error is to rotate the line of intersection of the two
planes of the equivalent wedge so that it is neither vertical nor horizontal. If the
beam is incident first on AB, the return beam reflected from the internal face of AB
will be nearly parallel to the one reflected from AB externally, and hence we again
get Haidinger fringes due to the interference of these two beams. This arrangement
checks the exactness of the 90° angle of the angle C. If the center of the Haidinger
fringes is not displaced horizontally, the 90° angle is exact; and, if in addition there

v
A C c A
45° 90° 90° 45°
>
45° g B 45°

FIGURE 1.38. Schematic of the 45° —90° —45° prism to be equivalent parallel plates of glass.
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FIGURE 1.39. Schematics of two other prisms to be equivalent parallel plates of glass.

is no vertical displacement, there is no pyramidal error. More details of this method
may be found in the paper by Saxena and Yeswanth (1990).

Other examples of prisms that may be treated as equivalent parallel plates are
shown in Figure 1.39. Readers may come across other examples depending on
particular situations.

The formula given in Eq. (1.27) is applicable in the situations described noting
that the displacement has two components, one in the vertical direction and one in the
horizontal direction.

1.5. ABSOLUTE TESTING OF FLATS

Until now, we have considered the testing of flats against a ““perfect” flat taken as a
reference. It is, however, often necessary to make a flat when a good reference flat is
not available. In this case, an alternative is to use a liquid flat as mentioned in Section
1.2.2. Another possibility is to make three flats at the same time and test them with
several combinations in order to obtain the absolute departure of the three surfaces
with respect to an ideal flat.

Let us assume that we have three surfaces that will be tested in many combinations
by placing them in pair, one against the other. One of the two glass disks (A) is placed
on top of the other by flipping in x by rotation about an axis that is parallel to the y-
axis. If the surface deformation is represented by F4 (x, y) as illustrated in Figure 1.40
(a), it is now expressed by

[Fa(x )], = —Fa(=x.) (1.29)

The glass disk at the bottom (B) may be rotated by an angle 6 with respect to its
original position, as in Figure (1.40)(c). Then, its surface deformation is represented
by [Fg(x,y)], as expressed by

[Fa(x,y)]y = F(x cos0 —y sin0, x sin0 + y cos 0) (1.30)
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FIGURE 1.40. Three possible orientations for the surfaces whose deviations with respect to an ideal plane
are to be determined.

Then, by measuring the fringe pattern we can obtain the value of the difference:

GBA(xvy) = [FB(xvy)]H - [FA(x’y)]x (1'31)

If, following the treatment by Schulz and Schwider (1976) we take 8 = 0 and take the
three possible combinations, (see Figure 1.41) we obtain

GBA(x,y) = FB(x7y) + FA(_xay)
Gealx,y) = Fe(x,y) + Fa(—x,y) (1.32)
Gep(x,y) = Fe(x,y) + Fp(—x,y)

This system has more unknowns than equations. Along the y axis, if we make x = 0,
the system has a simple solution. A solution for all the plane can be obtained only the

y y y
X by X
[FB(x’y)]x [Fc(x’y)]x [Fc(xvy)]x
y y y
X X X
Fplx,y) Fplx.y) Fglx.y)

FIGURE 1.41. Three different combinations for the three surfaces to be measured.
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if the symmetry about the y axis at least for one surface is assumed, for example for
surface B, by taking Fp(x,y) = Fg(—x,y). Then, we may obtain

GBA(_x7y> + GCA(_-xay) - GCB(_X,y)

FA(xay) = 2 3
Fylx,y) = Gpa(x,y) — GCAéx,Y) + GCB(X,Y)7 (1.33)
Fe(xy) = Gealx,y) — GBAngy) — Geg(x,y) .

Several other methods had been devised, for example by Truax (1988). A specially
interesting method is that of Ai and Wyant (1992) as follows next. Let us assume that
the shape of one of the surfaces may be represented by the function F(x, y). Any one-
dimensional asymmetrical function can be represented by the sum of one even
(symmetrical) function and one odd (antisymmetrical) function. On the contrary,
for any asymmetrical function f(x) the following properties hold:

(1) Fo(x) =f(x) +f(—x) is even, 134
(2) Fo(x) =f(x)—f(—x) is odd. (1.34)
Generalizing this result to two dimensions
(1) Foe(x,y) =f(x,y) +f(—x,y) + f(x,—y) + f(—x,—y) is even-even;
(2) Fe()(xay) :f(xa y) +f(7x7 y) f(x7 7y) 7f(7x7 7y) is even—odd;
(3) Foe(x7y> :f(xay) _f(_-x7 _y) +f(x7y) —f(—x>)’) is odd—even;
(4) Foo(xay) :f(xay) 7f(7x7y) +f(x7 7y) 7f(7x7y) is odd-odd.

(1.35)

The conclusion is that any two-dimensional asymmetric function F(x, y) can always
be decomposed into the sum of four functions, even-even, even-odd, odd-even, and
odd-odd as follows:

where

F(x,y) = Fee + Foo + Foe + Fep, (1.36)
(6, y) = (F(x, y) + F(=x, y) + F(x, =y) + F(=x, =y))/4,
O(xa y) = (F(x7 y) _F(_xv y) _F(x’ _y) +F(_x7 _y))/47 (1 37)
(X, )7) = (F(x7 y) +F(_x7 Y) - F(x7 _Y) - F(_x> _y))/47 .
()C, y) - (F()C, y) _F(_xv y) +F(X, _y) —F(—X, _y))/4

Let us now assume that we test two flats with surface shapes F4 (x,y) and Fp(x,y) by
placing one over the other. Following Ai and Wyant, eight combinations are selected,
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FIGURE 1.42. Eight different combinations for the three surfaces to be measured.

as in Figure 1.42, where the optical path difference producing Newton or Fizeau

fringes will be
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With these expressions, the entire profile of the three planes can be calculated. First,
the odd-even, the even-odd, the even-even, and the odd-odd components of the three
desired functions F4(x,y), Fg(x,y), and Fc(x,y) are calculated. The odd-odd com-
ponent is the most difficult to evaluate, which is obtained using Fourier sine series.
Tilt and piston term are not obtained, but this is not a problem since they do not have
any practical interest.

Fritz (1983 and 1984) proposed a method using Zernike polynomials to decom-
pose the desired functions into orthogonal functions. Later, Shao et al. (1992) found
that by neglecting some high spatial frequencies, the solution can be obtained by
using only four combinations.
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Twyman—Green Interferometer
D. Malacara

2.1. INTRODUCTION

The Twyman—Green interferometer is a modification of the Michelson interferom-
eter used to test optical components. It was invented and patented by Twyman and
Green (1916) for the testing of prisms and microscope objectives and was later
adapted and applied to the testing of camera lenses (Twyman, 1919). The first
publications on this instrument were those of Twyman (1918a, 1918b, 1920,
1920-1921, 1923). The instrument has been very useful and so popular that many
review papers (Briers, 1972) and books (Candler, 1951; Twyman, 1957; U.S.
Department of Defense, 1963; Cook, 1971; Horne, 1972) describe it in detail. One
of the basic Twyman—Green configurations is illustrated in Figure 2.1. After the
system has been illuminated with a quasi-monochromatic point light source, the light
is collimated by means of lens L; in order to form a flat wavefront. The wavefront is
divided in amplitude by means of a beam-splitter plate. After reflection, light from
both mirrors M; and M, impinges again on the beam splitter. Two interference
patterns are then formed, one going to lens L, and the other going back to the light
source. Lens L, permits all of the light from the aperture to enter the eye so that the
entire field can be seen. The observed fringes are of equal thickness type.

It is easy to see that if the beam splitter is all dielectric, the main interference
pattern is complementary to the one returning to the source; in other words, a bright
fringe in one pattern corresponds to a dark fringe in the other. This has to be so
because of the conservation of energy principle, even though the optical path
difference is the same for both patterns. Phase shifts upon reflection account for
this complementarity. The case of a absorbing beam splitter has been treated by
Parmigiani (1981).

It is interesting that Michelson (1918) did not consider the instrument applicable
to the testing of large optics, pointing out at the same time that the arrangement we
now know as an unequal-path interferometer was impractical because of the lack of
sufficiently coherent light sources. To answer Michelson’s comments, Twyman
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FIGURE 2.1. Basic Twyman-Green interferometer configuration.

(1918) pointed out that the arrangement shown in Figure 2.2 had been suggested in
his patent (Twyman and Green, 1916) for the testing of large mirrors or lenses. This
procedure eliminates the need for a large collimator and beam splitter but unfortu-
nately requires (for sources of limited coherence) a concave spherical mirror as large
as the optical element under test. This kind of arrangement is often referred to as a
Williams interferometer (De Vany, 1965; Grigull and Rottenkolber, 1967) because
Burch (1940) attributed it to Williams. A Twyman—Green interferometer for general
laboratory usage is shown in Figure 2.3.

77777
%

Mirror M4

Compensator

Light
source

Observing
eye

FIGURE 2.2. Twyman-Green interferometer (Williams type).
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FIGURE 2.3. A general purpose Twyman—Green interferometer.

2.2. BEAM-SPLITTER

The beam-splitter can take the form of glass plate as shown in Figure 2.4 or a cube. It
is made in such a way that the splitting face reflects the light in appropriate amount by
means of a partially reflective coating. If it is a plate, the other face should not reflect
any light. To avoid reflections on the second face, a multilayer antireflection coating

tzzzzzzzzza Mirror My

Beam i
L splitter Mirror M,
ight - A
source ,\ Z (@)
#) S
Collimator
Yyvy

Mirror My

Polarized Mirror My

light
source

(b)

Collimator

FIGURE 2.4. Twyman Green interferometer with beam splitter (a) at 45° and (b) at the Brewster’s angle.
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can be used. However, an easier solution is to place the plate at Brewster’s angle as
shown in Figure 2.4(b) and to use a source of light with p polarization, which goes
through the interface without any reflection. Still another solution is to introduce a
wedge angle on the plate so that the unwanted reflected light escapes from the
system. The contrast of the fringes does not depend on the reflectance R of the beam
splitter; only the irradiance / on the fringe maxima is affected, since

[ = 4I,RT, (2.1)

where I is the irradiance of the incident wavefront and 7'is the transmittance. If there
is no absorption (nonmetallic coating), T = 1 — R and there is a maximum value of /
forR=T-1/2.

If one of the two mirrors has a higher reflectance than the other, for example if one
of the them is a highly reflective mirror and the other is still uncoated, the intensity of
one of the two interfering beams can be about 25 times higher than the other. Under
these conditions, the fringe contrast is greatly reduced. A solution is to use a beam
splitter with a different reflectivity. Another possibility is to use both mirror without
coating.

2.2.1. Optical Path Difference Introduced by a Beam Splitter Plate

We can show with a few algebraic steps and the law of refraction that a beam splitter
or compensating plate shifts the optical axis laterally and parallel to itself by the
following amount:

d=rtsing|1——0 | (2.2)
(n? — sin0)"/?
where 0 is the incidence angle, ¢ is the plate thickness, and # is the refractive index.

The light going to the observer from mirror M; has traversed the beam splitter
only once, whereas the light from mirror M, has gone through it three times. An
interferometer that has more glass in one arm than in the other, as in this case, is said
to be uncompensated. The interferometer can be compensated by inserting another
piece of glass in front of mirror M, as shown in Figures 2.1 and 2.2.

The importance of compensating an interferometer is clearly seen in the following
section. Adjustable compensators for Williams configurations (Steel, 1963) and
Twyman—Green configurations (Connes, 1956; Mertz, 1959; Steel, 1962) have
been described in the literature.

As pointed out before, an interferometer is said to be uncompensated when it
has more glass in one of its arms than in the other, because (a) an optical
component (lens or prism) is present in one arm in order to test it or (b) the light
travels once through the beam splitter in one path and three times in the other
path, and the compensating plate is absent. Both of these situations can be
included in a general case in which an inclined plane glass plate is placed in
one of the arms. The unfolded optical paths for both arms of the interferometer
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FIGURE 2.5. Light paths for both interfering beams in an uncompensated interferometer.

are shown in Figure 2.5. Here we may see that the complete effect is equivalent to
going through a system of two plates. The optical path difference (OPD) intro-
duced by one passage through a glass plate is a function of the angle of incidence
of the light, as shown in Figure 2.6, yielding

OPD = n (AB) + (BC) — (AD) (2.3)
and then
OPD(¢) = ty(ncos ¢ — cos @) (2.4)

If the plates are inclined at an angle ¢ with respect to the optical axis and the ray
direction is defined by the angles 0 and s as shown in Figure 2.7, the OPD introduced
by both passages may be computed by

OPD(¢) = ty(ncos ¢} + ncos @5 — cos ¢ — cos @) + 2ty cos 0 (2.5)

FIGURE 2.6. Optical path difference introduced by a plane parallel plate.
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FIGURE 2.7. Light passing through an inclined plane parallel plate.

where subscripts 1 and 2 designate the first and second passages, respectively,
through the plate. The last term corresponds to an additional OPD introduced by a
shift 7y of one of the mirrors along the optical axis. Angles ¢, and ¢, are obtained
from angles ¢4, ¥, and @o by means of the relations

cos ¢, cos 0 + sin ¢, sin 0 cos Y

cos @,
. . (2.6)
COS (5, = €08 @ cos 0 — sin @, sin 0 cos Y

If the glass plate is normal to the optical axis, ¢, =0 and ¢, = ¢, = 0 thus
@) = ¢ = 0. In this case Eq. (2.5) reduces to

OPD(0) = 2ty(ncos ' — cos 0) + 2t cos 0 (2.7)

2.2.2. Required Accuracy in a Beam Splitter Plate

When constructing a Twyman—Green interferometer with a beam splitter plate, it is
very important to determine the required surface quality in each one of the two faces
of the beam splitter, for a desired interferometer accuracy. These may be found
considering the following model of a beam splitter with three small localized defects
with thicknesses 0 t{, J t,, and 0 3 as shown in Figure 2.8.

In this model we use the fact that in the external reflection in defect 1, if the
reflection is displaced a small distance ¢ from the plate, then the optical path is
reduced by an amount

OPD = 2¢cos 0. (2.8)
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FIGURE 2.8. Effect of errors in the faces of the beam splitter of a Twyman-Green interferometer.

For beams reflected in the two faces of glass plate with plane and parallel faces, there
is an optical path difference given by

OPD = 2ntcos 0. (2.9)
Thus, in the internal reflection at the localized defect 1, the optical path is increased.
Upon transmission through a glass plate with thickness #, the additional optical path
introduced by the plate is

OPD = ty(ncos 0 — cos 0). (2.10)

Thus, the optical path introduced by the plate defects for the beam reflected from
mirror A is

OOP, = —26t; cos 0 + (6t; + dt3)[ncos 0’ — cos 0], (2.11)

and the optical path introduced by the plate defects for the beam reflected from mirror
Bis

00Pg = —2ndt, cos O + (0t; + 2812 + 0t3)[ncos 0’ — cos 0]. (2.12)

Thus, the difference between these two quantities is the optical path difference OPD
introduced by the plate errors:

JOPD = —26t1(cos 0 + ncos 0') + 25ty (ncos 0 — cos 0) (2.13)
As expected, this optical path difference does not depend on the error d3, since it is

common for both beams. Of course, any error J, it is also an error d3 for some
other ray.
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If OPD is the desired interferometer accuracy, the required accuracy J; on the
plates face 1 is given by

0OPD
ot = 2.14
"7 2(cos0+ncost)’ (2.14)
and the required accuracy 0 1, on the plate face 2 is
0OPD
oty = (2.15)

2(cos0' +ncos0)’

These results mean that, roughly, the reflecting face must be polished with about
twice the interferometer required accuracy, while the other face must have a quality
of only about half the interferometer accuracy.

2.2.3. Polarizing Cube Beam Splitter

The beam splitter can also take the form of a glass cube. It can be a non-polarizing
beam splitter or a polarizing beam splitter. The second option has many advantages
that we will describe in Section 2.8.1, as pointed out by Bruning and Herriott (1970)
and Bruning et al. (1974).

Two important properties of the cube beam splitter are that the interferometer
is automatically compensated and that most beam splitter faces are all dielectric
with no absorption. If polarized light is used, some other important character-
istics are present. Figure 2.9 shows an interferometer using a polarizing cube
beam splitter, where all the P polarized component of the light beam is trans-
mitted while the S polarized component of the light beam is reflected. If the
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FIGURE 2.9. Twyman Green interferometer with a polarizing cube beam splitter.
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incident light beam is linearly polarized in a plane at 45° with respect to the
square cube edges the reflected intensity is equal to the transmitted intensity.
However, as mentioned before, if the mirrors M; and M, have different reflec-
tivities, a half wave phase plate can be inserted before the cube beam splitter to
maximize the fringe contrast. If the angle between the slow or fast axis of the
phase plate forms an angle 6/2 with respect to the plane of polarization of the
incident beam, this plane of polarization will rotate an angle 6. If the fast and
slow axes of the phase plate are interchanged by rotating the phase plate 90°, the
phase or the output beam whose plane of polarization is rotated changes 180°.
The S and the P components will have different intensity as desired depending on
this angle.

When the transmitted and the reflected light go to mirrors M; and M,, both
beams pass twice through quarter wave phase plates with their axes at 45°
before returning to the beam splitter. Thus, both planes of polarization will
rotate by 90°. This allows the returning beams to go to the observing screen
instead of returning to the light beam. So, there is no returning complementary
interference pattern when using a nonpolarizing beam splitter. Both interference
patterns go to the observing screen, but we can separate them later, as we will
next describe. Figure 2.10 illustrates the polarization states at different points
along the light trajectories. We can see that after recombining and exiting the
beam splitter, the two beams are orthogonally polarized. So, interference cannot
take place. Let us assume that these two beams with S and P polarizations have
the amplitudes

E.=Ae®  and  E, = Ae¥HOPD) (2.16)

where OPD is the optical path difference between the two beams. A A/4 phase plate
with its axis at 45° is placed after the beam splitter to transform these two beams into
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// /// !
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FIGURE 2.10. Polarization states at different locations in the interferometer in Fig. 2.9.
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two circularly polarized beams with opposite sense. The total electric field due to the
superposition of the two fields along the slow axis can be shown to be

1 —i i
Esion = E A(l te kOPD)ekz7 (217)
and along the fast axis
1 A(l _ e—ikOPD)ei(kz+1r/2). (218)

Eras = %

If we place a linear polarizer (analyzer) in front of these circularly polarized
beams, only the components along the axis of the polarizer forming an angle o with
the slow axis of the phase plate will pass through. Thus, the amplitude along this axis
of the polarizer is

E, = Egjpy cos o + Epy sina, (2.19)

which can be transformed into

E(x — A(eio( 4 e*ixefik OPD)eikx’ (220)

-

or equivalently into

kOPDY
E, = V2Acos (oc +2>e’k(x(OPD/2)). (2.21)

Hence, the interferogram irradiance can be shown to be
I, = E,E; = A*[1 + cos(k OPD + 21)]. (2.22)

The conclusion is that the orientation « of the axis of the analyzer will change the
phase difference between the two interfering beams without modifying the contrast.
The phase difference between the two interfering beams changes linearly with the
angle. By turning the analyzer by an angle o, the phase difference will change by 2.
This effect is frequently used in phase shifting interferometers.

2.2.4. Nonpolarizing Cube Beam Splitter

A simplified version of the previously described interferometer configuration where
the main beam splitter is nonpolarizing and only one phase plate is used is illustrated
in Figure 2.11. The light source is linearly polarized at 45°, which means that the x
and y components of the electric vector are in phase. The A/8 phase plate is traversed
twice, sending back to the beam splitter circularly polarized light, which is equivalent
to saying that the x and y components have a phase difference equal to 90°.
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FIGURE 2.11. Twyman Green interferometer with a nonpolarizing cube beam splitter.

As in the previous interferometer, the exiting light beams cannot interfere, since
one of them is linearly polarized at 45° and the other is circularly polarized. If an
analyzer is rotated in front of the interfering light beams coming out of the beam
splitter, the interference pattern appears, since only the components along the axis of
the polarizer, forming an angle 6 with the x axis will pass through it. It can be proved
that the interference patterns transmitted with the analyzer at an angle 0 and at an
angle 0 4 90° are complementary. The phase depends on the angle of the analyzer,
but for this arrangement with a nonpolarizing beam splitter, the fringe contrast is
maximum only at the analyzer angles 0 = +45°.

2.3. COHERENCE REQUIREMENTS

The size (spatial coherence) and monochromaticity (temporal coherence) of the light
source must satisfy certain minimum requirements that depend on the geometry of
the system, as described by Hansen (1955, 1984) and by Birch (1979). It is interesting
to know that if the optical element under test has very steep reflections, the state of
polarization of the light may change in the reflection, introducing changes in the
contrast (Ferguson, 1982). However, in most of the cases, the important factor in the
contrast is the coherence of the light source.

2.3.1. Spatial Coherence

The light source for interferometry must satisfy some minimum requirements of
spatial as well as temporal coherence, depending on the interferometer configuration
and the specific application and needs. As described in Chapter 1, Section 1.1.2.,
some gas or vapor lamps can be used in conjunction with a small pinhole to
illuminate an interferometer. These lamps with the pinhole do not have perfect
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spatial and temporal coherence. A gas laser, however, has perfect spatial coherence
and can have almost perfect temporal coherence. We might think at first that this is
the ideal light source for interferometry, but this is not always the case. The
coherence length is, in general, so large that many unwanted reflections from other
surfaces in the optical system may produce a lot of spurious fringes in addition to the
speckle noise that make it difficult to analyze the interferogram. On the contrary, the
perfect spatial coherence produce scattering spherical waves from many unavoidable
small pieces of dust or scratches on the optical elements, which in turn produce many
spurious rings of fringes. This problem has been studied in detail by Schwider (1999).

The conclusion is that, quite frequently, it is a better option to use a gas or vapor
light source instead of a laser. However, if the optical path difference is large, it is
unavoidable to use a gas laser. In this section we will study the coherence require-
ments for the light source.

There are two cases for which the collimated wavefront has ray lights spread over
a solid angle with diameter 26, and hence the final accuracy of the interferometry or
the contrast will be reduced:

(1) The collimator has spherical aberration, in which

0=— 2.23
- (223)

where 7A is the maximum value of the transverse spherical aberration of the
collimator at its best focus position. This aberration might limit the accuracy of
the interferometer unless the OPD remains constant with changes in the angle 6.
Otherwise, given the maximum value of 8, the maximum change in the OPD should
be smaller than the desired accuracy.

(2) The light source is not a mathematical point but has a small diameter 2a; then

a
0 7 (2.24)
where fis the focal length of the collimator.

Fringes with high contrast are obtained, using an extended thermal source, only if
the OPDs for the two paths from any point of the source with different value of 6
differ by an amount smaller than 1/4 according to the Rayleigh criterion. On the
contrary, radiometric considerations usually require as large a source as possible that
will not degrade the contrast of the fringes.

When the beam splitter is a glass plate and is not compensated by another identical
glass plate, we may show that the maximum light source size has an elliptical shape.
This is the reason why the fringes are elliptical in an uncompensated Michelson
interferometer. The shape and the size of the ellipse not only are functions of ¢, 0,
and  but also depend very critically on f.

The simpler case of a glass plate with its normal along the optical axis can be
analyzed with more detail as will be shown. The OPD is given by Eq. (2.7). As shown



58 TWYMAN-GREEN INTERFEROMETER

OPD (0)
fo = tyy (1=1/n)
58547 |
< <
353151 — —
M
35314 | = —
< <
21 —
11 = fo=ty (1=N)
| ! !

5 10 15 20 25’ 30

FIGURE 2.12. Optical path difference introduced by a plane parallel plate normal to the optical axis
(t=2cm, n=1.52, 7I11 = 589 nm.).

in Figure 2.12, the value of the OPD changes with the value of 0 depending on the
value of fy. The maximum allowed value of the angular semidiameter 0 of the light
source as seen from the collimator is that which gives a variation of the OPD equal to
A/4. On the contrary, the maximum allowed value of the angle 6 due to spherical
aberration of the collimator is that which gives a variation of the OPD equal to the
accuracy desired from the interferometer.

When testing small optics using a nonmonochromatic light source, the optical
path difference can be adjusted to be zero. Then, it is convenient to choose

h = IN(I — n), (225)

so that OPD(0°) = 0, but this situation will require an even smaller light source. It
should be pointed out that when testing large optics, the value of 7y cannot be changed
at will, because in general it will be very large.

If an extended quasi-monochromatic light is used, a good condition in order to
make the optical path difference insensitive to the angle 0 is

dOPD(0)
- 2.2
=0, (226)
yielding
fo =1, 1—1 (2.27)
0=1In R .

It is interesting to see that this equation is equivalent to the condition that the
apparent distance of the image of the collimator (or the light source in a Michelson
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interferometer) to the observer is the same for both arms of the interferometer. This
condition seems reasonable if we consider that then the angular size of the two
images of the light source is the same as pointed out by Steel (1962) and Slevogt
(1954).

When the light source is extended and the interferometer is compensated in this
manner, the fringes are localized at a certain plane in space. To find this plane, the
system may be unfolded as studied by Hansen (1942, 1955). For an interferometer
with plane mirrors, this location for the fringes is near the plane mirrors because of
the way the image of the light source moves when one of the mirrors is tilted in order
to obtain the fringes as shown in Figure 2.5. Thus, the viewing system must be
focused near the mirrors to see the fringes.

As it will be described later in this chapter, to test an optical system, one of the
plane mirrors is replaced by the system to be tested, plus some auxiliary optics to
send back a collimated beam to the interferometer, just like one single mirror would
do. The returning collimated beam has to have the same diameter. Thus, it is easy to
conclude that this whole system, including the element under test has the following
general characteristics:

(1) It is afocal.

(2) Its magnification is either one or minus one. If it is minus one, the returning
wavefront will be rotated with respect to the incident wavefront.

(3) The system is symmetric and hence it is always free of coma.

(4) Entrance and the exit pupil are symmetrically placed with respect to the
system and have the same diameter.

With these properties we see that since the system is reflective (it is retroreflector
only if the magnification is minus one), the entrance and exit pupil are at the same
plane. An important conclusion is that the fringes should be observed at this entrance
and exit pupil plane. This problem has been studied with detail by Schwider and
Falkenstorfer (1995).

It should be noticed that the entrance pupil of the whole system is not necessarily
the same as the pupil of the lens under test. However, when testing a lens, the fringes
are to be observed at the pupil, which ideally should be the same. This does not
happen with a single mirror; therefore, the mirror should be as close as possible to the
lens. This the reason why a convex mirror with the longest possible radius of
curvature is desirable (Steel, 1966) when testing telescope objectives. On the con-
trary, the entrance pupil of a microscope objective is at infinity; hence, the exit pupil
is at the back focus. Dyson (1959) described an optical system such as the one to be
described in Chapter 12, which images the mirror surface on the back focus of the
microscope objective, where the fringes are desired.

The limitation on the size of a pinhole source was examined in a slightly different
manner by Guild (1920-1921) as explained below. Imagine that the small source is
greatly enlarged to form an extended source. Then fit an eyepiece in front of lens L,
(see Fig. 2.1) to form a telescope. Under these conditions, equal inclination fringes in
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the form of concentric rings (like the ones normally observed in the Michelson
interferometer) are observed. If the mirrors are exactly perpendicular to their optical
axes, the rings will be exactly centered. The ideal size of the source is that which
allows only the central spot on the fringe system to be observed. The size of
the central spot increases when the OPD (0) reduces its dependence on 0 by one
of the adjustments described above, making possible the use of a larger source,
although the effective size of the spot is then limited by the pupil of the observing eye
or the camera.

In all the foregoing considerations, the two interfering wavefronts are assumed to
have the same orientation, that is, without any rotations or reversals with respect to
each other. In other words, if one of the beams is rotated or reversed, the other should
also be rotated or reversed. A wavefront can be rotated 180° by means of a cube
corner prism or a cat’s-eye retroreflector formed by a convergent lens and a flat
mirror at its focus. The wavefront can be reversed upon reflection on a system of two
mutually perpendicular flat surfaces, e.g., in a Porro prism. Murty (1964) showed that
if one of the wavefronts is rotated or reversed with respect to the other, then, to have
fringes with good contrast and without phase shifts, the pinhole diameter 2o should
satisfy the condition

1.2
20 < 124 (2.28)
D

so that diametrically opposite points over the wavefront are coherent to each other.
Here, fand D are the collimator’s focal length and diameter, respectively. Then 2«
is extremely small and therefore an impractical size for some sources. However,
there is no problem if a gas laser is used, because its radiance and spatial
coherence are extremely high. This subject will be examined with more detail
in Chapter 5.

When testing an optical element as it will be described in the following section,
the wavefront is sometimes inverted (up-down) or reversed (left-right) or rotated
(both), which is equivalent to a rotation of one of the wavefronts by 180°. Then, the
spatial coherence requirements increase. If a laser is used, no problem arises. If a gas
or vapor source is used, the reference wavefront has also to be inversed, reversed, or
rotated, like the wavefront under test.

When there is no alternative but to use a gas laser source, due to a large optical
path difference, speckle noise and spurious fringes may be reduced by artificially
reducing the spatial coherence of the light a little. This is possible by placing a small
rotating ground glass disc on the plane of the pinhole as described by Murty and
Malacara (1965), Schwider and Falkenstorfer (1995), and Schwider (1999).

2.3.2. Temporal Coherence

The OPD (0) given by Eq. (2.5) also imposes some minimum requirements on the
monochromaticity of the light source. Considering first the case of an interferometer
that is uncompensated because of the lack of a compensating plate or the presence of
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an optical system with lenses or prisms in one of the arms, from Eq. (2.5) we can
write

AOPD(0°) = 2ty GD A (2.29)

and, using again the Rayleigh criterion (AOPD < 1/4),

(2.30)

Therefore, since the glass dispersion (d n/d1) is never zero, and f, is also nonzero,
the bandwidth A4 must not have a very large value if the interferometer is not
compensated. If the interferometer is exactly compensated, white light fringes can be
observed when OPD is nearly zero; otherwise, a highly monochromatic light source
such as a low vapor pressure lamp or (even better) a gas laser must be used.

If many different kinds of glasses are present in both arms of the interferometer,
we may take a more general approach by considering that the interferometer is
compensated for the bandwidth AZ of the light, if the phase difference for the light
following the two paths in the interferometer is independent of the wavelength.
According to Steel (1962), we can say that, if each arm of the interferometer contains
a series of optical components of thickness ¢ and refractive index n, the phase
difference for the two arms is

2
¢:7<Znt—2nt (2.31)
‘ 1 2
This relative phase is independent of the wavelength when d¢/d/ = 0, thus giving
D ar=" it (2.32)
1 2

where 1i is the “group refractive index,” defined by

- dn
n=n-— )ta (2.33)

Thus, the interferometer is compensated for the bandwidth Al when the “group
optical path” for both arms is the same. Steel (1962) pointed out that the compensa-
tion for the bandwidth of the light source can be examined by looking at the fringes
formed by a white light source through a spectroscope with its slit perpendicular to
the fringes. The spectrum is crossed by the fringes and their inclination shows the
change of fringe position with wavelength. The fringes will be straight along the
direction of dispersion if the bandwidth compensation is perfect. Otherwise, the glass
optical paths can be adjusted until the fringes show a maximum (zero slope) at the
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wavelength to be used. If the bandwidth of the light source is very large, a detailed
balancing of the glass paths has to be made by using the same types and thicknesses
of the glass on both arms.

If the OPD(0) is very large, as in the unequal-path interferometer (described in
Section 2.5), the last term in Eq. 2.5 dominates, and we can write

OPD(0°) = 21y = mA (2.34)

but from the Rayleigh criterion, the order number m should not change from one end
of the wavelength bandwidth to that of the other by more than 1/4; thus

1
mi = (m + 4> (A—A4) (2.35)
where A/ is the maximum allowed bandwidth. Thus we can write the approximation

A
AL < — 2.36
= 819 ( )

Since the length of a train of waves with bandwidth AJ is equal to A2AJ, this
condition is equivalent to saying that the OPD(0°) should be smaller than one fourth
of the length of the wavetrain (or wavelength of the modulation). In uncompensated
interferometers, this condition is incompatible with the condition for an extended
light source.

A very interesting and practical case occurs when the light source is a gas laser, but
this discussion is left to Section 2.5 on the unequal-path interferometer.

2.4. USES OF A TWYMAN-GREEN INTEFEROMETER

Many different kinds of optical components can be tested with this instrument. The
simplest one to test is a plane parallel plate of glass, as shown in Figure 2.13. The
OPD introduced by the presence of the glass plate is given by

OPD = 2(n— 1)t (2.37)

where ¢ is the plate thickness and » is the refractive index. If the interferometer is
adjusted so that no fringes are observed before introducing the plate into the light
beam, all the fringes that appear are due to the plate. If the field remains free of fringes,
we can say that the quantity (n — 1)z is constant over all the plate. If straight fringes
are observed, we can assume that the glass is perfectly homogeneous (nconstant) and
that the fringes are due to an angle ¢ between the two flat faces, given by

e — 72(’1“_ 3 (2.38)
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Glass plate
under test

Flat
mirror

FIGURE 2.13. Testing a glass plate.

where o is a small angle between the two interfering wavefronts, which can be
determined from

o =nl (2.39)

Here m is the number of interference fringes per unit length being observed.

The fringes, however, may not be straight but quite distorted, as shown in
Figure 2.14, because of bad surfaces or inhomogeneities in the index, since the
only quantity we can determine is (N — 1)¢. To measure the independent variations
of n and ¢, we must complement this test with another made in a Fizeau interferom-
eter, which measures the values of nt (Kowalik 1978). Many different kinds of

FIGURE 2.14. Interferogram of a glass plate.
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FIGURE 2.15. Testing a thin and flexible opaque glass plate.

material can be tested with this basic arrangement (Adachi et al., 1961, 1962; Masuda
et al., 1962; Twyman and Dalladay, 1921-1922).

In many instruments, when using a glass window, the important requirement is
that the optical path difference introduced by its presence is a constant for the whole
aperture as in Eq. (2.30). However, sometimes the plate may not be transparent in the
visible, only in the infrared, where it is used, and an infrared interferometer is not
available. If a constant index of refraction is assumed, the important parameter is a
constant thickness. But an independent measurement of the flatness of the faces does
not permit this evaluation because the plate is frequently so thin that it may bend,
which, on the contrary, is not important in its operation. For these cases, Williamson
(2004) has described a configuration as shown in Figure 2.15. The interesting
characteristic of this configuration is that if the plate bends or curves in any way,
the change in one of its two faces is canceled out by the corresponding change in the
other.

2.4.1. Testing of Prisms and Diffraction Rulings

The Twyman—Green interferometer is a very useful instrument for testing prisms. Its
application for testing the accuracy of the 90° angle between two of the faces of a
right angle (Porro) prism, a roof (Amici) prism, or a cube corner prism is especially
interesting. As explained before, the relative rotation or reversal of the wavefronts
should be corrected, as shown in Figure 2.16, if a gas laser is not used. The
arrangements in Figure 2.17 can be used when a gas laser source is employed.

Avery good cube corner prism will give rise to an interferogram like that shown in
Figure 2.18. The fringes are straight throughout the aperture. A cube comer prism
with angular errors produces an interferogram such as that shown in Figure 2.19, in
which the straight fringes abruptly change their direction. Thomas and Wyant (1977)
made a complete study of the testing of cube corner prisms.
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FIGURE 2.16. Testing some prisms.

Right Angle (Porro) prism
Under test

Cube corner prism
Under test

<

FIGURE 2.17. Testing some prisms by retroreflection with laser illumination.
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FIGURE 2.18. Interferogram of a good corner cube prism tested in the retroreflecting configuration and
with some tilt.

Figures 2.20 and 2.21 show similar situations for a right-angle prism of no error
and of some angular error, respectively. If, in addition to angle errors, the surfaces are
not flat or the glass is not homogeneous, an interferogram with curved fringes is
obtained. When a right angle or porro prism is tested in the retroreflective config-
uration and the surface flatness as well as the 90° angle is correct, the fringes look

FIGURE 2.19. Interferogram of a corner cube prism with some errors in the angles of the faces tested in
the retroreflecting configuration and with an average tilt equal to zero.
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FIGURE 2.20. Interferogram of a good porro prism tested in the retroreflecting configuration and with
some tilt.

straight and parallel as in Figure 2.20. If the right angle has an error, the fringes look
like those shown in Figure 2.21 and can be manipulated to look like those in
Figure 2.22. We describe here a brief method for obtaining the angular error in a
right angle prism. If 2L is the width of the face of the prism, /2 =+ ¢ s the angle of the
prism, d is the distance between two successive fringes, & is the deviation of the fringe
from the straight fringe after bending, n is the refractive index of the prism, and 4 is
the wavelength used. As shown in Figure 2.23, the error is given by

o k A
e=—=|— _
2N d) \4nL
where o is the angle between the two exiting wavefronts. For example, for a prism of
100 mm face width and k/d = 0.25, the error ¢ of the 90° angle is about 1 s of arc. In

regard to the sign of the error, the hot rod or finger procedure described before can be
used.

FIGURE 2.21. Interferogram of a porro prism with a small error in the angle tested in the retroreflecting
configuration. It has some tilt about the x axis and an average tilt equal to zero about the y axis.
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FIGURE 2.22. Interferogram of a porro prism with a small error in the angle tested in the retroreflecting
configuration. It has some tilt about the x axis and a zero tilt about the y axis on the left side.

Luneburg (1964) showed that the angular error ¢ in a roof face of a prism is

o
= - 2.40
¢ 4mn sin 0 ( )

where n is the refractive index of the material, o is the angle between the two exiting
wavefronts in a single pass through the prism, 6 is the angle between de roof edge and
the incident beam, and m is the number of times the lights is reflected on the roof face.
For the arrangements shown in Figs. 2.15 and 2.16 we have the values in Table 2.1.
The angle o is determined from Eq. (2.32), but with the interferometer adjusted in
such a way that all the fringes in one of the faces are eliminated.

A dispersive prism can also be tested as shown in Figure 2.24(a). This arrange-
ment of smoothly changing inhomogeneities in the glass may be compensated for by
appropriately figuring the faces. An axicon may be tested in a Twyman—Green
interferometer using the method described by Fantone (1981) as well as reflaxicons
(Hayes et al., 1981).

Right angle prism
under test

a=2ne 2L

FIGURE 2.23. Testing a porro prism with a small error in the angle in a retroreflective configuration.
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TABLE 2.1 Values of angle 6 and of K for prisms in Figures

2.16 and 2.17.

Prism Figure 0 sin 0 K
Porro 2.10 60° 0.8662 2
Amici 2.10 45° 1/v2 2
Cube Corner 2.10 54.7° 2/3 2
Porro 2.11 90° 1 1
Cube Corner 2.11 54.7° 2/3 1

In 1935, Bisacre and Simeon suggested a method whereby a diffraction grating
could be tested by means of a Twyman—Green interferometer. Unfortunately, they
never published their work (Candler, 1951). They used the arrangement shown in
Figure 2.24(b). The interferometer is initially adjusted to obtain horizontal fringes in
the first order. Then the grating is rotated to pass to the third order, in which the
ghosts, if any, are stronger. If there are ghosts and a tilt about an axis along the grating
chromatic dispersion is introduced, the fringes have a sawtooth appearance. When
the spacing between the horizontal fringes is increased by removing the tilt, the teeth
become larger and larger until they form a system of vertical fringes due to the
inteference between the zero order and the ghost wavefront. Using this interferom-
eter, Jaroszewics (1986) has also tested the spacing error of a plane diffraction
grating.

2.4.2. Testing of Lenses

One of the early applications of the Twyman—Green interferometer was the testing of
lenses and camera objectives (Twyman, 1920), including the measurement of the
chromatic aberration (Martin and Kingslake, 1923-1924). Any of the arrangements
in Figure 2.25 can be used to test a convergent lens. A convex spherical mirror with

Equilateral prism

Diffraction grating

(b)

FIGURE 2.24. Testing a dispersive prism and a diffraction grating.
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FIGURE 2.25. Three possible arrangements to test a lens.

its center of curvature at the focus of the lens is used for lenses with long focal lengths
and a concave spherical mirror for lenses with short focal lengths. A small flat mirror
at the focus of the lens can also be employed to great advantage, since the portion of
the flat mirror being used is so small that its surface does not need to be very accurate.
However, because of the spatial coherence requirements described in Section 2.3.1,
the same arrangement or a cube corner prism must be employed on the other
interferometer arm, if a laser is not used. Another characteristic of this method is
that asymmetric aberrations like coma ere canceled out, leaving only symmetric
aberrations like spherical aberration and astigmatism.

When a lens is to be tested off axis, it is convenient to mount it in a nodal lens
bench as shown schematically in Figure 2.26. The lens L under test is mounted in a
rotating mount so that the lens can be rotated about the nodal point N. Since the focal
surface is usually designed to be a plane and not a sphere, mirror M is moved

FIGURE 2.26. Testing a lens with a nodal bench.
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backward a small distance F P by pushing the mirror support against a metallic bar
FP, fixed with respect to lens L. Interferograms obtained with lenses having third
order aberrations will be shown in Section 2.7.

Testing a large lens on the Twyman—Green interferometer requires the use of a
beam-splitter plate even larger than the lens. To avoid this difficulty, according to
Burch (1940), Williams suggested later by Hopkins (1962) for use with a gas laser in
an unequal path configuration.

Complete small telescopes can also de tested with good results as shown by
Ostrovskaya and Filimonova (1969).

2.4.3. Testing of Microscope Objectives

Twyman (1920, 1923) also used his instrument for the testing of microscope
objectives with good success. The arrangement is essentially the one used for a lens,
but a convex mirror, in general, cannot be employed because of the short focus of the
objective. Since the microscope sometimes works at a finite tube length, a negative lens
is added to change the collimated light and simulate a light source 16 cm away. This
lens must be corrected for spherical aberration, but it is not necessary to correct it
quasi-monochromatic. As shown in Figure 2.27, several arrangements can be used to
test an objective, the most common being a spherical concave mirror with its center of
curvature at the focus of the objective. A solid spherical reflector slightly thicker than a
hemisphere can serve to simulate the presence of a cover glass.

A plane mirror at the focus of the objective can also be used, but in this case the
wavefront is rotated 180°. Therefore, we should either use a laser light source or
rotate the wavefront on the other arm. This can be done by means of a cube corner
prism or with another microscope objective with the same flat mirror arrangement. It
should be pointed out that the interferogram in this case represents the difference
between the aberrations of the two objectives.

A fourth arrangement is formed by two oppositely placed microscope objectives.
In this case, the interferogram represents the sum of the aberrations of the two
objectives. However, when the aberrations to be measured are not small or the
pinhole is not small, the best arrangement is the one with the Dyson’s system
described in Chapter 12.
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FIGURE 2.27. Testing microscope objectives.
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2.5. COMPENSATION OF INTRINSIC ABERRATIONS IN THE
INTERFEROMETER

A Twyman—Green interferometer may easily have aberrations of its own due to
defective optical components, so that the interferometric pattern is the result of the
addition of the aberrations of the optical system under test and the intrinsic inter-
ferometer aberrations. Basically, the final aberration may be the superposition of
three sources, the reference path Wy, the testing path Wy, and the element or
optical surface under test W,s. A method to isolate the optical surface aberration
from the instrument aberration has been proposed by Jensen (1973). His procedure
takes three different measurements with different positions and orientations of the
surface under test. To describe it let us assume that these three measurements are as
follows.

(a) A the normal testing position, as in Figure 2.28(a). Then, the inteferogram
aberration can be written as

W()o = Wsmf + Wref + Wtest (241)

(b) At the normal testing position, but rotating the surface under test 180°, as
shown in Figure 2.28(b), the interferogam aberration now is

Wigoe = Wsmf + Wref + Wiest (242)

where the bar on top of Wy,,r means that this wavefront aberration has been rotated
by 180°.

Spherical Spherical

mirror mirror

at 0° at 180°
Z, {:- / c Ir: é

v | ’ B |
Focusing g Focusing 2

lens lens

(a) (b)
Spherical
mirror
at the focus

Focusing
lens

(©)

FIGURE 2.28. Calibration of a Twyman-Green Interferometer by absolute testing a concave sphere.
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(c) The vertex of the optical surface under test is placed at the focus of the
focusing lens, as illustrated in Figure 2.28(c). Then, the surface aberrations do
not appear on the interferogram. However, The reflected wavefront is rotated.
Now we have

1 —
Wfocux = Wref + E (Wtesz + erst) (243)

In any of these three equations, we can rotate all wavefronts in the same expres-
sion and it will remain valid. This is done either by placing the bar on top of the W that
does not have it or by removing it if it is already there. By using this property, it is
possible to obtain

WW’f = (WO" + WISOC - Wfocm - Wfocm) (244)

N =

With this expression the intrinsic interferometer aberrations are subtracted, making
the instrument as if it did not have any aberration of its own. If a large number of
similar spherical surfaces are to be tested, the intrinsic instrumental aberration can be
expressed as

Wref + Wtest = (VVOO - WISOO + Wfocux + Wfocus) (245)

1
2
Once the interferometer is calibrated, this intrinsic aberration can be subtracted if the
surface under test has a radius of curvature close to the one of the mirror used to make
the calibration.

Unfortunately, as shown by Creath and Wyant (1992), this method is quite
sensitive to experimental errors due to misalignments, such as decentrations and
tilts in the rotation and shifting of the surface under test. In view of this, they
proposed a simpler method where both the intrinsic interferometer aberration and
the aberration of the spherical surface are almost rotationally symmetric. Then, Eq.
(2.37) reduces to

Waurr = Woo — Wiocus (2.46)

and the intrinsic aberration is just Wp,,. It is important to point out that this method
works for Twyman—Green well as for Fizeau interferometers.

2.6. UNEQUAL-PATH INTERFEROMETER

In Section 2.3, we discussed the coherence requirements of a Twyman—Green
interferometer and pointed out that, when a laser light source is used, extremely
large OPDs can be introduced (Morokuma et al., 1963). In explaining this, let us first
consider the spectrum of the light emitted by a laser. As shown in Figure 2.29(a), the
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FIGURE 2.29. Visibility in the interferometer using a mutimode gas laser.

light emitted by a gas laser usually consists of several spectral lines (longitudinal
modes) (Sinclair and Bell, 1969) spaced equally at a frequency interval Av given by
e

Av = (2.47)

If the cavity length L of a laser changes for some reason (thermal expansion or
contractions, mechanical vibrations, etc.), the lines move in concert along the
frequency scale, preserving their relative distances Av, but always with intensities
inside the dotted envelope (power gain curve) as shown in Figure 2.29(a).

Lasers that have only one spectral line are called single-mode or single-frequency
lasers. They produce a perfect unmodulated wavetrain, but because of instabilities in
a cavity length L the frequency is also unstable. By the use of servomechanisms,
however, single-frequency lasers with extremely stable frequencies are commer-
cially produced. They are the ideal source for interferometry since an OPD as long as
desired can be introduced without any loss in contrast. Unfortunately, these lasers are
very expensive and have very low power outputs (less than 1 mW). Even so, a I-mW
laser has a higher radiance than any other type of interferometric source.

It can be shown (Collier et al., 1971) that the theoretical visibility in an inter-
ferometer, when a laser source with several longitudinal modes is used, is as
illustrated in Figure 2.29(b). Therefore, to have good contrast, the OPD (0) has to
be near an integral multiple of 2L; thus

OPD(0y) = 2t = 2ML (2.48)

Hence lasers are very convenient for Twyman—Green interferometry provided that
the mirrors in the interferometer can be adjusted to satisfy this condition. Because of
mechanical instability, the laser cavity normally vibrates, producing a continuous



2.6. UNEQUAL-PATH INTERFEROMETER 75

instability in the frequency of the lines. This does not represented any serious
problem for small OPDs of the order of 1 m. If, however, the OPD is very large,
of the order of 10 or more meters, an almost periodic variation of the contrast is
introduced as shown by Batishko and Shannon (1972). To overcome the inconve-
nience of this effect, they recommend taking photographs with exposures of the order
of 1/250 ms. This exposure is fast enough to stop the vibration of the fringes but slow
enough so that the contrast variation is integrated out.

A laser with two longitudinal modes can be stabilized to avoid contrast changes by
a method recommended by Balhorn et al. (1972), Bennett et al. (1973), and Gordon
and Jacobs (1974).

Some suggestions for aligning and adjusting the unequal path interferometer had
been given by Zielinski (1978,1979).

2.6.1. Some Special Designs

With the advent of the laser, it became practical to use Twyman—Green interferom-
eters with large optical path differences. Probably the first one to suggest this was
Hopkins (1962). An instrument of this type following a Williams arrangement was
made by Grigull and Rottenkolder (1967) for wind-tunnel observations and the
testing of spherical mirrors.

A very versatile unequal-path interferometer for optical shop testing was designed
by Houston et al. (1967). A schematic diagram of this interferometer is shown in
Figure 2.30. The beam-splitter plate, which is at the Brewster angle, has a wedge
angle of 2-3 min of arc between the surfaces. The reflecting surface of this plate is
located to receive the rays returning from the test specimen in order to preclude
astigmatism and other undesirable effects. A two-lens beam diverger can be placed in
one arm of the interferometer. It is made of high index glass, all the surfaces being
spherical, and has the capability for testing a surface as fast as f/1.7. A null lens can
be used to test an aspheric element, with the combination beam diverger and null lens
spaced and aligned as depicted in Figure 2.31 (see Chapter 12)

Another unequal-path interferometer was designed by Kocher (1972). This instru-
ment, shown in Figure 2.32, is quite similar to the Twyman—Green interferometer in

Adjustable
< mirror
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expander Collimator

Observing diverger

screen

Mirror
under test

FIGURE 2.30. Houston’s unequal path interferometer.
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FIGURE 2.31. Null lens and lens diverger for unequal path interferometer.

Figure 2.2. A significant feature is the use of an optically thick beam-splitter substrate
in the diverging beam. Such a plate introduces aberrations, but they are intentionally
made equal on both arms. To a first approximation there is no effect on the fringe
pattern, mainly if the total thickness is kept small. Buin et al. (1969) reported a
successful industrial use of unequal-path interferometers.

2.6.2. Improving the Fringe Stability

The unequal-path interferometer frequently has the problem that the fringes are
very unstable due to vibrations of the surface under test. Most mirror vibrations
have mainly tip and tilt components more than a piston component. Bending is not
usually important mainly if the optical elements are thick enough. Thus, one obvious
approach is to configure the optical system so that the antisymmetric components of
the wavefront from the vibrating system under test are canceled out. The disadvantage
of this is that the antisymmetric aberrations, such as coma, are not detected.

One possible implementation of this concept is the arrangement in Figure 2.33.
The diverging beam of light going out from the interferometer illuminates the
concave surface under test and then the reflected convergent beam gets reflected in
a small flat mirror near the center of curvature. Then, the light returns to the mirror,
but the returning wavefront has been rotated 180° with respect to the incident

Surface
Beam under test

splitter

expander

Observing
screen

FIGURE 2.32. Kocher’s unequal path interferometer.



2.7. OPEN PATH INTERFEROMETERS 77

Small flat mirror

Mirror under test
Center of curvature

FIGURE 2.33. Stabilization of interference fringes by eliminating antisymetric errors in the wavefront,
by means of a reflection in a small flat mirror.

wavefront. This rotation of the wavefront eliminates all antisymmetric components
of the wavefront error, remaining only the symmetric components.

The mirror vibrations may also be eliminated from the interferogram by introdu-
cing exactly the same vibrations in the reference wavefront. This is done with an
arrangement described by Hardesty (1979), where the reference arm of the inter-
ferometer is made as long as the test arm and the reference mirror is placed as close as
possible to the tested element, so that they vibrate together.

A third method to dampen the vibrations is by sensing this vibrations with a light
detector and with this signal move the reference mirror in the opposite sense (Cole
etal., 1997). This is a closed loop servo system that uses a phase smaple frequency of
several kilo Hertz.

A fourth method is to capture the interferogram image as fast as possible, so that
vibrations do not affect the image. This can be done, but the limitation might come if
several images with different phase are required, as in phase shifting interferometry.
Some interferometers had been designed that allow the simultaneous measurement
of four interferograms with different phase.

2.7. OPEN PATH INTERFEROMETERS

An optical element under test in a Twyman—Green interferometer is traversed twice.
However, sometimes it is necessary that the sample is traversed by the light beam
only once. This can be done if the interferometer configuration is modified by
unfolding the light paths. Several possible configurations including the well-known
Mach-Zehnder will be described.

2.7.1. Mach-Zehnder Interferometers

As pointed out before, the Mach-Zehnder configuration shown in Figure 2.34 has
some advantages with respect to the Twyman—Green configuration. For example, if
the sample under test has a large aberration, it is better to pass the beam of light only
once through it. Another advantage some times is that this interferometer is auto-
matically compensated because it has two beam splitters.
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FIGURE 2.34. Basic Mach-Zehnder interferometer configuration.

A commercial version of this interferometer configuration, manufactured by
Wyko Corp., uses a pinhole in one of the branches to generate a perfect wavefront,
in order to test the wavefront quality of the light source, as shown in Figure 2.35.
(Leung and Lange, 1983; Creath, 1987). A Mach—Zehnder has also been used to test
off-axis paraboloids (Gerth et al., 1978). Cuadrado et al. (1987) have described a
method to align a Mach—Zehnder interferometer using equilateral hyperbolic zone
plates and Flack (1978) has analyzed the errors that result from a test section
misalignment.

Sometimes, to save one mirror, a triangular configuration as illustrated in
Figure 2.36 is used.

2.7.2. Oblique Incidence Interferometers

Another kind of two beam interferometers have triangular paths, so that one of the
beams is obliquely reflected on the flat surface under test. It may easily be proved that
under those conditions a small error with height 4 on the surface under test introduces
an error equal to 2 & cos 6, where 0 is the incidence angle. Thus, the interferometer is
desensitized by a factor cos 0. Another consequence of the oblique incidence is that
the reflectivity of the surface under test is greatly increased. Thus, an interferometer
with oblique incidence is ideally suited for testing ground or mate flat surfaces,

I
7 X
NN Ul N

N 7 \
N ) R 1)) I N
Laser diode ~ — Filtering
under test pinhole

FIGURE 2.35. Mach-Zehnder interferometer used to test the wavefront quality of a laser diode.
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FIGURE 2.36. Triangular path interferometer.

whose flatness and reflectivity are not good enough to be tested by conventional
interferometry.

Oblique incidence interferometers have been described by Linnik (1942),
Saunders and Gross (1959), by Birch (1973,1979), by Hariharan (1975), and by
MacBean (1984). Some of these interferometers use diffraction gratings as beam
splitters, as the one designed by Hariharan, as shown in Figure 2.37. Small ground
and almost flat aspherical surfaces may be tested with oblique incidence interferom-
eters as shown by Jones (1979).

Light source Observing eye

<A B
\‘4“ 0"‘(

Diffraction Diffraction
grating 17 /| grating

plane surface under test

FIGURE 2.37. Grazing incidence Interferometer using a diffraction grating beam splitter.
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2.8. VARIATIONS FROM THE TWYMAN-GREEN CONFIGURATION

Many variations of the Twyman—Green interferometer have been invented; interest-
ing among them are some small, compact interferometers designed by Van Heel and
Simons (1967) and by Basile (1979).

A carbon dioxide laser has been used as a light source of long wavelengths
(10.67m 1m) in a Twyman—Green interferometer (Munnerlyn et al., 1969, Kwon
et al., 1979, and Lewandowski et al., 1986) in order to measure unpolished or rough
surfaces.

Another interesting development is the invention of a cheap interferometer whose
defects are corrected by means of a hologram (Rogers, 1970). First, a photograph is
taken in a very imperfect and inexpensive interferometer, introducing a large tilt.
This gives rise to an exceedingly fine set of fringes invisible to the naked eye but
capable of being photographed. Then a second exposure is taken on the same
photographic plate, after introducing into the interferometer the plate to be tested.
A moiré pattern appears on the developed plate, giving the contours of the surface
quality of the plate under test.

Another interesting holographic Twyman—Green interferometer has been
described by Chen and Breckinridge (1982). In this design, a single holographic
optical element combines the functions of a beam splitter, beam diverger, and null
compensating lens. McDonell and DeYoung (1979) designed a large aperture inter-
ferometer using a holographic compensator.

2.8.1. Multiple Image Interferometers

An application of the systems using polarized light in the interferometer is to obtain
Twyman—Green multiple simultaneous fringe patterns with different values of the
constant phase difference by selecting the phase with the orientation of the analyzer.
The interferometers described in Section 2.2.4 can produce two complementary
interferograms as illustrated in Figure 2.38. If the two light beams returning to the
light source are observed with another polarizing beam splitter, we will have four
different fringe patterns with four different phases. Inteferometers like this had been
made with four independent cameras, but they are difficult to align. Another system
that does not have this problem, described by Millerd, Brock, Hayes, Kimbrough,
Novak, and North-Morris (2005), uses a CCD detector with a specially designed
screen in front of it as illustrated in Figure 2.39, where the pixels in the CCD camera
have analyzers oriented in four different directions to capture the four phase shifted
interferogram simultaneously, with a holographic element that projects the same
image region to a set of every four pixels.

2.8.2. Interferometers with Diffractive Beam Splitters

Some two beam interferometers may be thought as modifications from the basic
Twyman—Green interferometer. Some of them use diffraction gratings as beam
splitters, as the one shown in Figure 2.40, described by Molesini et al. (1984). The
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FIGURE 2.38. Twyman—Green interferometer with a cube nonpolarizing beam splitter.

advantage of this particular configuration is that relatively large errors in the grating
flatness may be tolerated. In the following section we will see some other inter-
ferometers using diffraction gratings as beam splitters.

2.8.3. Phase Conjugating Interferometer

Phase conjugating mirrors are very useful tools in interferometry. They eliminate the
need for a perfect reference wavefront. A Twyman—Green interferometer as shown in

ccD
detector

Polarizers
with four
different
orientations
Holographic
element N\ I~
I~

FIGURE 2.39. Arrangement to simultaneously produce for interferograms with different phase differ-
ences using a pixelated CCD detector with polarizing element in front of it.
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Diffraction grating

Mirror under test

Interferogram .
Light source

FIGURE 2.40. Oblique incidence interferometer using reflecting diffraction gratings as beam splitters.

Figure 2.41, using a phase conjugating mirror has been described by Feinberg (1983)
and Howes (1986a, 1986b). The phase conjugating mirror is formed by a BaTiO3
crystal, with the C axis parallel to one of its edges and inclined 20° with respect to a
plane perpendicular to the optical axis. The phase conjugation is obtained by four
wave mixing. These pumping beams are automatically self-generated from a 30-mW
argon laser (1 = 514.5 nm) incident beam by internal reflection at the crystal faces.
Thus, it is a self-pumped phase conjugating mirror.

The property of this self-conjugating mirror is that the wavefront incident to the
mirror is reflected back along the same ray directions that the incident wavefront has.
Thus, the wavefront deformations change sign. Since the returning rays have the
same directions as the incident rays, the quality of the focusing lens is not important.

v Z
‘ \‘\ 2‘ | N
ﬁ 1l 2 v
Light N ) \‘ P +C
source N i \» ; I BaTio
/ 3
Lens - ‘ Crystal
under test ocusing
lens

FIGURE 2.41. Twyman-Green Interferometer with a phase conjugating mirror.
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However, the quality of the light source collimator is important. Any wavefront
distortions produced by this collimator will appear in the final interferogram, but
duplicated. In other words, the wavefront is not tested against a flat reference but
against another wavefront with deformations opposite in sign.

Then the lens under test is the collimator and the sensitivity is the same as that in
the common Twyman—Green interferometer, but with only a single pass through the
lens. The advantage is that no perfect lenses are necessary. The disadvantage is that
an argon laser is required.

2.9. TWYMAN-GREEN INTERFEROGRAMS AND THEIR ANALYSIS

The interferograms due to the primary aberrations can be described by using the
wavefront function by Kingslake (1925-1926), which is given by

OPD = A + Bx + Cy + D(x* +y*) + E(x> + 3y?) + Fy(x* +y*) + G(x* +y*)?,
(2.49)

where these coefficients represent:

Constant (piston) term

Tilt about the y axis

Tilt about the x axis

Reference sphere change, also called defocus
Sagittal astigmatism along the y axis

Sagittal coma along the y axis

Primary spherical aberration

QMo AW

In polar coordinates (p, 8), Eq. 2.36 can also be written (x = pcos 6; y = psin6)
as

OPD = A + Bpcos 0 + Cpsin 0 + Dp? +Ep2(l +2sin20) + Fp®sin 0 + Gp*,
(2.56)

This expression is designed to represent the wavefronts produced in the presence
of the primary aberrations of a centered lens whose point source and image are
displaced in the y direction. Thus, the wavefront is always symmetric about the y axis.
Also, the coma and astigmatism terms are referred to the Petzval surface, which is not
of a great relevance in most interferograms. When testing an optical surface or a
descentered system no symmetry can, in general, be assumed and a more general
wavefront representation has to be considered.

Additionally, it is convenient for the mathematical analysis that the average tilt of
all aberrations is zero with the exception of the two tilts. This is equivalent to
selecting the optimum tilts of the reference wavefront for each aberration. Also,
the average curvature of all aberrations must be zero for all aberrations, with the
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exception of the spherical curvature, also called defocus. This is equivalent to
selecting the optimum value of the focus setting for each aberration. These
aberrations are the Zernike polynomials to be described with detail in Chapter 13.
In terms of these aberrations, the wavefront shape up to the fourth order terms can be
written as

OPD = A; + Aox + Azy + Ay(x2 + 3 — 0.5) + Asxy + Ag(x* — %)
+ A7y(3x% 4 3y% — 2) 4+ Agx(3x* + 3y* — 2) + Agy(3x* —y?)
+ Apox(x® = 3y%) + A [6(® + )2 4+ 6(x2 +y?) + 1] (2.49)
+A12(x2 — )/2)(4x2 +4y? — 3)+ A13xy(4x2 + 4y* —3)
+ A =y — 8] + Apsxy(¥ —)P),

or in polar coordinates

OPD = A| + Aspcos + Aspsin 0 + Ay(p* — 1) + Asp® sin 20
+ Agp* cos 20 + A7p(3p* — 2)sin 0 + Agp(3p* —2) cos O
+ Agp? sin 30 + Ajop® cos 30 + A1 (6p* — 6p* 4+ 1) (2.50)
+ App*(4p® — 3) cos 20 4 Aj3p*(4p> — 3) sin 20
+ Aap* cos 40 + Aysp* sin46,

where

Ay Constant (Piston) term
Ay Tilt about the y axis
Aj Tilt about the x axis

Ay Spherical term, also called defocus

As Astigmatism with axis at £ 45°

Ag Astigmatism with axis a at 0° or 90°

Ay Third order coma along y axis

Ag Third order coma along x axis

Ag Triangular astigmatism with base parallel to x axis
Ao  Triangular astigmatism with base parallel to y axis
Ay;  Primary spherical aberration

Ay,  High order astigmatism at 0° or 90°

A3 High order astigmatism at 4= 45°

A4 Quadrangular (ashtray) astigmatism 0° or 90°
A5 Quadrangular (ashtray) astigmatism at + 45°.

In computing interferograms, a normalized entrance pupil with unit semidiameter
p can be assumed. The great advantage of this normalization is that a value of all the
aberration coefficients will represent the same maximum wavefront deformation at
the edge of the pupil.
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The relative simplicity of the Kingslake expression allows us an easy and intuitive
analysis of the interferograms, as we will see with some examples. The inter-
ferograms for some aberrations were simulated by calculating the irradiance at a
two-dimensional array of points. A wavelength equal to 632.8 nm was used in these
interferograms, the pupil diameter is 20.0 mm but the values of the coefficients are
defined for a normalized pupil (p = 1).

1. Perfect lens. The patterns for a perfect lens without tilts (B = C = 0) and with
tilt (B = 5.0 x 10~%) are shown in Figures 2.42(a,b). A perfect lens with defocusing
(D = 3.0 x 107?) and with defocusing and tilt (D = 3.0 x 1073, B = 5.0 x 107%) is
illustrated in Figures 2.42(c,d).

2. Spherical aberration. The patterns for pure spherical aberration were computed
assuming that G = 5.0 x 1073, They are shown at the paraxial focus (D = 0),
without tilts (B = C = 0) and with tilt (B = 5.0 x 10~3) in Figures 2.43(a,d). The
patterns at the marginal focus are obtained by setting in Eq. (2.43), only A and D
different from zero,

dOPD

T AGo} +2Bo = 0. 2.57
i 0° +2Bp (2.57)

]
©p

FIGURE 2.42. Interferograms for a perfect lens. (a) With no tilt or defocusing. (b) With tilt. (c) With
defocusing. (d) With tilt and defocusing.




86 TWYMAN-GREEN INTERFEROMETER

()

FIGURE 2.43. Interferograms for a lens with spherical aberration at the paraxial, medium, and marginal
foci.

Therefore, we set the defocusing coefficient B = —5.0 x 10~ and the spherical
aberration coefficient G = 5.0 x 1073, These interferograms without (B = C = 0)
and with (B = 5.0 x 1073) tilt are shown in Figures 2.43(c,f). The fringe patterns at
the medium focus with B = —10.0 x 1073 are in Figures 2.43(b,e).

3. Coma. All the patterns for coma were obtained using F = 5.0 x 1073,
Figure 2.44 shows them for the paraxial focus (D = 0) and Figure 2.45 with a small
defocusing (D = 5.0 x 107?). In both figures the central pattern has no tilt
(E=F =0) and the surrounding pictures are for different tilt combinations
(B=+50x1073C=450x1073).

4. Astigmatism. All the patterns for astigmatism were computed for
C =3.0x 1073, If = 0, we obtain the Petzval focus. The OPD for astigmatism
can be written from Eq. (2.36) as

OPD = (D + E)x* + (D + 3E)y”. (2.58)

Therefore, the sagittal focus is obtained for D + E = 0 end the tangential focus for
D +3E =0. The medium focus is obtained for D+ E = —(D + 3E); hence
D = -2F.

Figure 2.46 shows the patterns at the Petzval focus with tilts in all directions
(B=+5.0x 1073,C = £5.0 x 107%). Figures 2.47-2.49 show the patterns at the
sagittal, medium, and tangential foci, respectively, also with tilts in all directions.
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() (d)

FIGURE 2.50. Interferograms for a lens with combined aberrations. (a) Spherical aberration with coma.
(b) Spherical aberration with astigmatism. (¢) Coma with astigmatism. (d) Spherical aberration with coma
and astigmatism.

5. Combined Aberrations. Figure 2.50 shows the patterns for combined aberra-
tions: spherical aberration plus coma (G =2.0 x 107> and F = 3.0 x 1073) in
Figure 2.50(a), spherical aberration plus astigmatism (G =4.0 x 10~* and
E=-20x1073) in Figure 2.50(b), coma plus astigmatism (F =
—2.0 x 1073,E = 4.0 x 1073) in Figure 2.50(c), and, finally, spherical aberration
plus coma plus astigmatism (G = 5.0 x 1073 F = —2.0 x 107, E = 4.0 x 1073)
in Figure 2.50(d).

Pictures of typical interferograms are shown in a paper by Marechal and Dejonc
(1950). These interferograms can be simulated by beams of fringes of equal inclina-
tion on a Michelson interferometer (Murty, 1960) using the OPDs introduced by a
plane parallel plate and cube corner prisms instead of mirrors or by electronic circuits
on a CRT (Geary et al., 1978 and Geary, 1979).

This type of interferogram was first analyzed by Kingslake (1926-1927). He
measured the OPD at several points on the x and y axes just by fringe counting.
Then, solving a system of linear equations, he computed the OPD coefficients B, C,
D, E, F, G. Another method for analyzing a Twyman—Green, interferogram was
proposed by Saunders (1965). He found that the measurement of four appropriately
chosen points is sufficient to determine any of the three primary aberrations. The
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FIGURE 2.51. Distribution of reference points for evaluation of primary aberrations.

points were selected as in Figure 2.51 and then the aberration coefficients were
computed as

128

2
1

C=—|P+Ps—P —P 2.61
4r2[ 2+ Py 1 3], ( )

where P,is the interference order at point i.

If a picture of the interferogram is not taken, the aberration coefficients can be
determined by direct reading on the interferogram setting, looking for interference
patterns with different foci and tilts (Perry, 1923-1924). To make these readings
easier, some optical arrangements may be used to separate symmetrical and asym-
metrical wavefront aberrations as shown by Hariharan and Sen (1961).

2.9.1. Analysis of Interferograms of Arbitrary Wavefronts

The problem of determining the shape of a wavefront with arbitrary shape from a
single Twyman—Green interferogram has been considered very generally and briefly
by many authors, for example, by Berggren (1970) and more completely by Rimmer
etal. (1972). The procedure consists in measuring the positions of the fringes at many
points over the interferograms and taking readings of the position (x, y) and the order
of interference m. Since the measurements are taken at a limited number of points, an
interpolation procedure must be adopted. The interpolation may be performed by the
use of splines or a least squares procedure with polynomial fitting as described in
detail in Chapter 16.
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If the wavefront is smooth enough, it is very convenient to express the final
wavefront W(x, y) in terms of a linear combination of Zernike polynomials. Then
the process of removing or adding defocussing or tilts becomes much simpler.
With the final results, it is an extremely simple matter to plot level maps of the
wavefront. Further details can be found in the book by Malacara, Servin and
Malacara (2005).
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Common-Path Interferometers
S. Mallick and D. Malacara

3.1. INTRODUCTION

In the general type of interferometer, such as the Twyman—Green or Mach-
Zehnder, the reference and test beams follow widely separated paths and are,
therefore, differently affected by mechanical shocks and temperature fluctuations.
Thus, if suitable precautions are not taken, the fringe pattern in the observation
plane is unstable and measurements are not possible. The problems are particularly
acute when optical systems of large aperture are being tested. Most of the difficulty
can be avoided by using the so-called common-path interferometers, in which the
reference and test beams traverse the same general path. These interferometers
have the additional advantage that they do not require perfect optical components
(the master) of dimensions equal to those of the system under test for producing the
reference beam. Furthermore, the path difference between the two beams in the
center of the field of view is, in general, zero, making the use of white light
possible.

In certain common-path interferometers, the reference beam is made to traverse a
small area of the optical system under test and is, therefore, unaffected by system
aberrations. When this beam interferes with the test beam, which has traversed the
full aperture of the optical system, explicit information about the system defects is
obtained. However, in most common-path interferometers both the reference and
test beams are affected by the aberrations, and interference is produced by shearing
one beam with respect to the other. The information obtained in this case is imp-
licit and some computations are needed to determine the shape of the aberrated
wavefront.

The beam splitting is brought about by amplitude division with the help of a
partially scattering surface, a doubly refracting crystal, or a semireflecting surface.
We consider a few examples of these instruments in this chapter.

“This chapter has been updated and a few sections have been included by the second author.

Optical Shop Testing, Second Edition, Edited by Daniel Malacara.
Copyright © 2007 John Wiley & Sons, Inc.
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Small lamp

Lens
under test

FIGURE 3.1. Burch interferometer testing a lens with magnification one, using two identical scatter
plates.

3.2. BURCH’S INTERFEROMETER EMPLOYING TWO MATCHED
SCATTER PLATES

This interferometer was first described by Burch (Burch 1953, 1962, 1969) and later
reviewed by several authors, for example, by Rubin (1980). An arrangement to test a
convergent lens working with unit magnification is illustrated in Figure 3.1. A lens
forms an image of a small source S at S’ on the lens. The magnification of the lens
under test has to be extremely close to one. A partially scattering plate R, is located in
front of a lens to be measured at twice its focal length. The lens under test forms an
image of the scattering plate R, at another identical scatter plate R,, which is rotated
180° with respect to the first plate, so that there is a point to point coincidence
between R, and the image of R;. A part of the light incident on the scatter plate R,
passes through it without scattering and arrives at S'. Since this beam touches the lens
only at a small region around S’, it is not affected by the errors of the lens surface.
This beam acts as the reference beam. Some of the incident light is, however,
scattered by R; and fills all of the aperture of the lens. This beam picks up the errors
of the mirror and is the measured light beam.

Let us consider a ray incident at a point A on the scatter plate R;. The directly
transmitted ray (solid line in Fig. 3.1) follows the path AS’A’ and encounters a
scattering center at A’ that is identical to the one at A. This ray is scattered at A" and
gives rise to a cone of rays, one of which will follow the same path as the ray scattered
on the first plate but not on the second. The rays scattered at A (dotted lines) that fill
the aperture of the lens under test, arrive at the image A’ and pass through R, without
scattering. We thus have two mutually coherent beams emerging from R,. One beam
is directly transmitted by R and scattered by R,, and the second is scattered by R,

Mirror under test

%

FIGURE3.2. Burchinterferometer testing a concave spherical mirror with a double pass through a scatter
plate.

Scatter plate

—~ —
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—==__P
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TABLE 3.1. Beams in Burch’s scattering interferometer.

After first scatter plate After second scatter plate Exiting light beam
Unscattered Unscattered Central bright spot
Unscattered Scattered Reference beam
Scattered Unscattered Beam under test
Scattered Scattered Too dim to observe

and transmitted by R,. An observer looking at the mirror surface through R, will see
an interferogram between these two beams. Many rays arrive at the first scatter plate,
not only one, so the observed interferogram is the superposition of many identical
fringe patterns. If the mirror is free of any error in the region of S', the interferogram
will provide explicit information about the mirror aberrations, as in any separate-
beam interferometer.

The light that is directly transmitted by both Ry and R, gives rise to a bright spot
located at S’ and is quite troublesome for visual observations. The light that is
scattered by R; and again by R, gives a weak background and slightly diminishes
the contrast of fringes. The dimensions of the source S should be such that its image
S’ remains localized within a fringe. If the fringes are quite broad in a certain region
of the mirror (this is equivalent to saying that the mirror is almost free of aberrations
in this region), the source image S’ should be made to lie there. Summarizing, the
observer receives the four beams in Table 3.1.

To obtain a permanent record of the interference pattern, a camera lens, placed
after the second scatter plate Ry, is used to form an image of the mirror surface on a
photographic film. Each point of the film receives light from a conjugate point on the
mirror surface. The interference effect (the light intensity) on the film will, thus, give
information about the mirror aberration at the conjugate point.

Figure 3.2 is a schematic simplified diagram of Burch’s interferometer as applied
to the testing of a concave mirror M. The first scatter plate is assumed to have
rotational symmetry, so that the scattering point A is identical to the scattering point
A’. This scatter plate has to be at the center of curvature of the mirror, so that the
magnification is one. As shown by Su et al. (1984), the optical path difference (OPD)
for the two interfering rays is

OPD = (AP + PA’) — 2AS’ (3.1)

If the surface under test is spherical, it is possible to see that this optical path
difference is zero only for rays passing very close to the center of the scatter plate.
However, assuming that the scatter plate size is small enough, if the surface is not
spherical and its shape with respect to the sphere is W, the optical path difference is
2W. Su et al. (1984) showed that if the scatter plate is too large, the contrast decreases,
so that its maximum size should be

D>’ )

<3 (3.2)

AOPD =
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Scatter plate
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FIGURE 3.3. Burch interferometer testing a concave spherical mirror with two identical scatter plates.

where D is the mirror diameter, r is its radius of curvature, and s is the semidiameter
of the scatter plate.

Two practical Burch interferometers for testing concave surfaces with a ratio of
the radius of curvature to the diameter larger than about six, in order to be able to test
them off-axis, are shown in Figures 3.3 and 3.4. The light source is a small tungsten
lamp. If the mirror has a hole at the center as in some telescope mirrors, the image S’
has to be off-center. In the interferometer in Figure 3.3, the two scatter plates have to
be identical, but one has to be rotated to 180° with respect to the other. The scatter
plate for the double pass interferometer in Figure 3.4 is made by fine grinding and
then by half polishing the front face of a cube beam splitter. Symmetrically placed
with respect to the center of the curvature is a small flat mirror. In order to prevent an

Small lamp

Cube beam splitter

with scatter surface
/ Mirror under test
Rz

Flat mirror

Black ground surface

FIGURE 3.4. Burch interferometer testing a concave spherical mirror with a double pass through the
scatter plate and symmetrically located with respect to the scatter plate.
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unwanted reflection from going to the eye of the observer, a small triangular prism
with a ground and black-painted surface is cemented to the cube.

A slight displacement of one of the scatter plates in its own plane, with respect to
the image of the other, gives rise to a set of parallel straight-line fringes (tilt), and the
mirror defects appear as distortions in the straightness of the fringes. This displace-
ment is produced if the whole interferometer with the two scatter plates is moved
perpendicularly to the optical axis. The tilt fringe disappears only when the two
scatter plates are symmetrically placed with respect to the optical axis. A slight
displacement in the axial direction, toward or away from the surface under test
produces the effect of a defocusing term, introducing circular fringes. Since the
optical paths for the two interfering light beams are identical, it is impossible to
introduce a piston term. In this system, like in any symmetrical system, testing the
coma aberration at the center of curvature is canceled out. Only the astigmatism
remains. In this case, the fringes will have an elliptical shape. Scott (1969) used this
interferometer to test a 91.5-cm, f /4 paraboloid, and a 35-cm Gregorian secondary.
The details of testing and modifications made in Burch’s original design are dis-
cussed in the article cited.

Burch’s interferometer is quite sensitive to vibrations taking the form of tilts about
an axis normal to the line of sight or translations across the line of sight. To make the
system insensitive to these vibrations, Shoemaker and Murty (1966) modified the
setup by replacing the second scatter plate with a plane mirror, and thus reimaging
the first scatter plate point-by-point back on itself. This setup gives double sensitivity
for even-order aberrations but cannot detect odd aberrations. An obvious great
advantage is that only one scatter plate has to be made. Vibrations in the form of
fast variations in the distance between the mirror and the scatter plates would produce
vibrations in the focusing term, but they do not represent an important problem. An
important problem, however, appears with this arrangement. Since the light is
reflected twice on the mirror under test, the surface has to be highly reflective.
Uncoated surfaces produce quite dim interferograms if a bright light source is not
used.

Since the two interfering beams in the interferometer have the same optical paths,
the interferometer is compensated for white light. Thus, the light source can be a
small white tungsten lamp. If a high light intensity is desired, mainly when measur-
ing uncoated surfaces in a double pass configuration, a laser is more intense, but
spurious fringes or speckle may appear.

Two identical scatter plates R; and R, or one with rotational symmetry can be
made by several possible methods, for example,

(a) by photographing a speckle pattern. A symmetrical scatter plate can be made
with a double exposure of the same speckle pattern, with a 180° rotation of the
plate before taking the second exposure, as described by Su et al. (1984a),
Smartt and Steel (1985), and North-Morris et al. (2002);

(b) by taking two replicas from a lightly ground surface (Houston, 1970);

(c) with microphotography of a rotationally symmetric pattern (Murty, 1963).
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3.2.1. Fresnel Zone Plate Interferometer

A similar interferometer using Fresnel zone plates instead of scatter plates has been
proposed by Murty (1963) and later by Smartt (1974), Lohmann (1985), Stevens
(1988), and Huang et al. (1989). Instead of diffracting the light in a random manner in
all directions, like scatter plate, a Fresnel zone plate produces many convergent as
well as divergent spherical wavefronts. The advantage is that the Fresnel zone plate
has rotational symmetry and thus the configurations in Figures both 3.2 and 3.3 are
possible. The Fresnel zone plate can be made by photography of a large drawing and
then reducing it to the desired size, or by photography of the interference between a
divergent and a plane wavefront (Smartt, 1974).

3.2.2. Burch and Fresnel Zone Plate Interferometers for Aspheric Surfaces

We have seen that the optical path difference for spherical surfaces is not zero if the
scattering point in the scatter plate is far from the optical axis. Then, when the scatter
plate is large, different radial positions of the scattering point will produce different
fringe patterns, reducing the contrast of the observed interferogram. If we could
associate different radial positions of the scatter point to different radial positions on
the surface under test, we could use with optical path difference variation to our
advantage to design a null test for aspherical surfaces. This has been described by
Su et al. (1986) and by Huang et al. (1989). They used a diaphragm with a small
aperture, placed after the observing scatter plate, as illustrated in Figure 3.5. It can be
proved that the optical path difference expressed by Eq. (3.1) remains valid in this
case. The presence of the diaphragm associates different scattering points A to
different points P on the surface under test. By proper choice of the diaphragm
position L, the desired mirror asphericity can be compensated to produce a null test.

3.2.3. Burch and Fresnel Zone Plate Interferometers for Phase Shifting

Patorski and Salbut (2004) have described a scattering interferometer where the
phase difference between the wavefront under test and the reference wavefront can
be changed as desired. The light source for this instrument, illustrated in Figure 3.6 is
a laser. If this laser is unpolarized, a polarizer has to be inserted before the first
scattering plate, otherwise, if it is linearly polarized, it is not necessary. Then, a
quarter wave phase plate with its slow or fast axis at 45° with respect to the plane of
polarization is placed in the light beam to produce an illuminating circularly

Mirror under test

Diaphragm
Imaging
lens

| i

e

Scatter plate
A

Observation
plane

FIGURE 3.5. Burch and Fresnel zone plate interferometer to test an aspheric surface.
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Mirror under test

e
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FIGURE 3.6. Burch and Fresnel zone plate interferometer for phase shifting using polarized light.

polarized light beam. Close to the mirror under test, in the path of the reference beam,
a small quarter wave plate with an orientation is inserted. This phase plate is
traversed twice by the reference beam, so that the sense of the circularly polarized
beam is reversed. As a result of this arrangement, the beam under test and the
reference beam are both circularly polarized, but with opposite senses. The light
beams exiting the analyzer just before the observer are linearly polarized, with a
phase difference given by the orientation of this analyzer.

Another phase shifting scattering interferometer (North-Morris and Wyant 2002)
is shown in Figure 3.7. The main element in this instrument is a specially made
scatter plate. It is made with an etched calcite plate with its optical axis parallel to the

Index matching
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\ \ Glass
Polarizer (45°) /

LQR (0°) Mirror .
under test il
1/4 Phase plate |
axis at 45 | Detail of the

scatter plate
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Analyzer \ m
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FIGURE 3.7. Burch interferometer for phase shifting using polarized light.
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two faces of the plate. A speckle pattern is engraved on one of the two faces with a
procedure described in the cited publication. Then, a thin glass cover is placed on top
on the engraved calcite plate, with an oil layer between them. The oil has a refractive
index matched to the ordinary refractive index of the calcite. In a uniaxial crystal as
calcite, the extraordinary ray is polarized in a plane containing the optical axis of the
crystal. The result is a scatter plate that scatters the light with its polarizing plane
along the optical axis of the calcite but does not produce any scattering for the light
linearly polarized in the perpendicular direction to the optical axis of the calcite.
Another important optical element is a liquid crystal phase plate (LQR) whose phase
delay difference between two perpendicular axes is variable and can be set at any
value as desired.

As in the previously described interferometer, the light source from the laser is
either linearly polarized or polarized with a polarizer in front of it at an angle of 45°.
Then the phase difference between the horizontal and vertical components of the
linear polarization is changed to any desired amount by means of the liquid crystal
plate (changing it to elliptically polarized light). Next, the scatter plate scatters the
polarization components that are along the optical axis of the calcite but not
the polarization components that are perpendicular to this axis. The result is that
the beam to be measured and the reference beam are polarized in orthogonal planes
and with a phase difference given by the LQR. Both light beams pass twice through a
quarter wave phase plate oriented at 45°. After this, the two interfering beams will be
circularly polarized but in opposite senses. At the end, there is an analyzer just before
the observer, which produces two linearly polarized beams with a phase difference
given by the orientation of this analyzer.

3.3. BIREFRINGENT BEAM SPLITTERS

An important class of interferometers uses birefringent crystal elements as beam
splitters. These interferometers are known as polarization interferometers (Francon
and Mallick, 1971). We discuss in this section, three principal types of these beam
splitters.

3.3.1. Savart Polariscope

A Savart polariscope consists of two identical uniaxial crystal plates with the optic
axis cut at 45° to the plate normal (Fig. 3.8). The principal sections (plane containing
the optic axis and the plate normal) of the two plates are crossed with each other. The
optic axis of the first plate lies in the plane of the page and that of the second plate
makes an angle of 45° with it; the dotted double arrow in the figure represents the
projection of the optic axis on this plane. An incident ray is split by the first plate into
two rays, the ordinary ray O and the extraordinary ray E. Since the second plate is
turned through 90° with respect to the first one, the ordinary ray in the first plate
becomes extraordinary in the second and vice versa. The ray OE does not lie in the
plane of the page, though it emerges parallel to its sister ray EO, the dotted line
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P

FIGURE 3.8. Beam splitting produced by a Savart polariscope. The figure is drawn for a polariscope
made of a positive crystal (e.g., quartz).

represents the projection of the ray path on this plane. The lateral displacements
between the two rays, each produced by one of the two component plates, are equal
and are in perpendicular directions. The total displacement between the emerging EO
and OE rays produced by a Savart polariscope of thickness 2t is given by

W2 — 2
d=V2-4"—2¢ 3.3

where 1, and n, are the ordinary and extraordinary indices of refraction, respectively.
A 1-cm-thick polariscope will produce a lateral displacement of 80 pum if it is made of
quartz and a 1.5-mm displacement if made of calcite. In Figure 3.8 if the incident ray
is inclined to the plate normal, the two emerging rays are still parallel to the original
ray, and their relative displacement remains practically unaltered.

The parallel emerging rays interfere in the far field (or in the back focal plane of a
positive lens), and the interference pattern is similar to that produced in Young’s
experiment with the two mutually coherent sources separated by a distance equal to
d. For small angles of incidence, the fringes are equidistant straight lines normal to
the direction of displacement. The angular spacing of these fringes is as follows:

”

Angular spacing = g (3.4)

The zero-order fringe corresponds to normal incidence and lies in the center of the
field of view. With a Savart polariscope of 1 cm thickness and a lens of 10 cm focal
length, the fringe spacing in yellow light is 2 mm for quartz and 0.1 mm for calcite.

The OE and EO rays emerging from the Savart polariscope vibrate in mutually
orthogonal directions. To make them interfere, the vibration directions are set
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parallel to each other by means of a linear polarizer, the transmission axis of which is
oriented at 45° to the orthogonal vibrations. This polarizer is, however, not sufficient
for interference to take place. We know that a natural (unpolarized) ray of light is
equivalent to two mutually incoherent components of equal amplitude vibrating in
perpendicular directions. Thus, the ordinary and the extraordinary rays produced by a
crystal have no permanent phase difference between them. To make these rays
mutually coherent, a polarizer is placed across the incident beam so that only a
single component of the natural light is transmitted onto the crystal. The transmission
axis of this polarizer is at 45° to the principal axes of the crystal.

3.3.2. Wollaston Prism

A Wollaston prism (Fig. 3.9) consists of two similar wedges cemented together in
such a way that the combination forms a plane parallel plate. The optic axes in the
two component wedges are parallel to the external faces and are mutually perpendi-
cular. A Wollaston prism splits an incident ray into two rays traveling in different
directions; the lateral displacement between the rays is thus different at different
distances from the Wollaston. The angular splitting « is given by the relation

o =2(n, —n,)tan 0 (3.5)

where 0 is the wedge angle. For most practical purposes, « can be considered to be
independent of the angle of incidence. For an angle 0 = 5°, the angular splitting is
6 min of arc for a Wollaston prism made of quartz and 2° for one made of calcite.

The path difference between the OE and the EO rays (Fig. 3.10) emerging at a
distance x from the axis y — y’ of the Wollaston prism is given by

A =2(n, — n,)xtan 0 = ox (3.6)
e
/ *
! o
EO

&

FIGURE 3.9. Beam splitting by a Wollaston prism made of a positive crystal.
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D

FIGURE 3.10. Path difference produced by a Wollaston prism between the two split-up rays is linearly
related to x.

The path difference is zero along the axis, where the thicknesses of the two
component wedges are equal, and increases linearly with x. When a Wollaston prism
is placed between two suitably oriented polarizers, one observes a system of straight-
line fringes parallel to the edges of the component wedges and localized in the
interior of the prism. (The fringes are perpendicular to the plane of Figure 3.10). The
path difference along the axis being zero, fringes are visible in white light. The fringe
spacing is equal to

A

2(n, — n,) tan 6 (37)

X0 =
where 0 = 5°, 4 = 0.55um, and (n, — n,) = 9 x 1073 (quartz), there are approxi-
mately three fringes per millimeter. When the angle 0 is very small (a few minutes of
arc), the fringes are wide apart and the Wollaston prism can be used as a compensator.
In this form, the Wollaston prism is known as a Babinet compensator.

Relation (3.6) for the path difference between OE and EO rays is true for normal
incidence (the angular splitting, being small, is neglected for the calculation of A).
For nonnormal incidence, a term proportional to the square of the angle of incidence
is added to the right-hand side of Eq. (3.6). However, this term is negligible, for
example, for a quartz prism of 10 mm thickness and for a case in which the angles of
incidence remain less than 10°. Some modified Wollaston prisms have been devised
that can accept much larger angles of incidence.

3.3.3. Double-Focus Systems

A lens made of a birefringent crystal acts as a beam splitter. A parallel beam of light
incident on such a lens will be split into an ordinary beam and an extraordinary beam,
which come to focus at two different points (Fig. 3.11). The O and E images are
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FIGURE3.11. A birefringent lens splits up an incident beam into an ordinary and an extraordinary beam,

which are brought to focus at two different points along the lens axis. The figure is drawn for alens made of a
positive crystal.

displaced along the axis of the beam, in contrast to the case of a Savart polariscope or
of a Wollaston prism, where the displacement is normal to the direction of the
incident beam. Various types of compound lenses suitable for specific applications
have been designed.

34. LATERAL SHEARING INTERFEROMETERS

3.4.1. Use of a Savart Polariscope

Lateral shearing interferometers using birefringent beam splitters have been widely
used to study the aberrations of an optical system. We describe here an arrangement
by Frangon and Jordery (1953) in which a Savart polariscope is used to produce a
lateral shear of the aberrated wavefront (Fig. 3.12). The lens L (or the mirror) under

n | M A

FIGURE3.12. Interference arrangement employing a Savart polariscope Q for testing the optical system L.
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test forms an image S’ of a small source S. The distance of L from the source is fixed
by the conditions under which the lens is to be tested. The lens L; collimates the light
coming from S’ so that the Savart polariscope Q is traversed by a parallel beam of
light. Two linear polarizers (not shown in the figure) are placed before and after the
Savart Q. The combination of lenses L; and L, constitutes a low-power microscope
that is focused on the test lens L. If the lens L is perfect, the wavefront X is plane, then
the ordinary and the extraordinary wavefronts produced by the Savart will have a
uniform path difference between them. The eye placed in the focal plane of L, will
observe a uniform color (or a uniform intensity in the case of monochromatic light) in
the entire field of view. In the presence of aberrations, > will be deformed and the
field of view will appear nonuniform. If the aberrations are large, a system of fringes
will be observed. The nature and the magnitude of aberrations can be determined
from the observed variations of color (or of intensity).

The far-field fringes of the Savart polariscope Q are located virtually in the plane
of source image S'. The source size should be such that S’ occupies a small fraction
(say one fifth) of a fringe width.

The background color (or intensity) can be chosen by inclining the Savart Q about
an axis parallel to the fringes. When the Savart is normal to the optical axis, that is,
normal to the incident light, the zero-order fringe coincides with source image S" and
the background will be dark (crossed polarizers). By inclining the Savart, S’ can be
made to coincide with a fringe of any desired color, which will then appear in the
background. Instead of producing a uniform ground color in the field of view, we may
produce a regular system of rectilinear fringes that are deformed in the region where
the wavefront departs from the ideal form. Such fringes can be produced in a plane
conjugate to the test lens by placing an additional Savart to the right of L.

To illustrate the principle of the method, we study the aspect of the field of view in
the presence of primary spherical aberration. The ground is chosen to be of uniform
intensity. The distance parallel to the optical axis between the aberrated wavefront 3
and the ideal wavefront (corresponding to the Gaussian image point) at a height &
from the axis is given by

7 = ah’ (3.8)

where a is a constant depending on the magnitude of the aberration. To determine the
aspect of the field of view, we have to calculate the path difference between the two
sheared wavefronts ¥; and ¥, produced by the Savart polariscope. Figure 3.13
represents >; and 3, as projected on a plane perpendicular to the optical axis of the
system (this is the plane of the ideal wavefront); O; and O, are the centers of 3| and
>, respectively. The coordinate system is chosen such that the x-axis passes through
O; and O, and the y-axis is the right bisector of O; — O,. Now consider a point
m(x,y) lying on the ideal plane wavefront; its distance from the aberrated wavefront
> is given by

7 =ar}. (3.9)
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FIGURE3.13. Representing the projection of the two sheared wavefronts on a plane normal to the optical
axis of the system.

Similarly, the distance of point m from ¥, is given by

2 = ary. (3.10)
The separation between X; and Y, is, therefore,
d2
Z]—ZZ:a(r?—rg):4a><d<x2+y2+4> (3.11)

where d is the shear between X and X,. The lines of equal path difference, z; — 25,
are represented in Figure 3.14. The form of fringes for other aberrations can be

FIGURE 3.14. Lateral shearing interferogram of a wavefront distorted by spherical aberration of third
order.
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determined similarly. Evidently, when the aberrations are small, no fringes will be
seen; there will simply be small variations of intensity in the field of view.

A complete analysis of the lateral shearing interferogram can be carried out by a
mathematical operation described by Saunders (1961, 1962) (see Chapter 4). The
method yields values of the deviations of the wavefront under test from a close fitting
sphere. The reference sphere may be chosen statistically so that the results are the
deviations from the best fitting surface.

3.4.2. Use of a Wollaston Prism

In the arrangement represented in Figure 3.12, it is possible to use a Wollaston prism
instead of the Savart polariscope. This prism is placed at the source image S'. The
background intensity can be changed by translating the Wollaston prism laterally
perpendicular to the optical axis. A system of rectilinear fringes can be produced in
the background by shifting the Wollaston prism along the optical axis.

The size of the source in the setup of Figure 3.12 is quite limited. It can be
increased considerably, however, if the setup is modified so that the light passes twice
through the Wollaston prism. Figure 3.15 illustrates such an arrangement. An image
of the source S is formed on the Wollaston prism at the point S’, which is near the
center of curvature of the mirror M under test. A lens L forms an image of M on the
observation screen M’. As usual, two polarizers are needed to complete the system;
one may be placed between m and W and the second between W and L. If observa-
tions are to be made between parallel polarizers, a single polarizer placed between W
and L and covering all of the aperture of W, will suffice. If S’ and S” are symme-
trically situated with respect to the central fringe of the Wollaston prism, the path
difference between the interfering beams is zero and the background appears uni-
formly dark/bright with crossed/parallel polarizers. The ground intensity can be
varied by displacing W in a direction perpendicular to its fringes. A system of
straight fringes will appear on the screen if W is displaced along the axis of the
interferometer so that it is no longer located at the center of curvature of M.

Philbert (1958) and Philbert and Garyson (1961) employed this interferometer to
control the homogeneity of optical glass (the glass plate is placed close to M and to

FIGURE 3.15. A double-pass compensated interferometer for testing the mirror M.
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Reference
sphere

- Flat under
test

FIGURE 3.16. Setup for testing a flat surface.

test spherical, paraboloidal, and plane mirrors during the process of figuring. To test a
paraboloidal surface, the Wollaston prism is placed at the focus and an auxiliary
plane mirror is used to send back the parallel beam of light emerging from the
paraboloid. A plane surface is tested by the arrangement represented in Figure 3.16.
During the final stages of figuring, the deviations from the perfect surface are quite
small and, therefore, the interferogram shows only slight variations in intensity.
Under these conditions the aspect of the field of view is similar to that observed in
Foucault’s knife-edge test.

To make the system insensitive to vibrations, Dyson (1963) used a small plane mirror
near the Wollaston prism in order to form an image of it back on itself. Then, instead of a
large prism, a small one is used since half of it is replaced by the small mirror.

3.5. DOUBLE-FOCUS INTERFEROMETER

Dyson (1957a, 1957b, 1970) devised an interferometer for the testing of optical
components in which he employed a birefringent lens as a beam splitter (Fig. 3.17).
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FIGURE 3.17. Dyson’s double-focus interferometer.
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The birefringent, double-focus lens L, is a symmetrical triplet, consisting of a central
bio-concave calcite lens and two biconvex glass lenses. The optic axis of calcite lies in
the plane of the lens. The triplet is so designed as to have zero power for the ordinary
ray and a focal length of a few centimeters for the extraordinary ray. As in the case of
Burch’s interferometer (Section 3.2), this arrangement gives explicit information
about wavefront deformations since a part of the incident light is focused on a small
region in the aperture of the system under test and acts as the reference beam.

The system under test in Figure 3.17 is the concave mirror. The center of the triplet
lens is located at the center of curvature of the mirror. A lens L, with its focus F; on
the mirror surface is placed just to the right of the triplet. A quarter-wave plate with
its principal axes at 45° to the optic axis of the calcite lens is also placed to the right of
L;. A collimated beam of linearly polarized light is incident from the left. The lens L;
splits it up into an ordinary beam and an extraordinary beam. The O beam, unde-
viated by L, is brought to focus at F; by the lens L,. An image of the source is thus
formed at F;. On its return journey, the O beam is collimated by the lens L,, and since
its vibration direction has been rotated through 90° because of the double passage
through the quarter-wave plate, it is refracted to F} by the lens L.

Atits first passage the extraordinary beam is refracted by both the lenses L; and L,
and converges to F,, the focus of the combination L;L,. The beam then expands to fill
the whole aperture of the mirror M. Because of the symmetry of the arrangement this
beam, too, is brought to focus at F|. A semireflecting surface is placed to the left of
the triplet so that the source (or the system of observation) can be placed outside the
axis of the interferometer.

An observer receiving the light at F| will see (a) a uniform disk of light, determined
according to size by the angular aperture of the lens L; (reference field) and (b) the
illuminated aperture of the mirror M (test field). These two fields will interfere (there
is evidently an analyzer that sets the O and E vibrations parallel to each other), and in
the absence of aberrations, the resultant field will be of uniform intensity. If the triplet
is slightly displaced laterally, so that its center no longer coincides with the center of
curvature of the mirror, the field of view will be crossed with rectilinear fringes. When
the triplet is displaced axially, circular fringes are observed. When the mirror has
aberrations, these fringes are distorted. The aberrations can be deduced from these
distortions in the same way as in any separate-path interferometer.

Dyson’s interferometer is applicable to autostigmatic systems, that is, systems in
which light diverging from a point in a particular plane is refocused to a point in the
same plane to form an inverted image. Systems that are not autostigmatic can be
converted to this form by the addition of one or more auxiliary components. To test a
lens, for example, the scheme of Figure 3.18 is employed. In Figure 3.18(a), the lens
is tested at infinite conjugates and in Figure 3.15b, it is tested at finite conjugates. The
focus C coincides with the center of the triplet. It may be noted that the system under
test is not operating exactly under its correct conditions as the test beam does not
return along its original path. The arrangement gives the sum of the aberrations for
two focal positions, one on each side of the desired position. The resultant error is
often very small. Because of the aberrations of the triplet lens, optical systems of only
moderate aperture —f/5, for example—can be tested with this interferometer.
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FIGURE 3.18. The lens L under test can be made autostigmatic by the addition of an auxiliary mirror M.

3.6. SAUNDERS’S PRISM INTERFEROMETER

Saunders (1967, 1970) described a lateral shearing interferometer in which the beam
divider is made by cementing together the hypotenuse faces of two right-angle
prisms, one of which is half silvered (Fig. 3.19). The faces B and B’ are made highly
reflecting. To obtain the zero-order fringe in the center of the field of view, the
distances from the center of the beam-dividing surface to the two reflecting surfaces
are made equal. If the two component prisms are identical, the two beams emerging
from the face A’ are mutually parallel. An angular shear between the beams can be
introduced by rotating one prism relative to the other about an axis normal to the
semireflecting surface. The direction of shear is approximately parallel to the vertex
edges of the prisms. The shear can also be produced by making the angles « and o of
the two component prisms slightly different. This is usually the case when the prisms

FIGURE 3.19. A beam splitter devised by Saunders.
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L
FIGURE 3.20. A lateral shearing interferometer using the beam splitter shown in Figure 3.19.

are not cut from a single large prism but are made separately. The angular shear is
then equal to 2(o — o), and the direction of shear is perpendicular to the vertex edges.

Figure 3.20 shows an arrangement for testing a lens at finite conjugates. The prism
is adjusted so that its back surface is approximately parallel to the image plane and is
near it, with the principal ray of light passing near the center of the prism. This
adjustment should produce visible fringes. The fringe width is very large when the
source image lies on the back surface of the prism. The fringe width can be decreased
by moving the prism along the principal ray away from the source image. By
translating the prism laterally parallel both to the image plane and to the direction
of shear, any chosen fringe can be made to pass through any chosen point of the
interferogram. The adjustments of Saunders’s prism are similar to those of a
Wollaston prism. To obtain high contrast fringes, the source size in the shear
direction is kept small. The recommended size of the cube is 10-15 mm.

Saunders (1957) also studied a wavefront-reversing interferometer that employed
a modified Kosters double-image prism. Figure 3.21 is a sketch of the arrangement
for testing a lens with one conjugate at infinity. The base of the dividing prism is
spherical, and its center of curvature Sy coincides with the image point at which the
lens is to be tested. The observer’s eye is located at S’ and the image of the source is S.
In this arrangement, the part of the wavefront lying below the dividing plane of the
prism appears to be folded onto the upper half after the second passage through the
prism. When the dividing plane cuts through the center of the lens, the even-order
aberrations are eliminated. However, when the dividing plane is adjusted to form an
angle with the axis of the lens, the even-order terms are retained. Saunders gave
different variations of this arrangement for determining different aberrations.

FIGURE 3.21. Saunders’s wavefront-reversing interferometer.
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FIGURE 3.22. Point diffraction interferometer.

3.7. POINT DIFFRACTION INTERFEROMETER

Another interesting common path interferometer is the so-called point diffraction
interferometer, first described by Linnik in 1933, rediscovered by Smartt and Strong
(1972), and more fully developed by Smartt and Steel (1975). The principle of this
interferometer is shown in Figure 3.22. The wave to be examined is brought to a focus
to produce an image, usually aberrated, of a point source. At the plane of that image,
an absorbing film is placed. This film contains a small pinhole or opaque disk in order
to diffract the light and produce a spherical reference wavefront. Figure 3.23(a) shows
the amplitude magnitude at the image plane, where the diffracting plate is located and
Figure 3.23(b) shows the total amplitude after passing the diffracting plate, which can
be considered as the superposition of two images as in Figure 3.23(c).

To produce an interferogram with good contrast, the wave passing through the
film and the diffracted spherical wave should have the same amplitude at the

[

Central nucleous of image
producing
reference wavefront

Unfiltered Filtered image /\

aberrated image Attenuated
of wavefront aberrated image
under test

producing wavefront
under test

(a) (b) (c)

FIGURE 3.23. Modulus of the amplitudes in the image plane, where the diffraction plate is located. (a)
Before the diffraction plate, (b) after the diffraction plate, and (c) the two separated components for the
reference beam and the beam under test.
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observing plane. This is controlled by means of the filter transmittance and the
pinhole or disk size. Also, the amplitude of the spherical wave depends on how much
of the light in the image falls on the pinhole or disk, and this, in turn, depends on the
aberrations of the wave and on the pinhole or disk position. Smartt and Steel (1975)
advised using filter transmittances between 0.005 and 0.05, with a most common
value of 0.01. The optimum size for the pinhole or disk is about the size of the Airy
disk that the original wave would produce if it had no aberrations. To match the
amplitudes of the two beams, Wu et al. (1984) used a clear pinhole in a polarizing
sheet of vectograph film; rotation of a polarizer behind this sheet changes the
amplitude of the beam transmitted by the film but not that of the diffracted beam.
The usual tilt and focus shift of the reference wavefront can be produced by
displacing the diffracting point laterally and longitudinally, respectively.

A phase shifting point diffraction interferometer has been reported by Millerd
et al. (2004). The most important component of this interferometer is a polarization
point diffraction plate, as illustrated in Figure 3.24. The central zone and the annular
part in this plate are both polarizers in orthogonal directions. They are made with a
wire grid structure whose construction details are in the cited publication. After the
diffraction plate the reference wavefront and the wavefront under measurement have
linear polarizations in orthogonal directions. A quarter wave phase plate at 45° with
the two orthogonal polarization planes will make the two interfering beams circu-
larly polarized in orthogonal directions. Then, as usual, a rotating analyzer will make
the phase difference of the desired value. Another phase shifting point diffraction
interferometer has been recently reported by Neal and Wyant (2006) using a
birefringent pinhole plate.

The point diffraction interferometer has been used with success to test astronom-
ical telescopes (Speer et al., 1979) and toric surfaces (Marioge et al., 1984). Smartt
and Steel (1985) have developed a white-light interference microscope based on
point diffraction interference principle.
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FIGURE3.24. Mainelements for polarization diffraction interferometer for phase shifting interferometer.
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FIGURE 3.25. Irradiance as a function of the phase difference in an interferometer.

3.8. ZERNIKE TESTS WITH COMMON-PATH INTERFEROMETERS

In any two-beam interferometer, the irradiance in the interference pattern is a
function of the phase difference between the two beams, as shown in Figure 3.25.
If the interferogram has many fringes, the irradiance goes through many maxima and
minima of this function. However, if the wavefront is almost perfect and its deforma-
tions are smaller than half the wavelength of the light, the phase changes will not
produce any variations in the irradiance since the slope at the point A in this figure is
Zero.

These small wavefront errors may be easily detected if a bias in the phase
difference is introduced by any means, so that it has a value equal to /2 when the
wavefront is perfect (point B). Then, the interferometer sensitivity to small errors is
very large. Figure 3.26(a) shows an interferogram with a piston term equal to zero
and, Figure 3.26(b) is formed with the same wavefront but a piston term equal to /2.

Annular region
Amplitude transmission T g

Phase plate
Amplitude transmission T ¢

_Ja

FIGURE 3.26. Schematics of a Zernike diffraction plate.



3.8. ZERNIKE TESTS WITH COMMON-PATH INTERFEROMETERS 119

(b)

FIGURE 3.27. Two interferograms produced with the same wavefront, with a deformation much smaller
than the wavelength of light. (a) Without a piston term and (b) with a piston term equal to 1/4.

To make a Zernike Point diffraction interferometer a diffracting plate as illu-
strated in Figure 3.27 is used. The annular region is coated with an amplitude
transmission T,,;, while the central disc is made with an amplitude transmission
T4isc, typically equal to one. The central disc is thicker, so that the phase optical
path through the center is greater than the phase optical path through the annular
region. Let us assume that the optical phase difference is equal to ¢. Thus, the phase
difference between the wavefront under test and the reference wavefront is y, as
given by the expression

Tiisc exp(i¢h) — Tery = | T | exp(iy) (3.10)
where

|T1 |2 = Tjisc + T2

ext

- 2TdiscText cos ¢ (3 1 1)

Thus, we may see that the phase difference between the reference wavefront and the
wavefront under test is given by 7y, as

Tdixc Sln(¢)
t = aem v 3.12
mnr Tdisc Ccos ¢ - Text ( )
Since we need y = 7/2, we require that
Tex
cosp = == (3.13)

Tdisc

We see that ¢ and y approach the same value if T, becomes quite small. The Zernike
test in the point diffraction interferometer from a physical optics point of view is
studied in Chapter 8.
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Lateral Shear Interferometers
M. Strojnik, G. Paez, and M. Mantravadi

4.1. INTRODUCTION

Lateral shearing interferometry is an important field of interferometry and has been
used extensively in diverse applications such as the testing of optical components and
systems and the study of flow and diffusion phenomena in gases and liquids.
Basically, the method of lateral shearing interferometry consists of duplicating
wavefront under study, displacing it laterally by a small amount, and obtaining the
interference pattern between the original and the displaced wavefronts.

Figure 4.1 schematically illustrates the principle of shearing interferometry for (a)
an approximately planar wavefront and (b) spherical wavefront. When the wavefront
is nearly planar, the lateral shear is obtained by displacing the wavefront in its own
plane. If the wavefront is nearly spherical, the lateral shear is obtained by sliding the
wavefront along itself by rotation about an axis passing through the center of
curvature of the spherical wavefront.

There are many physical arrangements that produce lateral shear. The famous
Italian optical scientist Ronchi is the first to have introduced laterally sheared
wavefronts to test optical components in the first half of the 20th century. He
employed diffraction at a set of suitably separated lines to produce zeroth- and
first-order beams. Prior to the discovery of lasers in the 1960s, this became a popular
technique in optical testing, still bearing the inventor name, Ronchi test.

In this chapter, we discuss arrangements that can be obtained by the use of beam
dividers, which divide the amplitude of the incident wavefront but do not change the
shape of the wavefront. This means that plane surfaces coated with semireflecting
material are used as beam dividers. Several arrangements to obtain lateral shear will
be described in this chapter mainly to show that with available components, one can
easily fashion a workable lateral shearing interferometer in one’s laboratory or
optical workshop. Lateral shearing interferometry is basically a one-dimensional
action. When it is performed in two orthogonal directions, it becomes twice a one-
dimensional function. We will also discuss a more general case of a vectorial
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FIGURE 4.1. Schematic diagram illustrating lateral shearing interferometry in (a) collimated light and
(b) convergent light.

shearing interferometry, where a two-dimensional action is obtained with a single
shear.

Another important consideration in the design of lateral shearing interferometers
is the nature of the light source. From the point of view of lateral shearing inter-
ferometry, the sources can be classified into two categories: (a) laser sources, such as
the helium-neon gas laser giving a 632.8-nm light beam of very high spatial and
temporal coherence, and (b) all other sources, such as gas discharge lamps, which are
temporally coherent to some extent but not spatially coherent.

4.2. COHERENCE PROPERTIES OF THE LIGHT SOURCE

Figure 4.2 illustrates the arrangement of a lateral shearing interferometer in which a
shear takes place for a nearly plane wavefront obtained from the collimating lens. Let
the full beam width of the wavefront under test be denoted as d, the amount of lateral
shear S, and the focal length of the collimating lens be f. The wavefront will be
spatially coherent across its beam diameter when the size of the source is equal to the
width of the central diffraction maximum (Airy disk) corresponding to the f~number
of the particular collimating lens.

The f~number is the ratio of focal length of the optical system f, divided by the
diameter of its aperture d. The diameter of the diffraction disk is 1.22 Af/d for a
circular aperture. Here, 4 is the wavelength of a particular spectral line of the source
that is to be used. Thus, the order of magnitude of the size of the pinhole to be



124 LATERAL SHEAR INTERFEROMETERS

Lateral
Pinhole I Y shear
o i ey
Light I‘ ‘ L;xt[er:l shea:lng s
source | e interferometer .
1>\ -
Collimating

lens

FIGURE 4.2. Schematic diagram indicating the various parameters for the consideration of the size of
pinhole to be used in a lateral shearing interferometer.

used over the source to achieve spatial coherence is given by (4f/d). Fortunately in
the lateral shearing interferometry, the spatial coherence should be sufficient
so that the interference can be observed between parts of the wavefront separated
by the distance S (which is less than d). Hence the source (pinhole) size can
be (Af/d)(d/S) = (4/S). Thus the pinhole size chosen is some multiple of the
diffraction-limited pinhole size.

As an example, let us assume that we are using a mercury discharge lamp as the
source of light and that the green line (546.1 nm) is isolated by means of a filter. If we
are using a collimating lens of f-number = 5, then, assuming a shear ratio S/d of 0.1,
the pinhole must be of the order of 25 pm. This is an extremely small pinhole, and
generally very little intensity can be obtained in the fringe pattern. Hence, an intense
source such as a high-pressure mercury arc has to be used. It has poor temporal
coherence, even after a spectral line suitable for the purpose has been isolated by
means of a filter. Use of such sources results in the requirement to compensate the
two optical paths in an interferometer to be used as a lateral shearing instrument.
This condition (and its implementation) is sometimes referred to as white-light
compensation. When white light is used, a lateral shearing interferogram is obtained
where the central fringe is achromatic (white) and the other fringes are colored.

Until the gas laser came into general use, all lateral shearing interferometers were
designed with white-light compensation. Now it is possible to devise lateral shearing
interferometers in which the light paths of the two interfering beams are of unequal
length (uncompensated). A laser source having a high degree of spatial and temporal
coherence is, however, necessary for this purpose. A helium-neon (He-Ne) laser
emitting at 632.8 nm is often used as a source of light for many of these applications.
A lateral shearing interferometer designed for white-light compensation can always
be used with a laser light source. However, the inverse is not true. A lateral shearing
interferometer designed for laser use, and hence probably having unequal optical
paths, cannot produce a visible or recordable interference fringe pattern with sources
of light of lesser coherence.

4.3. BRIEF THEORY OF LATERAL SHEARING INTERFEROMETRY

The wavefront error W(x,y) is the difference between the actual wavefront and the
desirable one or the one required to accomplish the design objectives. Wavefront is a
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FIGURE 4.3. Schematic diagram (in plane and elevation) illustrating the original and the sheared
wavefronts for a circular aperture. The fringes arising due to the lateral shear may only be seen in the
area of overlap of the two wavefronts.

locus of all points with the same phase in the three-dimensional space. Therefore, its
unit in the MKS system is meter. In interferometry and optical engineering, it
is expressed in terms of A (number of wavelengths of the illuminating source).
When the illuminating source is a He—Ne laser emitting at 632.8 nm, the conversion
between these two systems is 2 = 632.8 nm = 632.8 x 10~ m.

Figure 4.3 shows the original and the laterally sheared wavefronts. For now, we
assume that the wavefront is nearly planar so that the wavefront errors may be
considered as small deviations from this plane. The wavefront error may be denoted
as W(x,y), where (x,y) are the coordinates of an arbitrary point P(x,y). When this
wavefront is sheared in the x direction by an amount S, the error at every point on the
sheared wavefront is W(x — S,y). The resulting wavefront difference AW (x,y) at
P(x,y) between the original and the sheared wavefronts is W(x,y) — W(x — S, ).
Thus, in later shearing interferometry, AW(x,y) is the quantity that is found.

When the displacement S is zero, there is no wavefront difference anywhere in the
interferometer. Consequently, wavefront difference cannot be seen and error cannot
be measured independently of its magnitude. Now, the path wavefront difference
AW (x,y) may be expressed in terms of number of wavelengths according to the
usual relationship

AW (x,y) = ni (4.1)

where 7 is the order of the interference fringe and 4 is the wavelength used. The left-
hand side of Eq. (4.1) may be multiplied by 1, in a specific form of (S/dx). When the
displacement S is made increasingly smaller, and is theoretically approaching zero,
the change in wavefront difference over change in displacement Ax becomes a
partial derivative. Equation (4.1) may be written as

oW (x,y)
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Thus the information obtained in the lateral shearing interferometer is ray
aberration (OW/0x) in angular units. The accuracy of Eq. (4.2) increases as shear
S approaches to 0. It is believed that sensitivity decreases as shear S approaches to 0.
Therefore, the experimentalist strives to arrive at a suitable compromise for the
optimal value of shear § if Eq. (4.2) is to be used.

Let us now consider some specific situations, employing the simpler form in the
case of nonrotationally symmetric aberrations.

4.3.1. Interferograms of Spherical and Flat Wavefronts

Defocusing. The wavefront error for defocusing may be represented as
W(x,y) = D(x* +y?). (4.3)

The coefficient D represents the magnitude of the aberration, usually given as a
number of wavelengths. A slight defocusing of the optical system, designed to
produce a perfectly plane wave, will result in the emergence of a wavefront that is
either slightly concave or convex spherical wavefront with a very long radius of
curvature. Hence in this case,

AW(x,y) = 2DxS = ni. (4.4)

Equation (4.4) represents a system of straight fringes that are equally spaced and
perpendicular to the x direction (direction of shear). This situation is illustrated in
Figure 4.4(a). The straight fringes appear in the common area of the overlapping
wavefronts. If there is no defocusing (D = 0), there are no fringes. The area of
wavefront overlap appears to be of uniform intensity, corresponding to the same
optical path for both beams.

Tilt. When the wavefront is laterally sheared, normally we assume that the new
wavefront is not tilted with respect to the original wavefront. In certain arrangements,
however, it is possible to obtain a known amount of tilt between the two wavefronts.
In such cases, it is a usual practice to obtain the tilt in the direction orthogonal to that
of the lateral shear. The optical path difference associated with this tilt may be
represented as a linear function of the y coordinate. Thus, in the case of only tilt, we
find

AW(x,y) = Ey = nl. (4.5)

Here E is the angle of tilt between the original and the sheared wavefronts. Their line
of intersection is parallel to the x axis. If defocusing and tilt are simultaneously
present, the optical path difference is given by

AW(x,y) = 2DxS + Ey = nA. (4.6)
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(@) (b)

(c)

FIGURE 4.4. Lateral shearing interferograms for an aberrationless wavefront (a) inside the focus,
(b) at the focus, and (c) outside the focus. In part (b), fringeless pattern is obtained when there is no
defocusing. The patterns (a) and (c) are due to slight defocusing in positive and negative direction by the
same amount.

This equation represents a system of straight fringes that are parallel to neither the
x axis nor the y axis. Only when either the coefficient D or E is zero, they are parallel
to either the x axis or the y axis, respectively.

We note the difference between the two situations represented by Eqs. (4.4)
and (4.6). When there is no defocusing (D = 0), Eq. (4.4.) describes a uniform
or fringe-free field, while Eq. (4.6) gives a system of straight fringes parallel to
the x axis. When an optical system is being collimated with respect to the point
source of light, we go through the region of the focus. Figure 4.4 illustrates the
representative lateral shearing interferograms inside the focus (a), at the focus
(b), and outside the focus (c), in a lateral shearing interferometer without tilt.
When we use a lateral shearing interferometer that can also introduce tilt for the
same purpose, the corresponding sequence of interferograms will be as shown in
Figure 4.5. In this case, it is possible to detect slight defocusing. It is much
easier to detect a change in the direction of fringes than to indentify the plane
with total absence of fringes.

Therefore, the ability to introduce tilt in addition to lateral shear might be a
distinct advantage in certain situations. Later we talk about the use of this feature to
accomplish different tasks in optical arrangements.
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FIGURE 4.5. Lateral shearing interferograms for an aberrationless wavefront (a) inside the focus, (b) at
the focus, and (c) outside the focus. In this case, however, a certain amount of tilt orthogonal to the direction
of shear is introduced. At the focus, part (b), the fringes are parallel to the direction of shear. Inside and
outside the focus they are inclined with respect to the shear direction.

4.3.2. Interferograms of Primary Aberrations upon Lateral Shear

Primary Spherical Aberration. The wavefront error for primary spherical aberra-
tion may be expressed as

W(x,y) = A" + )% (4.7)

Thus, the shearing interferogram may be obtained from the following equation, in the
absence of defocusing term:

AW (x,y) = 4A(x* +y*)xS = ni. (4.8)

The fringe distribution can be determined from the following equation when defo-
cusing is also present:

AW (x,y) = [4A(x* + y*)x + 2Dx]S = ni. (4.9)

Both Egs. (4.8) and (4.9) have exponents that add to 3. Consequently, the fringes
indicating the presence of the spherical aberration are cubic curves. Figure 4.6 shows
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FIGURE 4.6. Typical lateral shearing interferograms of primary spherical aberration due to various
amounts of defocusing: (a) inside the focus, (b) at the focus, and (c), (d) outside the focus. The fringe pattern
in part (b) occurs when there is no defocusing.

the representative interferograms in the presence of primary spherical aberration in
the original wavefront, inside the focus (a), at the focus (b), and outside the focus (c)
and (d). In addition to the spherical aberration and defocus, tilt is also present.
The equation for the fringes is given by

AW (x,y) = [4A(x* + y*)x + 2Dx]S + 2Ey = ni. (4.10)

If there are only spherical aberration and tilt present, the equation for the shape of the
fringes may be predicted from the following equation:

AW(x,y) = 4A(x* + y*)xS + 2Ey = n.

When the primary spherical aberration is very small and there is no defocusing, Eq.
(4.10) may be approximated for the central fringe close to the x axis:

AW (x,¢) = 4Ax*S + 2Ee = 0. (4.11)

This equation for the central fringe gives the characteristic horizontal S-shaped curve
by which very small amounts of spherical aberration may be visually identified.
Typical fringe pattern is displayed in Figure 4.7.
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FIGURE 4.7. Typical lateral shearing interferogram of primary spherical aberration when there is a
small amount of tilt in the orthogonal direction. Note the characteristic S-shape of the fringes.

Primary Coma. The wavefront error for primary coma may be expressed as
W(x,y) = By(x* +%). (4.12)

In view of the unsymmetrical nature of this aberration, the shape of the lateral shear
fringes is different, depending on whether the shear is in the x direction, y direction,
or in some other direction.

Let us first consider the case in which the shear is in the x direction. Then the
fringe shape may be found from the following equation:

AW (x,y) = 2BxyS = nA. (4.13)

The curves represented by Eq. (4.13) are rectangular hyperbolas with the asymptotes
in the x and y directions. The effect of defocusing is the addition of another term
(2DxS), see Egs. (4.4)—(4.13):

AW (x,y) = 2BxyS + 2DxS = nA.

The introduction of defocusing term results in the displacement of the center of
the system of rectangular hyperbolas along the y direction. Figure 4.8 shows the
representative fringe patterns for these two cases. In part (a), centered fringes are
indicative of coma only. In part (b), tilt in the direction orthogonal to shear is added to
coma. When tilt is added to coma in some other direction, the center of the hyperbolic
fringes will be moved along a line inclined to both the x and y axes.

Next, let us consider the situation in which the shear is in the y direction. Then, if
the shear magnitude along the y direction is denoted as 7, the shape of the fringes can
be found from the following equation:

AW(x,y) = B(x* + 3y*)T = ni. (4.14)
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FIGURE 4.8. Representative lateral shearing interferograms of a wavefront with primary coma when
the shear direction is chosen along the sagittal (horizontal, or x axis). (a) Centered rectangular hyperbolas are
obtained when there is no defocusing. (b) Small defocusing causes displacement of the center of the
rectangular hyperbolas (actually, the intersection of the asymptotes) in a direction perpendicular to the
direction of shear (y axis).

In this case, the fringes form a system of ellipses with a ratio of major to minor axis
of 32, Also, the major axis is parallel to the x axis. The effects of defocusing and
tilt are similar to those discussed earlier. Representative fringe patterns characteristic
of coma, generated in the lateral shearing interferometer with the shear parallel to
the x axis, are shown in Figures 4.9(a) and 4.9(b) with and without defocus,
respectively.

Primary Astigmatism. The wavefront error for primary astigmatism may be
expressed as

W(x,y) = C(x*> +y%). (4.15)

(a) (b)

FIGURE 4.9. Representative lateral shearing interferograms of a wavefront with primary coma when the
direction of shear is in the sagital (horizontal, x) direction. (a) Centered elliptical fringes are observed when
there is no defocusing. (b) When defocusing is introduced, the center of the fringe pattern moves along the
direction (horizontal, x) of shear (x axis).
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In the analysis of an astigmatic wavefront, the lateral shearing interferograms
provide little useful information. Independently whether the lateral shear is in the
x or the y direction, the straight fringes are orthogonal to the direction of shear. Thus,
one could easily mistake an astigmatic wavefront for a spherical one. Fortunately, the
introduction of defocusing reveals the presence of astigmatism. Then, the fringe
pattern produced by lateral shear in the x direction is given by the following
expression:

AW(x,y) = 2(D + C)xS = n/. (4.16)
Similarly, the difference in wavefronts for lateral shear in the y direction becomes
AW(x,y) =2(D — C)yT = nA. (4.17)

If the sagittal shear S and the tangential shear T have the same magnitude, there exist
two values of D, namely, D = £ C, for which the lateral shearing interferogram fails
to exhibit fringes. These two defocus conditions correspond to the positions of the
tangential and sagittal foci of the astigmatic wavefront. Another way of detecting
astigmatism is by counting the number of fringes for two perpendicular shear
directions. Their different numbers indicate the presence of astigmatism, as illu-
strated in Figure 4.10. In part (a), with shear along the horizontal direction, we count
7 dark vertical fringes. In part (b), 10 dark horizontal fringes, upon application of
equal shear in the vertical direction, indicate the presence of an astigmatic wavefront.

Another method of detecting astigmatism involves the use of lateral shear in a
general direction. In this case, the system of fringes may be obtained from the
following equation:

AW (x,y) =2(D+ C)xS +2(D — C)yT = ni. (4.18)

(a) (b)

FIGURE 4.10. Representative lateral shearing interferograms arising due to the presence of primary
astigmatism. Its existence is confirmed visually by counting different number of straight fringes, at a given
focal setting, when the shear direction is (a) sagital, and (b) tangential.
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FIGURE 4.11. A representative lateral shearing interferogram due to primary astigmatism and defocus.
The direction of shear is along the y = x line (principal diagonal), or halfway between the sagittal and
tangential directions. The inclination of straight fringes with respect to the normal to the shear direction (the
other diagonal, y = —x) confirms the presence of the astigmatism in the wavefront.

Equation (4.18) represents a system of equally spaced straight fringes. Their slope
may be found by setting n to zero and solving for y/x.

dy (C+D)
ox  (C—D)

N

In the absence of astigmatism C = 0, the equidistant straight fringes are normal to
the shear direction, dy/dx = —(S/T), according to Eq. (4.4). By changing the
direction of shear (7/S), we observe that the slope of the fringes, dy/dx, remains
normal to the shear direction in the absence of astigmatism.

When there is astigmatism present in the wavefront, the slope of the equidistant
straight fringes differs from the direction orthogonal to the shear direction.
Figure 4.11 illustrates this aspect of astigmatism in relation to lateral shearing
interferometry.

Curvature of Field and Distortion. Curvature of field is a displacement of focus
longitudinally, and hence it can be treated as a defocusing situation. Distortion is a
linear function of the pupil height. It is, in general, not detected in the lateral shearing
interferometers.

Chromatic Aberration. Longitudinal chromatic aberration is a change of focus for
different wavelengths. By changing the light source or using different wavelengths
from the same source, one can count the number of fringes introduced by spectral
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defocusing. This way, we may quantify the amount of longitudinal chromatic
aberration. Similar to distortion, the lateral chromatic aberration is a linear function
of the pupil height and is not detectable in a lateral shearing interferometer.

The foregoing brief account will help in evaluating the performance of an optical
system by simple and quick inspection utilizing lateral shearing interferometry. We
discussed the presence of pure aberrations with defocus and tilt to give us an idea of
their fringe patterns. A general wavefront will have a mixture of aberrations whose
presence is quantified, employing formal mathematical reconstruction techniques.

4.4. EVALUATION OF AN UNKNOWN WAVEFRONT

We shall now see how it is possible to determine the shape of a wavefront from a
lateral shearing interferogram of the wavefront under study. One method, proposed
by Saunders (1961, 1970), estimates the order of interference at equally spaced
points along a diameter as indicated in Figure 4.12. He evaluates the wavefront by
setting Wy = 0, W, = AWy, W3 = AW, + AW,, and so on, obtaining the wavefront
by summation of the lateral shear measurements AW;. This procedure was extended
to two dimensions by Saunders and Bruning (1968), and later by Rimmer (1972), and
Nyssonen and Jerke (1973).

A more formal procedure assumes that the unknown wavefront W(x,y) is a
smooth function that may be represented by a so-called aberration polynomial, as
we did in the preceding section. The wavefront difference function AW (x, y) is then
formulated in terms of its coefficients. Values of AW;(x;,y;) are found from mea-
surements of the fringe positions. From those, the coefficients of the wavefront
(aberration polynomial) are computed upon fitting. Malacara (1965a), Murty and
Malacara (1965), and Dutton et al. (1968) developed this method in one dimension to
find the wavefront shape along a diameter parallel to the shear. Malacara and Mende
(1968) applied the method for the evaluation of aberrations produced by surfaces

FIGURE 4.12. Original and displaced wavefront and their difference to illustrate the Saunders’ pro-
cedure to find a wavefront from its lateral shearing interferogram.
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with rotational symmetry. In general, the polynomial method is very good, especially
after being extended to two dimensions by Rimmer and Wyant (1975) in the
following manner.

The wavefront, denoted by W(x,y), may be represented by a two-dimensional
polynomial of degree k, of the form

k n
= Z ZB,,mxmy"_m. (4.19)
n=0 m=0
It contains N = (k+1)(k+2)/2 terms. If we wish to reconstruct the whole
wavefront, we perform two shears, represented by S and 7, along two mutually

perpendicular directions, generating two sheared interferograms. For shear along the
x direction, we obtain

W(x+S,y) = ZZB,ImeFS’”""’. (4.20)

n=0 m=0

Similarly, for shear along the y direction, we find

W(x,y+T) = ZZBnmx’” (y+T)"". (4.21)

n=0 m=0

We may use the binomial theorem,

(x+8) = Zm: (’7);&”/’5/’. (4.22)

J=0

The binomial factor represents a quotient of factorials (here denoted by the exclama-

tion mark !).
m\  m!
(f )  (m—j)Y! (4.23)

Using expression (4.22), Eq. (4.20) may be expanded into a polynomial

W(x+S,y) ZZZBM(’;?%M—-@"-W. (4.24)

n=0 m=0 j=0

With expression (4.22), Eq. (4.23) may be expanded into a polynomial

k n n—m
Wiy +7) =33 B ( o )wy"-m-fﬂ (4.25)
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These functions become equal to W(x,y) when j = 0. We rearrange the sums to
obtain the following two shearing interferogram equations:

AWs = W(x+3S,y) Z Z Cox"y"™. (4.26)

n=0 m=

Similarly, we find

AWr =W(x,y+T) Z ZDnmx'"y” " (4.27)
n=0 m=
Then we get
k—n ]—|—m
( )SIBJ-H:,H-m (4'28)

J=1

Likewise, we find

k—n .
Jtn—m i
Dy = Z ( j >Tij+n,m~ (4.29)

J=1

Rimmer and Wyant developed this result in 1975. The values of C,,,, and D,,, may be
obtained from the interferograms by means of a least-square fitting of the measured
values of AWy and AWy to functions (4.26) and (4.27), respectively. There are
M = k(k + 1)/2 coefficients C,,, and D,,,. From them we have to determine the
N wavefront coefficients B,,,. Expression (4.28) represents a system of M equations
with M unknowns, where the unknowns are all B, coefficients with the exception
of B,. Likewise, expression (4.29) represents a system of M equations with
M unknowns, where these unknowns are all B, coefficients with the exception of
B,». If the wavefront has rotational symmetry, B,g = B,,,, = 0 for all values of n, it
becomes sufficient to use either expression (4.28) or (4.29) and, hence, only one
interferogram is necessary. If m is different from n and also different from zero, the
value of B,,, is found from each expression. An average of these values is appro-
priately taken because their difference may be explained by rounding errors in
computations.

Many alternative approaches to computing the wavefront from the interferogram,
generated by a lateral shearing interferometer, have been devised. This includes, for
example, Gorshkov and Lysenko (1980) and others. A most interesting one is based
on the wavefront expansion in terms of Zernike polynomials, first described by
Rimmer and Wyant (1975) and later revised by Korwan (1983). The wavefront
difference function AW(x,y) as well as the wavefront W(x,y) is expressed as a
linear combination of Zernike polynomials. Shen et al. (1997) analytically updated
this work. The Zernike polynomial coefficients of the wavefront under test are
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expressed in terms of the Zernike polynomial coefficients of the shearing
interferograms.

Leibbrandt et al. (1996) designed a double-grating lateral shearing interferometer
based on the Michelson configuration, where Zernike polynomials are used for a high
accuracy wavefront reconstruction.

A number of research groups adapted the Fourier techniques after they were
demonstrated as a viable tool of phase reconstruction in the early eighties. Malacara
and Servin (1995) and Malacara et al. (1999) outlined the steps for the wavefront
reconstruction. Liang et al. (2006a, 2006b) worked out the details and provided
specific examples that are applicable to reconstruction of a wavefront even when
shears are large. The wavelet transforms also proved useful for wavefront retrieval in
lateral shearing interferometry (Xu et al., 2002).

4.5. LATERAL SHEARING INTERFEROMETERS IN COLLIMATED
LIGHT (WHITE LIGHT COMPENSATED)

We first consider interferometric arrangements with incoherent light sources, requir-
ing white-light compensation. Here again, we have two shear geometries, namely,
lateral shear in a collimated beam and lateral shear in a convergent beam. We note,
however, that it is possible to convert one into the other by the use of a well-corrected
lens.

4.5.1. Arrangements Based on the Jamin Interferometer

Figures 4.13—4.15 illustrate three modifications to the Jamin interferometer to serve
as lateral shearing interferometers (Murty, 1964b). The extended light source is
replaced by a pinhole. The lens to be tested acts as the collimator and imprints its
aberrations on the nearly collimated beam, entering the interferometer. Each glass
plate on either side has the dual function of splitting the beams and reflecting it. They
have to be of high quality and identical. If they are parallel to each other, the
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FIGURE 4.13. The layout of the principal components employed to modify the Jamin interferometer
into a lateral shearing interferometer. The lateral shear may be introduced by rotating the glass plate on the
right about the optical axis of the incident beam. With the zero angle of rotation of the plate, the
interferometer becomes the traditional Jamin interferometer.
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FIGURE 4.14. Inanother modification of the Jamin interferometer into a lateral shearing interferometer,
two identical glass blocks are introduced into each beam. Lateral shear is achieved by rotating each block
about an axis passing through both blocks by the same angle, but in opposite directions.

superimposed light beams emerge resulting in the traditional Jamin interferometer.
In the Jamin interferometer, two glass blocks are positioned parallel to each other.
Their alignment may be accomplished by observing the zero-order fringe with a
broad source of light. The Jamin plates should be large enough to accommodate the
beams displaced by lateral shear.

Two methods are available to introduce lateral shear into Jamin interferometer. In
the first one, the glass parallel plate on the right is rotated about the optical axis of the
incident beam, as indicated in Figure 4.13. With this arrangement, the shear is
generated in the direction perpendicular to the plane of the paper.

The second method of producing shear in the Jamin interferometer is illustrated in
Figure 4.14. Two identical parallel plates of glass are placed in each interferometer
arm so that they may be rotated about the same axis, normal to the beam, by the same
angle, and in opposite directions. This may be accomplished by the use of a simple
gear arrangement. In an alternate setup, a fixed tilt is introduced in the orthogonal
direction by making the end Jamin plates slightly wedge shaped (by a few seconds
of arc).

A modification of a cyclical form of the Jamin interferometer into the lateral
shearing interferometer is indicated in Figure 4.15. In this layout, only one plane
parallel plate is employed. The right-angle prism or a set of two plane mirrors at an
angle of 90° to each other are used to fold the light path. A transparent block is placed
into one interferometer arm. It is rotated about an axis that passes through and is
normal to both beams in order to introduce lateral shear. Two beams pass through the
block from either side: one beam is lifted up and the other pushed down in the plane
of the paper so that lateral shear is obtained as a sum of two beam displacements. This
lateral shearing interferometer seems to be very convenient for testing lenses of small
aperture. It is also possible to introduce tilt; it may be introduced in the orthogonal
direction by incorporating slightly imperfect right-angle prism or slightly misaligned
two-mirror assembly. The tilt depends on the error in the 90° angle of deviation in
both cases. This arrangement may be used for measuring the accuracy of the apex-
angle of the right-angle prism, the mirror alignment in the 90° mirror assembly, and
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FIGURE 4.15. A modification of a cyclical form of the Jamin interferometer into the lateral shearing
interferometer. A transparent block is rotated about an axis that passes through and is normal to both beams
to introduce lateral shear. Two beams pass through the block from either side: one beam is lifted up and the
other pushed down in the plane of the paper so that lateral shear is obtained as a sum of two beam
displacements.

most importantly, detecting errors in the right angles in a corner cube prism (see also
Scholl, 1995).

4.5.2. Arrangements Based on the Michelson Interferometer

The Michelson interferometer is compensated for white light, especially when
adjusted for the zero-order interference position. If we place right-angle prisms or
cube-corner prisms, it is possible to obtain lateral shear (Kelsal, 1959). The Michelson
interferometer with the right-angle mirrors (or prisms) in each arm is presented in
Figure 4.16. For simplicity, we assume that the right-angle prisms are identical in size
and material. When their virtual images, as viewed in the beam splitter, are exactly
superimposed on each other, no shear is generated between beams. If one prism is
displaced laterally by some amount, the wavefront is sheared by twice this amount.

Corner-cube or right
e angle prisms

Incident wavefront
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reflector (D)

Ideally thin
beam splitter TY
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FIGURE 4.16. A modification of an equal-path Michelson interferometer into the lateral shearing
interferometer. The end reflectors are either right-angle prisms (mirror assembly) or cube-corner prisms,
one of them displaced in a direction transverse to the beam.
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The beam divider plate must be large enough to accommodate the displacement of
one beam. Similarly, at least one of the right-angle prisms must be oversized. Tilt may
be implemented by tilting the right-angle prism (mirror assembly) perpendicularly to
the direction of the shear. With a corner cube, only pure lateral shear is obtained
because tilt may not be implemented by their nature. Tilt only may be introduced in
the traditional Michelson interferometer by tilting one of the plane mirrors.

Lee et al. (1997) use the Michelson configuration in a two-dimensional shearing
interferometer to measure a long radius of curvature. Pfeil et al. (1998) use a beam
divider cube with a tilted end-mirror to test fast cylindrical gradient-index lenses.
Albertazzi and Fantin (2002) use the Michelson configuration with the on-the-pixel
processing to evaluate small incidence differences on the charged couple device
(CCD). Instead of moving or tilting a reflecting component sideways, the camera is
displaced sideways by one or more pixels. This may be done physically or electro-
nically. Schreiber (2005) invented a variation of the Michelson shearing interferom-
eter by replacing the retro reflector with a return sphere to measure tilt.

4.5.3. Arrangements Based on a Cyclic Interferometer

A cyclic interferometer is referred to as the layout where two beams travel in
opposite directions, encountering exactly the same components until they emerge
to form interference pattern. The Jamin interferometer presented in Figure 4.15 is
one familiar example of a cyclic interferometer. We note that beams pass through the
same path but they travel in the opposite directions.

A representative cyclic interferometer is a triangular-path interferometer
(Hariharan and Sen, 1960). Figure 4.17 depicts a typical layout to obtain lateral
shear in collimated light in this compact instrument, with minimal systematic
errors. Again, we have two ways of generating lateral shear. Employing the first
one, a transparent block is introduced into the path and rotated as in folded Jamin
interferometer (see also Fig. 4.15). In the second method, illustrated in Figure 4.18,
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FIGURE 4.17. A representative cyclic triangular-path interferometer may be modified to obtain lateral
shearin collimated light. A transparent slab is introduced into the beams. When it is rotated by an angle about
the axis normal to the plane of paper and beams, they are displaced laterally in opposite directions.
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FIGURE 4.18. A modification of a representative cyclic triangular-path interferometer to obtain lateral
shear in collimated light. The beam is displaced laterally when one of the plane mirrors is translated in the
plane of the paper, along the beam direction.

beams will be displaced laterally when one of the plane mirrors is translated along the
beam direction, in the plane of the paper.

In a symmetrical implementation of a cyclic interferometer, we may introduce a
plane parallel plate of glass, as presented in Figures 4.15 and 4.17. In either case, the
rotation of the glass block or plate produces lateral shear. This is also a relatively easy
instrument to construct. It is insensitive to vibration and other environmental effects,
including those in a controlled laboratory conditions. The simple elegance of the
plane parallel plate was exposed by Waddell et al. (1994) to assess the symmetry of
concave mirrors whose surface was formed with a stretchable plastic membrane.

Another compact arrangement of generating shear in a cyclic interferometer is
laid-out in Figure 4.19. A 112.5°, 90°, 112.5° angle pentaprism may be used as a
beam splitter mirrors assembly by placing suitable coatings on the key surfaces. A
90° pentaprism is cut along its axis of symmetry. One of the cut surfaces is covered
with a semireflecting coating to act as a beam splitter. They are maintained in optical
contact, using index-matching liquid or oil. Translation of one half-pentaprism along
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FIGURE 4.19. A modification of a pentaprism-based triangular-path interferometer into a lateral
shearing interferometer. One half-pentaprism is moved along the beam-splitting surface to produce lateral
shear.
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FIGURE 4.20. Simplified diagram of the principal components in the Mach—Zehnder interferometer
using thin beam splitters.

the beam-dividing surface generates variable shear of the output wavefronts. Suc-
cessful engineering of this device results in the heart of interferometer immune to
vibrations. It is most suitable for testing small aperture optical systems due to its
weight and size limitations.

Kanjilal et al. (1984) and Kanjilal and Puntambekar (1984) described another
cyclic shearing interferometer that may be used with convergent light.

4.5.4. Arrangements Based on the Mach-Zehnder Interferometer

A schematic diagram of the principal optical components in the Mach—Zehnder
interferometer is displayed for reference in Figure 4.20. It includes two beam
dividers and two plane reflectors (mirrors). Two glass plane parallel plates of the
same thickness and material are inserted in each interferometer arm to generate
lateral shear in collimated light, as schematically indicated in Figure 4.21.
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FIGURE 4.21. A basic Mach—Zehnder interferometer may be modified to obtain lateral shear in
collimated light. Two identical glass plane parallel plates are inserted with an angle of inclination into
each interferometer arm to generate lateral shear in collimated light. To control the amount of shear, the
angle of inclination of the plates with respect to the incident beam is changed.
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Each plate displaces the wavefront by the same amount and in opposite direction.
The Mach-Zehnder interferometer may easily be modified for use as a lateral
shearing interferometer in collimated light (Paez et al. 2000). Some researchers
find it a cumbersome device to adjust, especially when all the optical elements
are separately mounted and each has its own tilting screws. The Mach-Zehnder
interferometer is often considered very useful for obtaining lateral shear in a
convergent beam.

4.6. LATERAL SHEARING INTERFEROMETERS IN CONVERGENT
LIGHT (WHITE LIGHT COMPENSATED)

4.6.1. Arrangements Based on the Michelson Interferometer

The basic block diagram relating the input-output relationship in a lateral shearing
interferometer in convergent light is presented again in Figure 4.22. The nearly
spherical wavefront is converging to its center of curvature where the lateral shearing
interferometer is placed. Due to the space constraints, the size of the lateral shearing
interferometer used in convergent light is rather small.

The output of the laterally shearing interferometer includes two beams with
the amplitude decreased (by at least factor of 4) and the same size of the radius
of curvature as the input beam (but opposite in sign). The diverging beams are tilted
with respect to each other. There is an angle between the radius of curvature to
the central point on one wavefront and the radius of curvature connecting the
center of the ‘“displaced” wavefront. If we think of the wavefront as forming a
part of a spherical surface, then the sheared wavefront slides over this spherical
surface. The quantity of interest is the difference between the sphere and the
actual wavefront, which we are accustomed to call the wavefront aberration func-
tion, W(x,y).

A converging beam of light from the optical system under test enters a simple
Michelson interferometer, having a thin beam splitter, as sketched in Figure 4.23.
When two plane mirrors are positioned symmetrically with respect to the beam
splitter (equal path condition) and perfect optical components are used, a broad
zero-order fringe presents itself in the interference plane. When the plane mirrors are
used, the split incident beams converge on a point on the mirror surface. This is the
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FIGURE 4.22. The basic block diagram relating the input-output relationship in a lateral shearing
interferometer in convergent light. The nearly spherical wavefront is converging to its center of curvature

where the lateral shearing interferometer is placed.
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FIGURE 4.23. A converging beam of light from the optical system under test entering a simple
Michelson interferometer with a thin beam splitter. When two plane mirrors are positioned symmetrically
with respect to the beam splitter, a broad zero-order fringe presents itself in the interference plane. When the
plane mirrors are used, the split incident beams converge on a point on the mirror surface.

layout of the basic Michelson interferometer: the emerging wavefronts are super-
imposed without any lateral shear.

The lateral shear may be introduced by rotating one of the mirrors by a small angle
about an axis that coincides with the wavefront center of curvature. This is illustrated
in Figure 4.24. The wavefront aberration is made visible in the interferometric
pattern. There are no fringes in the absence of aberration. If the centers of curvature
fall ever so slightly outside the plane reflectors, defocusing is introduced. Even in the
absence of aberrations, straight fringes indicative of defocus condition in the shear-
ing interferometer are displayed. It is not possible to obtain tilt in the orthogonal
direction.

A sturdy and compact version of this interferometer is made with two nearly
identical right-angle prisms and cementing them together along partially transmitting
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FIGURE 4.24. A modification of a Michelson interferometer into a lateral shearing interferometer.
Tilting one of the plane mirrors about an axis passing through the point of convergence of the wavefront on

the mirror surface introduces lateral shear.
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FIGURE 4.25. A modification of a Michelson interferometer into a lateral shearing interferometer with a
cemented cube. The plane surfaces are deformed to introduce a fixed amount of shear. The entrance and the
exit faces may be given convex spherical shapes so that the rays enter and exit normally.

diagonal. A fixed amount of shear may be implemented with one slightly tilted totally
reflecting surface, depicted in Figure 4.25. Lenouvel and Lenouvel (1938) were
probably the first to devise the practical solid version of this interferometer.

Later, Murty (1969), Saunders (1970), and several others found simplicity in this
interferometer very useful in the testing of optical systems. One can vary the amount
of shear using similar right-angle prisms in a cube arrangement (Murty, 1970). An
index matching liquid or suitable oil inserted between the faces of the hypotenuse,
permits rotation of one prism. The axis of rotation passes through both centers of
curvature of split wavefronts, as illustrated in Figure 4.26. The entrance and exit
faces may be made spherical so that the rays enter and exit almost without deviation.
This implementation of the lateral shearing interferometer has been used to char-
acterize cryogenic laser fusion targets (Tarvin et al., 1979).
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FIGURE 4.26. A layout of a lateral shearing interferometer based on the Michelson interferometer. The
lateral shear may be varied by rotating one or both prisms about an axis passing through the centers of
curvature of the incident beams.
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4.6.2. Arrangements Based on the Mach-Zehnder Interferometer

Let us consider a simplified Mach—Zehnder interferometer with idealized thin beam
dividers as indicated in Figure 4.27. A converging wavefront is focused on the plane
mirrors, placed symmetrically with respect to infinitely thin beam splitter. If one of
these mirrors is rotated about an axis, passing through the geometrical focal point,
normal to the plane of the paper, a lateral shear is established between the beams
emerging from the interferometer. Tilt, orthogonal to the direction of shear, may be
introduced upon rotation of the second beam divider about an axis normal to the
plane of paper (also illustrated in Fig. 4.27). The introduction of this tilt has been
offered as an important feature of this interferometer. It might be advantageous to
bring both beams to focus on the second beam splitter. In this case, the roles of the
plane mirror and the beam divider are interchanged: rotation of one mirror introduces
tilt, and the rotation of the second beam splitter results in introduction of shear. When
one is using actual components with finite thicknesses, compensation plates need to
be inserted judiciously.

We found it relatively simple to align a shearing interferometer incorporating tilt,
based on the Mach—Zehnder interferometer (Paez and Strojnik, 2000; Paez and
Strojnik, 2001). Many researchers, however, believe that it is difficult to adjust
quickly an equal path interferometer, incorporating as a minimum two beam dividers
and two plane mirrors, each separately mounted on a suitable base and capable of all
possible adjustments. Some examples of pre-aligned and pre-adjusted devices based
on the Mach—Zehnder configuration are presented next. Most of them use solid
glass polygon prisms to generate a fixed amount of lateral shear. Saunders (1965)
devised almost a literal solidification of the layout in Figure 4.27. The space between
the beam dividers and the plane mirrors is filled with glass, as seen in Figure 4.28.
The convergent beam focuses on surfaces parallel to each other but not parallel to the
beam divider. The fabrication of this compact component could start with the
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FIGURE 4.27. A modification of a simplified Mach-Zehnder interferometer into a lateral shearing
interferometer, in convergent light. The converging wavefront comes to a geometrical focus on the surface
of plane mirrors. Either mirror is rotated by a small angle to generate shear. Tilt may be introduced by
rotating the second beam splitter by a small amount.
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FIGURE 4.28. A solidification of the lateral shearing interferometer sketched in Figure 4.27. The space
between the beam dividers and the plane mirrors is filled with glass. The convergent beam focuses on
surfaces parallel to each other but not parallel to the beam divider. Top and bottom surfaces, slightly inclined
with respect to the beam splitter surfaces to produce fixed shear, are coated to function as mirrors. A fixed
amount of tilt about the direction orthogonal to shear is possible with slightly wedged cement.

formation of hexagonal a prism, cut in two prisms halving 90° angles. The cut
surfaces are coated to act as beam splitters and then cemented together. Top and
bottom surfaces, slightly inclined with respect to the beam splitter surfaces to
produce fixed shear, are coated to function as mirrors. A fixed amount of tilt about
the direction orthogonal to shear is possible with slightly wedged cement.

A shearing interferometer in Mach—Zehnder configuration with mirrors tilted may
be used for flame visualization. Philipp et al. (1993) developed a technique to assess
flame dynamics using cube beam splitters and collimated light.

A possible improvement to the lateral shearing interferometer featuring variable
shear and based on the Mach—Zehnder layout is indicated in Figure 4.29. Here two
rhomboidal prisms are cemented in a symmetrical fashion along the semireflecting
beam-dividing surface. The top and bottom surfaces are mirrored. The incident
converging beams are focused on the second beam divider, implemented as a cube
beam splitter. By rotating it about the axis through the center of curvature, a limited
amount of shear may be introduced. The angle-of-incidence effects limit the amount
of acceptable rotation. The angle of rotation and size of the cube determine the

Incident
convergin
wavefron
Wavefront
focussed
Rotate
for
shear
Laterally

sheared wavefront

FIGURE 4.29. A possible improvement to the lateral shearing interferometer featuring variable shear
and based on the Mach—Zehnder layout. Beams converge on the cemented half-transmitting diagonal of the
cube beam splitter. By rotating it about the axis through the center of curvature, a limited amount of shear
may be introduced. A fixed amount of tilt may be incorporated into the wavefront by inclining the reflecting
surfaces.
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amount of displacement. A fixed amount of tilt may be incorporated into the
wavefront by inclining the reflecting surfaces.

This configuration may also be seen as a version of the shearing interferometer
sketched in Figure 4.28, with the cube beam splitter cut off from the hexagonal prism
assembly and slightly displaced to the right. By converging the beam on the second
beam splitter, the function of shear and the perpendicular tilt corresponds to the
second case, discussed with respect to Figure 4.27.

Another improvement to the octagon in Figure 4.28, with planar surfaces replaced
by sections of a sphere, is indicated in Figure 4.30. It employs two identical plano-
convex spherical lenses whose center thickness is equal to half its radius of curvature.
A small on-axis section of each lens is flattened, polished, and coated with a
reflecting material. Each mirrored surface is slightly inclined with respect to
the planar half-transmitting surface to introduce a fixed shear. The planar half-
transmitting surfaces are cemented together to function as a beam divider. A beam
of large numerical aperture may be tested without introducing its own errors because
entrance and exit faces are spherical in form.

Saunders (1964a) proposed another modification of the Mach—Zehnder interfe-
rometer into a lateral shearing interferometer. The principal components, depicted in
Figure 4.31, include two identical prisms, possibly cut along the principal diagonal
from a single four-sided (kite-like) prism with angles oo = 120°, § = 100°, y = 40°.
The main diagonal surface is coated to divide the beam into two, functioning as a
beam splitter. The wavefront converges on the inclined mirrored faces. The lateral
shear may be implemented by rotating (one of) the prisms about the line joining the
two centers of curvature of the two prisms in opposite directions. This layout may be
simplified to perform fixed shear by cementing prisms at an appropriate angle.

The systematic aberrations inherent to this device may be completely eliminated
by cementing plano-convex lenses of suitable radii of curvature on the entrance and
exit faces. (See discussion about Fig. 4.30.) Tilt may be implemented by suitable
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FIGURE 4.30. Animprovement to the octagon in Figure 4.28, with planar surfaces replaced by sections
of a sphere. Two identical plano-convex spherical lenses whose center thickness is equal to half its radius of
curvature are coated along the planar part and cemented to function as a beam divider. A small on-axis
section of each lens is flattened, polished, and coated with a reflecting material. Each mirrored surface is
slightly inclined with respect to the planar half-transmitting surface to introduce a fixed shear.
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FIGURE 4.31. Another modification of the Mach—Zehnder interferometer, into a lateral shearing inter-
ferometer, using two obtuse-angle prisms. The main diagonal surface is coated to divide the incident
wavefront into two, functioning as a beam splitter. The wavefront converges on the inclined mirrored faces.
The lateral shear may be implemented by rotating prisms relative to each other. This layout may be
simplified to provide fixed shear by cementing prisms at an appropriate angle.

wedging of the cement and by coating only partially the beam divider, covering only
half of each prism-base surface.

4.7. LATERAL SHEARING INTERFEROMETERS USING LASERS

As we pointed out earlier, any white-light compensated lateral shearing interferom-
eter works with a laser source. It is possible to devise interferometers that are simpler
in constructions and use when requirement for use with white light is eliminated. The
most convenient (and cost-effective) laser is the helium—neon (He—Ne) laser emitting
a few milliwatts of power at the 632.8 nm line.

A plane parallel plate, devised by Murty (1964a), is undoubtedly one of the most
elegant and simplest lateral shearing interferometers for qualitative work in a labora-
tory. Figure 4.32 shows that the coherent laser radiation is focused by a microscope
objective on a pinhole to clean up the beam. The lens (group) under test, having the
same f~number as the microscope objective, collimates the divergent light beam. It is
incident on an inclined plane parallel plate, normally used without any coating on
either surface. The light is reflected from the front and the back of the plate due to
Fresnel reflections. The plate thickness introduces the beam displacement, that is, a
lateral shear. The lateral displacement S for a plate of thickness ¢, refractive index N,
and for the beam angle of incidence i is given by Malacara (1965a).

S ;
o= sin 2i(N? — sin?i)” (4.30)

Figure 4.33 presents the graph of S/t versus angle of incidence i, for glass with the
index of refraction N = 1.515 at 632.8 nm. The angle of incidence is measured from
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FIGURE 4.32. Schematic diagram of a lateral shearing interferometer incorporating a laser source and a
plane parallel plate of glass.

the normal to the glass surface, as in the Snell law. The maximum value of the ratio
S/t of approximately 0.8 corresponds to an angle of incidence of 50°. Therefore, a 45°
angle of incidence is quite convenient to use in a practical setup. A slight wedge is
often introduced into a plate to guide ghost reflections from the main beams.

The intensity of the peak of the fringe pattern increases by coating the front and
back surfaces without changing the fringe visibility. Then the internal reflection has
enough intensity to exhibit faint secondary sheared beams and interference patterns.
Therefore, many practitioners find it advantageous to use an uncoated plate.

Figure 4.34 shows the layout with a plane parallel plate to test a large-diameter
concave mirror. A suitable null correcting system may be inserted when the mirror is
not spherical. A fixed amount of tilt orthogonal to the shear direction is produced by
introducing a small wedge into the shearing plate. The imaginary line, where the two
planar surfaces of the wedge intersect, is parallel to the plane of the paper.
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FIGURE 4.33. A graph of the ratio of displacement over plate thickness (S/7) as a function of angle of
incidence, for a typical borosilicate crown glass. Examining the plot we note that any angle of incidence up to
a maximum of about 50° is convenient.
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FIGURE 4.34. Optical layout of a plane parallel plate (interferometer) for testing large concave mirrors.
In addition to a coherent source, two excellent lenses and a good one are needed for performing this test.

Another variation (Hariharan, 1975) of the basic parallel plate interferometer uses
two plates whose separation may be adjusted to expand the range of the possible
shear. In Figure 4.35, one of the plates is mounted on a movable platform so that
the air gap is variable and, hence, variable shear is obtained without plate rotation.
The inside surfaces of these plates are uncoated so that about 4% reflection occurs
there. The outer surfaces are treated with high quality antireflection coatings to
minimize reflections. The plate mounting may be equipped with additional degree of
freedom so that it can be rotated orthogonally to introduce tilt. The physical
separation of two plates makes this system sensitive to disturbances and fragile in
handling. The stability of the fringe system depends on the quality of mechanical
mounts, their design, fabrication, and environmental conditions.

The lateral shearing interferograms displayed in Figures 4.4—4.11 were generated
employing a laser shearing interferometer laid out in Figure 4.32. An uncoated glass
plate with a laser source results in a sufficiently intense fringe pattern, projected on a
ground glass in a dimly illuminated room. An exposure time of only a fraction of a
second is sufficient to photograph the fringes. With the currently available CCD
detector arrays, the experimental work is even simpler.
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FIGURE 4.35. Modification of the plane parallel plate interferometer by incorporating two separate
glass plates. The reflections from the inner surface are utilized to generate the expanded amount of lateral
shear. The lateral shear is variable by moving the back plate to change the width of the air gap.
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4.7.1. Other Applications of the Plane Parallel Plate Interferometer

One of the most popular uses of the plane parallel plate interferometer is in checking
beam collimation. Returning to Figure 4.32, we note that the wavefront is either
slightly divergent or convergent if the pinhole is not located at the focus of the lens
under test. Then, the interference pattern of a high-quality collimating lens exhibits
straight fringes, which is indicated in Figures 4.4(a) and 4.4(c), rather than uniform
field of Figure 4.4(b).

The common area of two sheared apertures will be free of fringes, as noted in
Figure 4.4(b), when the pinhole center coincides with the focal point of the collimat-
ing lens. The best collimation is found when the interference pattern changes from
that shown in part (a) to (b) and, finally to (c), upon slight displacement of the lens
along the optical axis.

The configuration of exact collimation may be even more accurately determined
when a wedged plate is used for alignment. The plate is first used normal to the beam
emerging from the collimating lens. The reflected pattern displays the Fizeau fringes
indicating the direction of the wedge. In this position the shear is zero, so slight
decollimation is not of significance. The plane parallel plate is then rotated in its own
plane. The Fizeau fringes rotate along, always indicating the direction of the wedge.
In the last step, the plate is tilted at an angle with respect to the incident beam so that
the angle of incidence is about 45°. If the pinhole center is slightly outside the focus,
inclined fringes will be observed. By moving the high-quality lens longitudinally
along the optical axis, the pinhole will be centered on the focal point when horizontal
fringes are displayed. Parts (a), (b), and (c) of Figure 4.5 display the sequence of
fringe patterns as the pinhole passes through the focus. The addition of tilt introduced
by the wedged plate allows the experimenter to follow the fringe rotation rather than
to identify fringe free field, which may be difficult to identify with precision.

Determination of inhomogeneity of solid transparent samples is an additional
application of the plane parallel plate or wedge plate interferometer. The sample has
to be prepared in the form of a parallel piece (of glass) and sandwiched between two
very good plane parallel plates using optical contact. This optical assembly, indicated
as a solid block in Figure 4.36, is placed between the collimating lens and the
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FIGURE 4.36. An optical layout for evaluating the degree of inhomogeneity of a transparent (glass)
sample using a plane parallel plate interferometer.
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shearing plate. This layout is reminiscent of the shearing modification of the Jamin
interferometer (see Figs. 4.14 and 4.15). When a high-quality plane wave passes
through the inhomogeneous sample, the distortion is imprinted on it. The laterally
sheared wavefronts produce fringe patterns corresponding to the change in the index
of refraction. The variation of the refractive index across the beam (along the shear
direction) inside the block is determined upon integration. The changes of the index
of refraction along the optical axis are averaged. The block needs to be reoriented to
find changes along all three dimensions.

The same region between the high-quality collimating lens and the shear plate
may be used for flow studies, diffusion studies, and other research into position and
time-varying phenomena.

A number of researchers studied the applications of the plane parallel plate to
alignment and collimation, starting with Dickey and Harder (1978), Grindel (1986),
and Sirohi and Kothiyal (1987a, 1987b). Lens parameters, such as the focal length or
the refractive index, may also be measured in this setup (Kasana and Rosenbruch,
1983a, 1983b; Murty and Shukla, 1983).

The evaluation of infrared materials has been done with this kind of interferom-
eter. Venkata and Juyal (1987) adapted the plane parallel interferometer to the testing
in infrared by using a CO, laser, a plane parallel plate made out of zinc sulfide (ZnS),
and a phosphor screen to observe the fringes. The fabrication of ZnS plate to the high
flatness requirements is a formidable achievement in itself.

The surface imperfections of a large concave mirror may be tested using a plane
parallel plate, with or without a wedge, in a layout indicated in Figure 4.37
(Malacara, 1965a). The first of the two well-corrected lenses collimates the laser
beam. The shearing plate is inclined at about 45° inside the collimated light.

This layout may also be used to measure the radius of curvature of a spherical
surface. In the second position, the right well-corrected lens brings the collimated
beam to focus on the vertex of the concave mirror. Then the lens is moved left along
the optical axis to its first position so that its focus coincides with the center of
curvature of the concave mirror. In both settings, the wavefront incident on the
(wedged) plane parallel plate is planar. In the interference plane, one sees either a
blank field or a field containing horizontal fringes depending on the absence or
presence of tilt in the shearing device (i.e., whether a plane parallel plate or a wedged
plate is used). The lens displacement along the optical axis between these two
positions (first and second), equal to radius of curvature of the concave mirror R,
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FIGURE 4.37. Optical layout of a (wedged) plane parallel plate interferometer to measure the radius of
curvature of a concave spherical surface.
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FIGURE 4.38. Optical layout of a (wedged) plane parallel plate interferometer for measuring the radius
of curvature of a convex spherical surface.

must be accurately measured by some other method to avoid fringes that arise from
defocusing.

Figure 4.38 presents the necessary changes for the measurement of the radius of
curvature of a convex surface. In this case, the longest radius of curvature that can be
measured is slightly smaller than the focal length of the second lens. All components
in the interferometric arrangements have to be of high quality so/as not to introduce
their aberrations into test results. Likewise, two collimating lenses in these applica-
tions have to be very good. Nowadays with the use of computers, their designs are
analyzed and optimized as classroom examples. Malacara (1965b), among others,
proposed several early designs.

Another application of the interferometer is for the determination of the refractive
index of nearly parallel plates of glass or liquids contained in a parallel-sided glass
cell. The basic arrangement is similar to the one shown in Figure 4.34, where we use
two well-corrected lenses to obtain the sharp and well-corrected focal point. The
second lens is adjusted for the positions corresponding to the two retroreflecting
situations from the two faces of the parallel plate as shown in Figure 4.39. The
difference between the two positions is ¢/N, where ¢ is the thickness of the plate and
N is the refractive index. If the thickness of the plate is independently measured, the
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FIGURE 4.39. Schematic for the determination of the refractive index of a parallel plate.
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FIGURE 4.40. Lateral shearing interferometer utilizing a thin parallel plate at the point of convergence.

refractive index is determined easily. It is possible to determine the refractive index to
five significant digits. Some inaccuracies may arise from the aberrations of the
parallel plate and also from the temperature dependence of the index of refraction.

A very small, thin parallel plate (Tanner, 1965) may be used at the focal spot of the
system as illustrated in Figure 4.40. Laser light is collimated by the first lens, and
after leaving sufficient space in the collimated region, the light is again focused by
the second lens. At a position very close to the focus, a thin glass plate is inserted at
about 45° angle of incidence. As can be easily seen from Figure 4.41, it is not
possible to obtain pure lateral shear because of the longitudinal separation between
the two images, reflected from the two surfaces of the plate. Even for a well-corrected
optical system, the lateral shear fringes are slightly curved as shown in Figure 4.42.
Ideally, this system requires an extremely thin plate of glass with a wedge between
the surfaces. Alternatively, the system may be made in the form of an air wedge. Even
then only a very limited amount of lateral shear is generated. It is often the system of
choice in large aperture wind tunnel applications, homogeneity measurements, and
so forth, shown in Figure 4.43.

Griffin (2001) proposed the use of liquid crystal to fill the gap between two glass
plates in a plane parallel configuration. This introduces a region of phase-shifted
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FIGURE 4.41. Ray diagram indicating that pure lateral shear cannot be obtained when the thin glass
plate is located at the focus.
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FIGURE 4.42. Typical appearance of the lateral shear fringes in interferometer shown in Figure 4.40.

shear that may be easily controlled. Chang et al. (2002) raised concern that the
amount of phase shift is actually not completely repeatable. It possibly offers the
source of error upon introduction of unknown phase shift.

Suhara (2002) used a wedge with gap to measure the distribution of the index of
refraction in plastic lenses, by additionally performing computational tomography.
One very important application of the lateral shearing interferometer incorporating a
wedge is in vivo measurement of tears and artificial tears in human eye. Lechna-
Marczynska et al. (1999) were the first to use a simple wedge to perform such
measurements. Dubra et al. (2004, 2005) recently took up this work. They used
double lateral shearing interferometer, also referred to as a three-dimensional shear-
ing interferometer to profile tear surface.

When the wedge moves in the direction along one of its prismatic surfaces, the
optical path of the incident beam changes, that is, the wedge thickness as seen by
the ray changes. This feature may be used to introduce the phase change into the
wavefront by moving the wedge. The controlled introduction of the phase change
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FIGURE 4.43. Schematic arrangement of the parallel plate interferometer for large aperture wind-tunnel
applications.
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FIGURE 4.44. In a modification of the parallel plate interferometer for convergent or divergent
wavefronts, an off-axis section of plano-concave divergent lens is used instead of the plate.

facilitates the phase reconstruction without the need for an expensive piezoelectric-
mounted mirror. Lee et al. (2003) added an additional degree of freedom to the
prisms in the vectorial-shearing interferometer by moving one prism with respect to
the other along their common hypotenuse. Song et al. (2004a, 2004b) simplified this
interferometer to introduce a controlled amount of phase by moving a wedged mirror.

More recently, Mehta et al. (2005a) proposed a lateral shearing interferometer
incorporating a slightly wedged plate to design a versatile system to measure distance
with an extended range of measurements and improved resolution. Mehta et al.
(2005b) used the same wedge plate setup with two-wavelength fringe projection to
develop a three-dimensional profilometer.

The plane parallel plate interferometer may be modified to obtain lateral shear in
the divergent or convergent beam (Malacara et al., 1975). As sketched in Figure 4.44,
an off-axis divergent lens section replaces the plane parallel plate. These modifica-
tions introduce a certain amount of radial shear in addition to the desired lateral shear,
limiting its applications.

Schwider (1980) modified the plane parallel plate interferometer to make possible
the fringe generation with white light. His method, called superposition fringe, is
based on the chromatic compensation by means of a Fabry-Perot interferometer,
placed in the collimated beam entering the shearing plate. This shearing plate is
really formed by two plates, like in Figure 4.35.

4.8. OTHER TYPES OF LATERAL SHEARING INTERFEROMETERS

The shearing interferometers considered so far employed the beam-dividing surfaces
to divide amplitude. This was accomplished by covering the surface with a semire-
flecting coating or by relying on reflection at the air-glass boundary.

There exist other types of interferometers to generate lateral displacement where
additional optical principles are employed. Interestingly, the first type of shearing
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interferometer was based on this alternate technology. We treat these briefly here
because some of them are discussed in more detail in other chapters.

4.8.1. Lateral Shearing Interferometers Based on Diffraction

We consider a convergent beam incident normally to the transmission-type diffrac-
tion grating with a periodicity d. The beam converges on the point on the grating
plane. Let the cone half-apex angle of the converging beam be «. Using the formula
for the diffraction grating, we may give the direction of the central ray in the first-
order beam, 0, also known as the angle of diffraction, by

A
in0 =—. 431
sin 7 (4.31)

With proper choice of grating period d, related to the other experimental parameters,
the zeroth- and the first-order beams overlap, as sketched in Figure 4.45. For
diffraction gratings with zero-one transmission profile, higher order beams are also
present. Their peak beam irradiance decreases with the increasing diffraction order,
diminishing visibility of their fringe patterns.

By tailoring their transmission profile, it is possible to manufacture gratings that
transmit only the zeroth- and the first-order beams. The aberrations of the original
wavefront are preserved in the zero-order and first-order beams for moderate
diffraction angles. It is considered convenient that both order beams remain sepa-
rated so that only two-beam interference pattern is generated (rather than three or
more). To satisfy these requirements, the following condition needs to be met:

0> (4.32)

FIGURE 4.45. Typical appearance of a Ronchi interferogram when a grating with proper spacing is
chosen for the Ronchi “grating”. Two first order beams just touch each other and pass through the center of
the zeroth order beam.
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This expression may be rewritten in terms of grating distance d as

d < 22(f-number). (4.33)

Under optimal conditions, the beam circumferences barely come in contact, as
illustrated in Figure 4.45. These interferograms are named after their inventor,
Ronchi, who also lent his name to the optimized interferometric configuration.
Then the equality is applicable in expression (4.33). The choice of grating period
depends on the f~number of the optical system. For example, by choosing a system
with f-number = 5 and the wavelength A = 0.5 pum, the value of 5 pm results for the
grating period d. Hence a grating having 200 rulings per millimeter must be used in
this application.

The grating interferometer is also white-light compensated. In principle, ordinary
light sources may be employed provided that a pinhole of proper diameter is used to
limit the source size. It is quite convenient to use the grating interferometer with a
laser source.

The existence of laser source makes it possible to fabricate gratings with several
periodicities. This is easily accomplished by recording interference fringes between
plane waves incident from different directions. The angle between the plane wave-
fronts is changed to obtain several periodicities. This type of interferometer is due to
Ronchi (1923). Among his many publications, an extensive review of the subject
(Ronchi, 1964) provides an excellent summary of his work.

A lateral shearing interferometer incorporating two gratings may be used to
optically address the spatial light modulator, which in turn shapes the output beam
of the Nd:YAG continuous laser beam (Scholl, 1980). Wattellier et al. (2002)
describe the setup to measure and shape the laser beam in the spatial frequency plane.

In order to avoid multiple beam interference, a convenient amount of lateral shear
is equal to about half the diameter of the beam. In all other shearing applications, this
is actually considered a relatively large amount of shear. However, with a single
grating, it is not possible to obtain a lesser amount of lateral shear without confusion
of three-beam overlap and interference in the spatial domain.

This could be perceived as a restriction only when working in the spatial domain.
With the wide-spread employment of the Fourier techniques in optics, especially for
the spatial filtering, overlapping beams in the space are easily separated in the Fourier
domain. While noise in multiple beam interference adds somewhat to the computa-
tional load, Velghe et al. (2005a, 2005b, 2005¢) demonstrated that multiple beams
may be allowed to overlap in shearing configurations.

Wyant (1973) devised a double-frequency grating to implement a small amount of
shear. This is accomplished by using a grating with two distinct frequencies recorded
on it. The lower frequency is chosen so that the zeroth- and first-order beams are
physically separated. The higher frequency part of the grating gives rise to two first-
order beams that are sheared with respect to the other first-order beams. The multiple
beam geometry and their overlap are indicated in Figure 4.46.

Shear in tangential and sagittal direction are generated simultaneously by insert-
ing two gratings: the original one and the second one that is identical and orthogonal
to the first one. Figure 4.47 presents the geometrical layout of the central
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FIGURE 4.46. Typical geometry of the original and the diffracted apertures when a double frequency
grating is used.

zeroth-order, flanked by eight first-order beams, two of each in shearing configura-
tion. Figure 4.48 is a photo of a typical lateral shearing pattern of a converging
wavefront when two identical double-frequency gratings are orthogonal to each other
and in contact. It includes a uniform zero-order beam and four sheared interfero-
grams. The horizontal first-order beams are sheared in horizontal direction, the
vertical ones along the vertical direction. The two orthogonal double-frequency
gratings may be recorded on the same photographic plate.

Rimmer and Wyant (1975) developed a technique to obtain variable shear with
two crossed gratings of the same frequency. A small rotation of one grating gives rise
to shear that changes with the magnitude of rotation angle and rotation arm. It is a
first-order approximation to the rotationally shearing interferometer (see also Scholl,
1996; Strojnik and Paez, 2003). Figure 4.49 shows the distribution of beam apertures

0-ORDER

FIGURE 4.47. Multiple-beam geometry and beam overlap obtained with two double-frequency grat-
ings. Lateral shear of the first-order beams is obtained simultaneously in the sagittal and tangential
directions. The zero-order beam does not participate in the formation of the interferometric pattern.
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FIGURE 4.48. A photo of the typical set of interferograms obtained with a double-frequency grating.
The zero-order beam presents a uniform field and two interferograms are repeated (from Wyant, 1973).

Rotation angle of one
crossed grating with
respect to the other.
This can be varied to
change the shear

FIGURE 4.49. Beam distribution and beam overlap in the interference plane produced by two crossed
gratings of the same frequency. They are in contact with each other to produce simultaneous lateral shear in
tangential and sagittal directions. One grating may be rotated with respect to the other to vary the amount of
shear (from Wyant, 1973).
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that may be compared to those of Figure 4.47. This system is helpful for implement-
ing variable shear. This method could be applied this method in a null test of an
aspheric surface.

Joenathan et al. (1984) developed a variation of the double-frequency grating
interferometer using two slightly displaced off-axis zone plates.

Schwider (1984) described another lateral shearing interferometer with a con-
tinuously varying amount of lateral shear. The shear is obtained with two diffraction
gratings in a collimated beam, one after the other, forming an angle between them.
The interference takes place between the beam with zero-order in the first grating and
first-order in the second grating and the beam with first-order in the first grating and
zero-order in the second grating.

Since 1990s, the dimensions of the lithographic masks and the intensity distribu-
tions over them have been pushed to the limit due to their increasingly small size and
the absence of adequate testing equipment in the deep ultraviolet (UV) region at 193
nm. Lateral shearing interferometers with Ronchi gratings have been demonstrated
to perform well even in this spectral region. Hegeman et al. (2001) describe an
improved Ronchi setup with gratings modified to higher order beams. Fiitterer et al.
(2002) implemented the double grating interferometer working at 197 nm for phase
shift mask measurement. A few years later, Fiitterer and Schwider (2005) developed
detailed error analysis to confirm the performance of this instrument.

At about the same time, a group in Japan applied this technology to evaluate the
quality of the projection lens in extreme ultraviolet spectral region (EUV). Zhu et al.
(2004) estimated the measurement precision of 0.1 nm RMS at 13.5 nm wavelength.
These authors estimated a year later (Zhu et al., 2005) that equally high performance
may be achieved using the lateral shearing interferometer with a grating as for the
point diffraction interferometer. Liu et al. (2005) develop a novel technique to calibrate
a double grating lateral shearing interferometer for EUV optics.

4.8.2. Lateral Shearing Interferometers Based on Polarization

A birefringent material gives rise to two orthogonally polarized beams when a beam
of unpolarized light is incident on it. These orthogonally polarized beams do not form
an interference pattern because they are mutually incoherent. The situation changes
for the polarized light when the resulting orthogonally polarized beams are mutually
coherent. They produce observable fringes upon interfering.

There exist many types of polarizing prisms that generate two orthogonally
polarized beams from a plane polarized incident beam. The Wollaston prism is
among the popular ones for use in the lateral shearing interferometers. (Interferom-
eters incorporating such double-image prisms are treated in detail in Chapter 3 of the
present volume). Murty and Shukla (1980), and Komissaruk and Mende (1981)
described examples of this kind of interferometer using a liquid crystal wedge as a
polarizing element.

Saxena (1979) described an interesting interferometer employing a Babinet
compensator as indicated in Figure 4.50. This interferometer is similar to the one
described in Chapter 3 on common-path interferometers, incorporating a Wollaston
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FIGURE 4.50. Interferometer incorporating a Babinet compensator to produce sheared beams.

compensator in double pass. Here, a Babinet compensator introduces the amount of
lateral shear S, given by

S =2R(N. — N,) tan . (4.34)

Here R is the radius of curvature of the concave surface under test, N, and N, are the
extraordinary and ordinary refractive indices, respectively, and o is the compensator
wedge angle. A typical Babinet compensator may be made from quartz
(N. = 1.553305 and N, = 1.544195) and with wedge angle o = 7.5°.

If the Babinet compensator between two Polaroids is observed with a microscope,
a pattern of straight, parallel, and equidistant fringes is observed, resembling a
Ronchi ruling. The two important differences are that (a) the profile of the pattern
is sinusoidal and (b) any two contiguous bright lines have relative phase difference of
180°. A slit separation in the Ronchi ruling, producing the same interference pattern,
is equal to the separation of two lines with the same phase. For the compensator
parameters listed above, the slit separation is equal to 110 lines per inch.

Saxena and Jayarajan (1981) and Saxena and Lancelot (1982) further improved
this interferometer by incorporating two crossed Babinet compensators, doubling its
sensitivity. The sensitivity of the interferometer to azimuthal variations in the
compensator orientation is reduced, at the same time.

The layout of two crossed Babinet compensators is illustrated in Figure 4.51. Two
compensators produce mutually orthogonal lateral shears. Thus, the condition for the
fringe maximum (white fringe) is described by the following relations:

ow oW

Here W is the wavefront deformation, including defocusing and tilts, and S and T are
two orthogonal shears.

Two compensators may be placed in close contact to each other, but they may
also be separated by a small distance d. In this case, the defocusing term will be
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FIGURE 4.51. The layout of two crossed Babinet compensators. Two compensators produce mutually
orthogonal lateral shears.

different for each one of two orthogonal lateral shears. Then, if the defocusing is
referred to the point in the middle between the compensators, the expression for the
fringe pattern becomes

ow d ow d

In this case, the fringes for spherical aberration become S-shaped, similar to those
displayed in Figure 4.7.

A polarization phase shifter incorporating a birefringent plane parallel plate may
be used to measure an aspherical surface. Weijers et al. (1998) present a simple
calculation for ray propagation through uniaxial, birefringent element. Its inherent
aberrations are derived. The method is used to record directly phase-shifted inter-
ferograms as needed for the interferogram evaluation and phase reconstruction.

Begbie et al. (2001) performed a rigorous analysis using Mueller matrices to
evaluate the state of polarization necessary to eliminate fringe ambiguity.

4.9. VECTORIAL SHEARING INTERFEROMETER

The vectorial shearing interferometer is a lateral shearing interferometer where a
displacement may be chosen along the most favorable direction. It generates a direct
derivative of the wavefront, easily integrable with the method of line integration,
developed and optimized by Paez and Strojnik (1997, 1998). It is applicable to testing
and reconstruction of decentered wavefronts with very high fringe densities. See
Paez and Strojnik (1999) and Paez and Scholl (2000).

Its implementation for the testing applications may be based on the Mach-
Zehnder configuration by incorporating the displacement shearing system. In the
original implementation of this device, it is composed of a pair of wedge prisms that
modify the optical path difference and the tilt of the sheared wavefront with respect
to that of the reference wavefront. The variable shear and tilt may be implemented
along any direction, by choosing appropriate displacements Ax and Ay. The number
of fringes and their orientation may be controlled with the shear direction and its
magnitude. A gradient of the phase function is obtained in any direction with the
knowledge of the displacements in the x and y directions.
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4.9.1. Shearing Interferometry

The interest in detecting fainter sources and smaller details has, in the recent years,
fostered the development of large diameter optical systems, including those with
segmented and diluted primaries. These configurations usually require the fabrica-
tion and figuring of the relatively large diameter off-axis optical elements. Testing is
very difficult because the common established interferometric techniques, in general,
require the existence of a well-formed reference component. Thus, the optical
designs that are to be fabricated require the availability of appropriate test compo-
nents and supplies.

In the shearing interferometers, the amplitude of the wavefront under test is split
into two parts: one half is left unchanged, while a key parameter is modified in the
other half. The most significant feature of the shearing interferometers is that they do
not require a reference wavefront, because the wavefront under test is compared with
itself. Those portions of the wavefronts that maintain the same polarization are
recombined in the detection plane, where they form an interference pattern. There
exist three basic types of shearing interferometers: the lateral, the radial, and the
rotational. The wavefront inversion interferometer has been shown to be a special
case of the rotational-shearing one, with a shearing angle of 180°.

We have recently developed an interferogram interpretation method that allows
phase reconstruction even from very high-density fringe patterns. The input to the
algorithm is the vectorial derivative of the phase function. Therefore, the shearing
interferometry is a particularly useful way of recording the input intensity data,
avoiding the noise increase, exhibited when taking derivative of noisy data. In a
(displacement) shearing interferometer, the phase derivative along the shear direc-
tion is the measured quantity. One of its salient characteristics is that the derivative is
taken along a single direction. We developed a new type of interferometer, where a
derivative is taken along an arbitrary direction, under the operator’s control. The
known incremental displacements in the two perpendicular directions, Ax and Ay,
allow the determination of a two-dimensional derivative of the phase function along
the direction. The wavefront its replica displaced along vector Ar, and a representa-
tive interferogram, are illustrated in Figure 4.52, for the coma.

The possibility of taking a derivative along a specific direction is most beneficial
when testing asymmetrical components, where the fringe density in one direction is
extremely high, forming the moiré patterns where no phase has been recorded. This is
particularly useful when employing the method of phase reconstruction upon the
line-integration of its gradient.

With the possibility of choosing the path of the line integral, this may always be
selected along a favorable direction. In fact, upon employing a line integral, a two-
dimensional problem has been changed into that of a single dimension. As will be
shown later on, one of the outstanding features of the vectorial shearing interferom-
eter is that the fringe density is controllable with the amount of shear.

A general wavefront may be expressed in coordinate system erected in the exit
pupil. Upon applying the symmetry considerations relevant to the testing of symme-
trical optical systems, the aberration polynomial in polar form may be written as a
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FIGURE 4.52. The original, the modified wavefronts, and the interferogram in the vectorial shearing
interferometer with the displacement or shear performed along an arbitrary direction.

simple polynomial, expanded up to the fourth power in the radial coordinate. On the
right side, we identify the terms in the wavefront aberration function with the primary
aberrations.

W(p,¢) =F Piston term
+ Ep(sin¢g + cos ) Tilts (x,y)
+ Dp? Defocus
+ Cp*(1 4 2cos® ¢) Astigmatism (4.37)
+ Bp® cos ¢ Coma
+ Ap* Spherical aberration

The vectorial shearing interferometer is a generalized displacement (position) or
linear shearing interferometer along an arbitrary direction, with respect to the
coordinates defined by the detector pixel arrangement. The magnitude and direction
of shear is kept under the operator control. The tilt introduced in one arm of the
interferometer upon the prism rotation is similarly maintained under the operator
control. However, the two are mutually dependent in the initial embodiment.

4.9.2. Directional Shearing Interferometer

In a lateral shearing interferometer, the wavefront displacement or shear is performed
along a single direction, referred to as x or y. The region of the wavefront overlap is
reduced upon increasing the shearing distance. We modified a Mach—Zehnder
arrangement to implement our vectorial shearing interferometer. We cannot affirm
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though this is either the only way or the best method of doing so. Paez et al. (2000)
designed and built this interferometer. Garcia-Torales et al. (2001) analyzed it later
on. Most recently, Garcia-Torales et al. (2006) and Ramirez et al. (2007) have applied
it to the testing of asphericity of spheres.

As may be seen in Figure 4.52, the region of interference is the common area of
overlap of the two wavefronts. This figure additionally illustrates the displacement
vector Ap, the net directional displacement of the sheared wavefront with respect to
the position of the original wavefront, as defined by its center. The displacement
vector Ap subtends an angle 0 relative to the x axis. We can select the size of the area
of overlap of the two wavefronts by the proper choice for the incremental displace-
ments Ax and Ay in the shearing vector.

Figure 4.53 shows the schematic diagram of the experimental setup for the
implementation of the vectorial shearing interferometer in the Mach—Zehnder con-
figuration, including the shearing and the compensator systems. This setup might be
used in transmission mode to test a lens, placed inside the beam just before the first
beam splitter. The shearing system, consisting of two thin prisms, displaces the
wavefront according to the angles of rotation of each prism (Strojnik et al., 2000,
Garcia-Torales et al., 2002). In the detector plane, the two beams are detected
forming an interference pattern.

A compensator system, in the form of a pair of fixed prisms, identical to those that
constitute the rotator system may be introduced into the reference arm. Due to the use
of the compensator system in the reference arm, the interferometer is white-light
compensated.

The new position of the center of the displaced wavefront is a vector sum of
individual displacements produced by the independent rotation of each prism.
The wavefront orientation remains the same. When both prisms are fabricated
from the same material and they rotate in the air, the rotation of each individual
prism generates the same angular deviation. In the image plane, the beam angular
deviation is transformed into distance. The total deviation of the ray traversing
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FIGURE 4.53. The experimental setup with the vectorial shearing interferometer for testing a positive
lens in transmission.
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the shearing system is a function of the individual angular deviations (Sandoval et al.,
2001).

Additionally, the shearing system introduces the tilt in the wavefront with respect
to the y-z plane, the x-z plane, or both. Once the prism materials and optical
parameters are chosen, the tilt may be controlled with the amount and direction of
rotation of the prisms. With the tilt change, the shear is also modified, as both are
controlled by the action of the beam rotator. When only the prism separation is
changed without modifying the relative angle between them, lateral shear in an
arbitrary direction may be changed in magnitude without introducing any tilt.
This configuration has been found most helpful in flame characterization studies
(Paez and Strojnik, 2006).

A sagittal shift might correspond to the displacement in the x direction and the
tangential one to that in the y direction. We may write the optical path difference,
OPD, using the difference of the wavefront aberration polynomials,

AOPD = W(p + Ap, 0+ AG) — W(p, 0). (4.38)

The shearing radius vector Ap and the shearing angle 0 are found upon the change of
coordinates

, A
p = (Ax*+Ay)", 0= arctan (Ay> (4.39)

X

Next, we show the interferometric patterns simulated for a vectorial shearing inter-
ferometer and compare them with the familiar patterns obtained in the traditional
interferometers.

4.9.3. Simulated Interferometric Patterns

We use Eqgs. (4.37) and (4.38) to simulate interferometric patterns that arise from
the presence of the primary aberrations. In each case, 4 waves of defocus are added.
The resultant simulated patterns are shown for 2.5 waves of spherical aberration in
Figure 4.54, for 3 waves of astigmatism in Figure 4.55, and for 7 waves of coma in
Figure 4.56. Figure 4.57 depicts a mixture of aberrations. It is included to facilitate
the comparison with the experimental results.

The simulation results of Figures 4.54 through 4.57 are presented in an array of
three columns by four rows. The intensity distributions are given inside a normalized
square with corners at =1, whose center coincides with the central point on the
original wavefront.

The regions where the (finite) pupils do not overlap are not indicated, including
only the essential information in the figure. The columns show the simulated
interferograms for the following positions, from left to right: (a) inside focus
(with —4 waves of defocus), (b) in the focus, and (c) outside focus (with +4 waves
of defocus). The first row presents the interferometric pattern simulated for a
Mach—Zehnder interferometer to help us recollect its familiar form. The second
row illustrates the patterns obtained in a linear shearing interferometer along the
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FIGURE 4.54. Simulated intensity patterns of the spherical aberration (2.5 waves) and defocus ((a)-4
waves and (c) +4 waves) are given for the Mach—Zehnder interferometer; the linear shearing interferometer;
twice in a vectorial shearing interferometer; first with a large radius vector pointing to the third quadrant and
second with a small radius vector pointing to the fourth quadrant.

x direction to facilitate comparison with the familiar results. For this case, the
displacement radius vector is p = 0.3 and the displacement angle is 6 = mrad.

The last two rows show the results for the general vectorial displacements of
p = 0.632 and the displacement angle 0 = 0.322 rad (the third row), and p = 0.361
and the displacement angle 0 = 5.695 rad (the fourth row). The center of the sheared
wavefront is translated by the magnitude of the displacement radius vector p along
the direction 0 with respect to the origin at the center of the square pupil. We discuss
each figure in more detail.

Figure 4.54 shows the simulated interferometric patterns when +4 waves of
defocus and no defocus are added to 2.5 waves of spherical aberration. The second
row presenting the intensity patterns of lateral shearing interferometer is in agree-
ment with the patterns presented at the beginning of this chapter. It confirms the
general reliability of our simulations. The fringe patterns outside focus appear as
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FIGURE 4.55. Simulated intensity patterns of the astigmatism (3 waves) and defocus ((a)-4 waves and
(c) +4 waves) are given for the Mach—Zehnder interferometer; the linear shearing interferometer; twice in a
vectorial shearing interferometer; first with a larger radius vector pointing to the third quadrant and second
with a smaller radius vector pointing to the fourth quadrant.

those generated by the coma in a Mach—Zehnder interferometer. The fringes due to
the spherical aberration detected outside the focus appear similar to those in a linear
shearing interferometer, except that they are tilted with respect to those generated
upon a one-dimensional shear and their origin is displaced.

The coma pattern of the shearing setup is flattened out as the amount of defocus is
decreased in all shearing cases. Additionally, the fringe density increases with the
shearing radius vector. This feature may be employed to vary the instrument
sensitivity by adjusting the prism rotation angles. We can define an axis of symmetry
to be vertical in the linearly sheared interferogram in the second row. Thus, the fringe
patterns, or the line of symmetry, are rotated in the case of a vectorial shearing
interferometer with respect to this line of symmetry. The amount of rotation is related
to the shearing angle 6. The position of the fringe center also remains under the
operator’s control: the fringes are displaced in the direction opposite to that of the
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FIGURE 4.56. Simulated intensity patterns of the coma (7 waves) and defocus ( =4 waves) are given for
the Mach—Zehnder interferometer; the linear shearing interferometer; twice in a vectorial shearing inter-
ferometer; first with a larger radius vector pointing to the third quadrant and second with a smaller radius
vector pointing to the fourth quadrant.

displacement vector Ap. The angle 6 remains the same when the increments along
the x and the y directions maintain the same ratio, even when the net displacement Ap
changes.

Figure 4.55 displays the simulated interferometric patterns when £4 waves of
defocus and no defocus are added to 3 waves of astigmatism. In the linear shearing
interferometer, the presence of astigmatism is recognized by the appearance of the
straight fringes normal to the shear direction.

The fringes obtained upon the application of a general vectorial shear are inclined
with respect to those of the linear shear. Their inclination, though, depends on
the amount of defocus. The fringe direction appears to be reversed for a certain
outside focus position, where the defocus and the astigmatism compensate each
other. The number of fringes decreases with defocus. The number of fringes increases
with the displacement radius vector for any defocus condition.
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FIGURE 4.57. Simulated interferometric patterns produced by the sum of the spherical aberration,
the astigmatism, the coma, and defocus (+4 waves) are given for the Mach—Zehnder interferometer;
the linear shearing interferometer, twice in a vectorial shearing interferometer; first with a larger
radius vector pointing to the third quadrant and second with a smaller radius vector pointing to the fourth
quadrant.

Figure 4.56 depicts the simulated interferometric patterns when +4 waves of
defocus and no defocus are added to 7 waves of coma. The shape of the patterns seen
in the second row is astigmatism-like, corresponding to those recorded in the linear
shearing interferometer. Defocusing is observed to move the astigmatism-like pat-
tern up and down, perpendicular the shear direction.

For the two generalized shearing cases in the last two rows, we observe the
deformed astigmatism-like patterns corresponding to the two familiar astigmatism
patterns: the X-shaped one and the 0-shaped one. The great advantage of the variety
of available patterns is that one can choose an intensity distribution that is more
easily amenable to the phase reconstruction. When moving from inside the focus to
the outside position, the patterns appear to move along two diagonals.
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Figure 4.57 illustrates the simulated interferometric patterns produced by the sum
of the spherical aberration, the astigmatism, the coma, and defocus (£4 waves). All
the interferometric patterns generated with the vectorial shearing interferometer
exhibit the fringe movement out of the center of the reference beam. The fringe
pattern tends to rotate in the direction opposite to that of the displacement vector. The
fringe density increases with the magnitude of the shearing vector.

4.9.4. Experimental Results

Here, we illustrate the feasibility of the identification of the type and amount of
aberration. Figures 4.53 and 4.58 illustrate two of a number of available experimental
setups that we used to record the interferograms with the vectorial shearing inter-
ferometer in the modified Mach—Zehnder configuration. The first arrangement is
used for testing a wavefront in transmission, and the second one in reflection. Even in
the laboratory environment, it is possible to achieve very small, differential, dis-
placement as well as a small, but finite one.

A photograph of a pair of beam director prisms is demonstrated in Figure 4.59.
The thin prisms are mounted in their rotary holders to control the orientation of each
prism and their separation. A photograph of the essential parts of the compact
vectorial shearing interferometer is included in Figure 4.60. It presents the wavefront
director in one arm and the optical path compensator in the other one. The source
could be incident from the left beam, horizontally. Then fringes are formed on the
right (see Figs. 4.53 and 4.58). A high resolution CCD camera on the right records
images.

An example of the experimental setup with the vectorial shearing interferometer
used for testing a positive lens upon transmission has been seen in Figure 4.53. The
experimentally obtained interferometric patterns of the lens with the (a) small and
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FIGURE 4.58. The experimental setup with the vectorial shearing interferometer for testing a (para-
bolic) mirror in reflection.
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FIGURE 4.59. A photograph of a pair of beam director prisms. The thin prisms are mounted in their
rotary holders to control the orientation of each prism and their separation.

FIGURE 4.60. A photograph of the essential parts of the compact vectorial shearing interferometer
illustrates the wavefront director in one arm. The source beam could be incident from the left side,
horizontally. Then fringes are formed on the right (and above) of the beam divider (see also Figures 4.53
and 4.58). A high resolution CCD camera records the fringe pattern.
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(b)

FIGURE 4.61. The experimentally recorded interferometric patterns of the lens for (a) the infinitesi-
mally small and (b) the small, but finite shearing distance obtained with the vectorial shearing interferometer
used in transmission.

(b) large shearing distance, respectively, are shown in Figure 4.61. In spite of the use
of the transmissive elements, this configuration is not affected by the ghost
reflections. The prisms in both the shearing and compensator systems deviate the
undesirable reflections out of the beam path of the wavefront under test.

Figure 4.58 has presented the experimental setup with the vectorial shearing
interferometer used for testing a parabolic mirror in reflection. The experimentally
obtained intensity patterns of the parabolic mirror for the (a) small and (b) large
shearing distance, respectively, are depicted in Figure 4.62.

(b)

FIGURE 4.62. Theexperimentally obtained interferometric patterns of the lens for (a) the infinitesimally
small and (b) small, but finite shearing distance obtained with the vectorial shearing interferometer used in
reflection.
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4.9.5. Similarities and Differences With Other Interferometers

We conceptualized, predicted, and demonstrated the performance of a new type of
shearing interferometer, with the significant capabilities of controlling the amount
and the direction of the displacement shear. The vectorial shearing interferometer
may be based on the Mach—Zehnder configuration by incorporating the displacement
shearing system. The shearing system is composed of a pair of wedge prisms that
modify with a high degree of precision the optical path difference and the tilt between
the sheared wavefront and the reference wavefront.

The use of small apex-angle prisms decreases the number of ghost beams within
the interferometer and the amount of straight light incident on the detector plane.
While it is believed that some limited version of the generalized linear shearing
interferometer may be implemented with a single prism, we prefer the implementa-
tion with two prisms, due to the enhanced control and the range of wavefront
positioning. Due to the knowledge of the displacement increments along two
perpendicular axes, the measured quantity is indeed a directional derivative of the
phase function. This allows complete phase recovery in two dimensions. The vari-
able shear and tilt, that may be implemented along any other direction, have the
particular beneficial characteristics that the number of fringes and their orientation
may be controlled with the shear direction and its magnitude.

Xu et al. (2005) proposed an implementation of a compact vectorial shearing
interferometer that allows phase shift by moving prisms along the beam normal. This
represents a significant simplification of its layout. With only four thin prisms,
shearing is accomplished along an arbitrary direction, and phase stepping is achieved
without incorporating a movable mirror on a piezoelectric mount. The range of
displacement is also large.

All the interferometric patterns generated with the vectorial shearing interferom-
eter exhibit the fringe movement out of the center of the reference beam. We may
define the angle of rotation of the fringe pattern to be the angle between the normal to
the fringes when the shearing angle 6 is zero, and when the shearing angle 6 has a
finite value. Its algebraic sign is opposite to that of the shearing angle 6. Fringe
density increases as the magnitude of the shearing vector is incremented.

Figure 4.63 illustrates that the fringe orientation is under the control of operator.
This may be accomplished upon changing the orientation of both prisms simulta-
neously, without changing their separation or relative orientation. If part (a) is the
reference pattern, the fringes are displaced (b) up, (c) down, (d) left, and (e) right using
a pair of prism with an index of refraction n, of 1.517, and the apex-angle ¢ = 5°.

Figure 4.64 presents results of a study between the fringe density and the relative
prism orientation. Fringe density increases as the difference angle between prism
orientation increases from (a) 0.5°, (b) 0.7°, (c) 1.3°, (d) 1.5°, and (e) 1.6°. Prisms
with index of refraction N = 1.517 and apex-angle ¢ = 5° are used.

The versatility and adaptability of the vectorial shearing interferometer with
variable shear and tilt are best appreciated upon examining the experimental results
depicted in Figure 4.65. The interferometric patterns are obtained in transmission
with a commercial interferometer (WYCO), on the left, and the vectorial shearing
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FIGURE 4.63. Fringe orientation is selectable by changing the orientation of both prisms simulta-
neously, without changing their separation or relative orientation. Using part (a) as the reference pattern,
the fringes are displaced up (b), down (c), left (d), and right (e). We are using a pair of prisms with an index of
refraction N, of 1.517, and the apex-angle ¢ = 5°.

interferometer, on the right part (a) display, well-corrected convex lens with a focal
length f = 30 cm and diameter D = 5 cm. In part (b), the difference of the interfer-
ograms of a low-quality lens with focal length f = 25 cm and diameter D = 7cm
favors the one on the right. In both cases, the interferogram on the right recorded with
the vectorial shearing interferometer is obtained with favorable fringe density.
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FIGURE 4.64. Fringe density increases as the difference angle between prism orientation increases from
(a)0.5°, (b)0.7°, (c) 1.3°,(d) 1.5°, and (e) 1.6°. Prisms with index of refraction N = 1.517 and apex-angle
& =5° are used.
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(b) A low-quality lens with focal length f =25 cm and diameter D = 7 cm.

FIGURE 4.65. The interferometric patterns obtained in transmission with a commercial interferometer
(WYCO) on the left, and the vectorial shearing interferometer on the right. (a) Interferograms of a well-
corrected convex lens with a focal length f = 30 cm and diameter D = 5 cm. (b) Interferograms of a low-
quality lens with focal length f = 25 cm and diameter D = 7 cm.
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5

Radial, Rotational, and Reversal
Shear Interferometer

D. Malacara

5.1. INTRODUCTION

The two interfering wavefronts in a two beam interferometer can have several
possible relative orientations and sizes with many different configurations. As
pointed out by Steel (1983) and by Walmsley and Malacara (1995), the first order
properties of these two beam interferometers can be completely described by

(a) the light source position and the location, orientation, and size of the two
images of this light source as seen from the observation plane;

(b) the image plane position and the location, orientation, and size of the two
images of this observation screen as seen from the light source position; and

(c) the optical path difference between the two optical paths.

These parameters completely define the lateral shear, tilt, and lead. The shear is
the relative lateral displacement of the two interfering wavefronts and shift is their
longitudinal separation. The tilt is the lateral separation of the two images of the light
source and the lead is their longitudinal separation. A fifth independent parameter is
the optical path difference (OPD), which is a function of the traversed refractive
indices. These parameters are illustrated in Figure 5.1. The main properties of all
shearing interferometers can be analyzed by these parameters.

Although the most popular shearing interferometer is the lateral shearing instru-
ment, other types are equally useful. In this chapter we examine radial, rotational,
and reversal shear interferometers, whose basic wavefront operations are illustrated
in Figure 5.2. Many review papers (Murty, 1967; Briers, 1972; Fouéré and Malacara,
1975) and books (Bryngdahl, 1965; Steel, 1966; Baird and Hanes, 1967) have very
good general descriptions of them. The radial shear interferometer produces two
interfering wavefronts with identical deformations, but one of the wavefronts is
contracted or expanded with respect to the other. The rotational shear interferometer

Optical Shop Testing, Third Edition Edited by Daniel Malacara
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FIGURE 5.1. First order parameters for any interferometer.

produces two identical wavefronts with one of them rotated with respect to the other.
The reversal shear interferometer produces two wavefronts, in which deformations
on one wavefront are symmetrical with respect to those on the other wavefront, with a
diameter as axis of symmetry.

For the analysis of these shearing operations, we can assume a completely general
wavefront function given by

n

k
= Z p" (an cos 18 + b, sin 16) (5.1)
n=0 =0

where (n — [) is given (n and [ have the same parity) and generally / < n.

Reference

wavefront
Radially Rotationally Reversally
sheared sheared sheared
wavefront wavefront wavefront

FIGURE 5.2. Three shear possibilities between two wavefronts.



5.2. RADIAL SHEAR INTERFEROMETERS 187

5.2. RADIAL SHEAR INTERFEROMETERS

Radial shear interferometers perform the basic operations illustrated in Figure 5.3.
One of the wavefronts is contracted or expanded with respect to the other. The
interferometer may be thought of as an optical system producing two images of an
object at A, with different magnifications, at the location A’. These two images must
coincide at A’ if a defocusing term is to be avoided.

As described in Chapter 2 on Twyman—Green interferometers, the interferogram to
be analyzed has to be animage of the exit pupil of the system under test, especially when
the wavefront deviations from the spherical shape are large. If the wavefront is almost
spherical, this condition is not necessary. In the case of the radial shear interferometer,
both wavefronts are deformed. Thus, both wavefronts in the interferogram must be
images of the pupil. When the shear is very large, only the smaller wavefront needs to
be animage of the exit pupil of the system. Fortunately, this condition may frequently be
satisfied since, as described by Steel (1984), all radial shear interferometers have a
second pair of conjugates, B and B, as shown in Figure 5.3, with the same shear ratio as
theimages A and A’. Then, ideally, the exit pupil of the system under test must be located
at B and the interferogram should be analyzed at B'.

Steel (1984) also showed that by reversing the direction of the light, a radial shear
interferometer with the same shear is also obtained. Thus, any system may be used in
four ways to produce the same shear.

These types of interferometers directly represent the wavefront deformations
when the shear is large, but even if the shear is small, they are simpler to interpret
than lateral shear interferometers, and unlike them, not only in one, they provide
information in all directions. Then, only one interferogram is needed. Radial and
lateral shear interferometers have been compared in detail by Hariharan (1988).

Instead of the typical approach of using a long-wavelength or two-wavelength
interferometry, the lower sensitivity of radial shear interferometers makes them ideal
for testing wave fronts with a high degree of asphericity because the number of
fringes is smaller.

When the surface under test has a central hole, the shear has to be small, otherwise
the smaller of the two wavefronts would be over the hole of the larger wavefront. This

Radial
shear
interferometer

Wavefront
under test

Radially
sheared
wavefronts

FIGURE 5.3. Schematic block for a radial shear interferometer.
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small shear reduces the sensitivity, but this disadvantage may be compensated for by
the use of phase shifting techniques (Hariharan et al., 1986).

We can assume that one of the wavefronts is expanded so that the ratio of the
diameters of the two wavefronts is R, defined by

R=—- (5.2)

where p is the ratio of the radial distance of a point in the interference pattern to the
maximum radius of the nonexpanded (or smaller) of the two wavefronts. Similarly,
p, 1s the ratio of the same radial distance to the maximum radius of the expanded
(or larger) wavefront.

Then, the wavefront deformation for the larger (noncontracted or expanded)
wavefront is represented by Eq. (5.1) and the wavefront deformation for the smaller
(nonexpanded or contracted) is

k n

W(p,0) => > R"p"(ancosl + by sin6) (5.3)

n=0 [=0

and hence the interference pattern will be given by the OPD,

k n
OPD(p,0) = W(p,0) — W(Rp,0) = Z Zp”(] — R")(ap c0s 10 + b, sin 10)
n=0 [=0

(5.4)

The sensitivity of a radial shear interferometer relative to that of a Twyman—Green
interferometer is given by

k n
np" (1 — R")(ay cos 10 + b, sin 10
_doPD(p,0)/dp _ i (TR o (5.5)
dw(p,0)/d S |
(p,0)/dp S S np"an cos 10 + b, sin 10)
n=0 /=0

but if only one aberration (n, [) is present, the relative sensitivity can be expressed as
0y =1—R" (5.6)

and is plotted in Figure 5.4. for some aberrations. We can see that a moderate
effective radial shear R equal to 0.5 gives a very high relative sensitivity. When
testing aspherical wavefront with pure primary spherical aberration, the radial shear
interferometer provides a reduced sensitivity and an increased dynamic range
equivalent to the use of a larger wavelength.
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FIGURE 5.4. Radially sheared wavefronts used in iterative calculation of the wavefront.

If the expansion of one of the wavefronts becomes infinite (p, — coand p — 0),
we have a kind of radial shear interferometer that is said to have exploded shear. This
topic is treated in the chapter on common-path interferometers.

5.2.1. Wavefront Evaluation from Radial Shear Interferograms

Radial shear interferograms are basically identical to the Twyman—Green interfer-
ograms studied in Chapter 2, especially if only pure primary aberrations are present.
Of special interest are wavefronts with rotational symmetry because they are
obtained during the testing of aspherical rotationally symmetric surfaces, for exam-
ple, an astronomical mirror. The procedure for computing the wavefront from a radial
shear interferogram under these conditions has been given by Malacara (1974) and
by Honda et al. (1987). However, in general, the wavefront is not rotationally
symmetric and even some lateral shear may be present. Then, the wavefront may
be computed by one of three possible methods.

1. The first procedure consists in calculating the a,;, b,; coefficients in Eq. (5.4)
by a least-squares fitting of the OPD (p, 0) to the radial shear interferogram, by
assuming that the wavefront is smooth enough, so that it can be represented by a
polynomial.

2. Another method, described by Kohler and Gamiz (1986) is by successive
iterations. In the first iteration, the reference wavefront (the larger wavefront) is
assumed to be perfectly flat and the interferogram is sampled and fitted to a
polynomial. The result of this evaluation is then used in the second iteration with
a better estimation of the reference wavefront. This procedure produces a very
accurate result, limited only by the sample spacing, reading errors, and the quality
of the wavefront fitting.

3. The third method, described by Kohno et al. (2000) and later in a similar
manner by Li et al (2002) is by an iterative process. From Eq. (5.4) we can obtain

OPD(p, 9) = W(pv 0) - W(va 6)
OPD(Rp,0) = W(Rp,0) — W(R* p, 0) (5.7)
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If we now add all these terms we may write
W(p,0) = > OPD(Rip,0) — W(R"p,0) (5.8)
i—1

If the number of iterations is sufficiently large, the last term becomes a small flat
wavefront whose deformations can be considered zero (see Fig. 5.5). Thus, we finally
obtain

W(p,0) = Z OPD(R'p, 0) (5.9)

5.2.2. Single-Pass Radial Shear Interferometers

In this kind of interferometer, the light goes through the instrument only once and
two radially sheared interfering wavefronts are produced as illustrated in Figure 5.3.
If the interferometer is illuminated by a small, circular extended source, the degree of

coherence g, between any two points on the wavefront is given (Hariharan and Sen
1961a; Murty 1964b) by

81 = W (5.10)

where 2o is the angular diameter of the source as seen from the wavefront under
consideration and d is the distance between the two points on the same wavefront.
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For a radial shear interferometer, the distance d between two points on the

wavefront that interfere at a point on the interference pattern can be shown to be
given by

d=p —p =p'(1-R). (5.11)
Therefore, for those two points we obtain (Hariharan and Sen, 1961a)

o= 2J1[(2n/2)(1 = R)pa]
(2r/2)(1 —R)p'a

(5.12)

Since the visibility of the pattern is directly proportional to g, a fringe pattern
similar to that in Figure 5.6 will be obtained. The first minimum on the visibility is
obtained when the argument x of J; (x) is equal to 1.227. Hence, for a good visibility
of the whole pattern, the circular light source must have an angular semiconductor «,
as seen from the wavefront (entrance pupil of the interferometer), smaller than a
certain value given by

1.224
< 5.13
"0 -RD (5:13)

where D is the entrance pupil diameter.
A radial shear interferometer is said to be compensated for the imperfect mono-
chromaticity of the light (wavelength bandwidth) when the optical paths for the two

FIGURE 5.6. Fringe visibility changes in a radial shear interferometer with a large source. (From
Hariharan and Sen, 1961a.)
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FIGURE 5.7. Brown’s radial shear interferometer.

interfering beams involve the same glass and air paths. Interferometers of this kind
will now be discussed in this section.

Radial shear interferometers were first considered by Brown (1959), who
described the instrument shown in Figure 5.7 (Brown, 1962). Basically, this is a
Jamin interferometer, but it uses convergent light and has a small meniscus lens in
one of the beams. A compensating parallel plate is placed in the other beam.

Another of the first radial shear interferometers, designed by Hariharan and Sen
(1961b), is shown in Figure 5.8. It consists of a plane parallel beam splitter plate P
and two plane mirrors M; and M,. The radial shear is produced by two lenses L, and
L,, which are placed in such a manner that their foci are at the face of the beam

Wavefront under
test

Radially sheared
wavefronts

FIGURE 5.8. Hariharan and Sen’s radial shear interferometer.
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splitter. The radial shear is produced when the two lenses have different focal lengths
fiand f> (f, > fi) and is given by

_N

R=% (5.14)

The two lenses could be replaced by a single lens, but two lenses serve to facilitate
the elimination of aberrations produced by the lenses.

The visibility is equal to 1 only if the two beams have the same irradiance; but
since the two beams are differently expanded, this is possible only if the reflectance
‘R and the transmittance F of the beam splitter satisfy the equation

R 2
== ff) . (5.15)

Hariharan and Sen (1962) successfully used this interferometer to test microscope
objectives.

Murty (1964a) suggested several arrangements to produce radial shear. One of
them is based on the Mach-Zehnder interferometer, using telescopic systems S; and
S, on each of the arms as shown in Figure 5.9. The effective radial shear F is given by
1/M?, where M is the magnification of each of the telescopes.

Another system is a cyclical interferometer (shown in Fig. 5.10) that resembles the
interferometer designed by Hariharan and Sen. Here, however, the light entering the
interferometer should be collimated.

A very practical and interesting interferometer, also described by Murty (1964a),
is based on the contraction and expansion of the numerical aperture by a

' 2
|
Wavefront P
under test L
=
Sz
- - Radially
sheared
wavefronts
“
M, |
\..._.._Y_J P2 .
S

FIGURE 5.9. Telescopic systems in a Mach-Zehnder interferometer to produce radial shear.
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hemispherical lens as illustrated in Figure 5.11. Using this principle and the basic
cyclic configuration, Murty designed the interferometers shown in Figures 5.12
and 5.13. The hemispherical cavity in the second interferometer may be emptied
or filled with oil, in order to obtain the desired radial shear. Some very unconven-
tional radial shear interferometers with discontinuous stepping wave-fronts have
been described by Bryngdahl (1970, 1971).

\
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FIGURE 5.11.
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Contraction and expansion of the numerical aperture by a hemispherical lens.
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FIGURE 5.12. Murty’s cyclic radial shear interferometer.

5.2.3. Double-Pass Radial Shear Interferometers

195

The schematic block for a double-pass radial shear interferometer is shown in Figure
5.14. Tt must be recalled that the single-pass interferometer in Figure 5.3 produces
two interference patterns, one formed by the light passing through the interferometer
and another by the light that is reflected back from the instrument in order to preserve

Wavefront
under test
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P

Hemispherical
cavity

Beam
splitter

Radially
sheared
wavefronts

FIGURE 5.13. Murty’s solid radial shear interferometer.
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FIGURE 5.14. Double-pass radial shear interferometer.

the total amount of energy. If the reflected pattern were present in the double-pass
interferometer, the observed pattern would be extremely complicated because four
returning beams instead of two would be interfering. This problem can be avoided if
the two sheared interfering wavefronts illuminating the system under test after the
first pass do not interfere with each other. This can be achieved if the two wavefronts
are produced with orthogonal polarizations, but are nevertheless coherent to each
other. As pointed out by Brown (1959) and later by Steel (1965), the spatial
coherence requirements are greatly relaxed on double-pass interferometers because
they are essentially compensated for the size of the source. Although the surface
cannot be made extremely large—only about three times (Brown, 1959) as large as
that in the single-pass interferometer—this provides about ten times more light.

Two interferometers of this type have been designed by Steel to test microscope
objectives. One of these is shown in Figure 5.15 (Steel, 1965). The radial shear is
produced by two birefringent systems, each formed by two calcite components
between two glass lenses. The glass is Schott La K11, chosen to match the ordinary
index of calcite and to correct the chromatic aberration of the lens. The calcite lenses
are designed to have small off-axis errors, are equiconcave, and are divided into two
parts by plane surfaces. The optical axes of the two halves are at 90° with respect to
each other. The plane of polarization between the halves is rotated 90° by means of a
half-wave plate, so that the ordinary ray in the first half remains an ordinary ray in the
second half. The two bi-refringent systems have a relative orientation such that the
ordinary ray of the first system becomes the extraordinary ray of the second system
and vice versa.

The two bi-refringent systems are adjusted to satisfy the following conditions: (a)
the apparent point of divergence of the two radially sheared wavefronts is at the
proper distance (16 cm) from the microscope objective and (b) the focal plane of the
whole birefringent system coincides with the exit pupil of the microscope objective,
which also coincides with the back focal plane of this objective. For the reasons
explained in Chapter 2, a Dyson system is used in front of the microscope objective.
Since the fringes must be observed at the exit pupil of the objective, a telescope is
used to look at them.



5.2. RADIAL SHEAR INTERFEROMETERS 197

[——a]
Lak Il E% Folarizng
L/ beam splitter

Field
iris
Calcite
lenses

l * |7 Objective

I 5 under test

with
Lamp Source Dyson's system

iris

FIGURE 5.15. Steel’s double-passage radial shear interferometer to test microscope objectives.

The second double-passage radial shear interferometer designed by Steel (1966)
is illustrated in Figure 5.16. It is similar to the Hariharan and Sen interferometer
except that the two lenses are replaced by a single lens from a low-power microscope
objective.

The combination of the polarizing beam splitter 1 and the A/4 plate forms a source
of circularly polarized light. When the light returns from the instrument after being
reflected on the system under test, the direction of rotation of the circularly polarized
light is reversed (assuming a perfect system). Therefore, the returning light passes
through the prism to go to the camera. If the system under test is imperfect, an optical
path difference between the two radially sheared and orthogonally polarized beams is
introduced. Then the returning light will not be circularly but elliptically polarized,
giving rise to dark zones (fringes) on the camera.

5.2.4. Laser Radial Shear Interferometers

The radial shear interferometers so far described are of the equal-path type with
white-light compensation. This is necessary when conventional light sources are
used. When a laser is employed, the two beams do not need to have the same optical
paths.
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FIGURE 5.16. Steel’s double-passage radial shear interferometer.

With laser light the design of the interferometer is greatly simplified, but some
new problems are introduced. The main problem is the presence of many spurious
fringes over the desired interference pattern due to reflections on lens surfaces and
glass plates. All reflections produce interference fringes because of the long coher-
ence length of laser light.

Probably the first laser radial shear interferometer was designed by Som (1970); it
is illustrated in Figure 5.17. There is, however, a great problem with this design since
the virtual points of divergence P, and P, for the two wave-fronts do not coincide, as
pointed out by Murty and Shukla (1973). Hence, a perfect system produces a system
of concentric circular fringes, similar to Newton rings, and it is difficult to analyze the
interferogram with this as a reference. Murty points out that for easier analysis a
perfect optical system under test must give either a fringe-free field or a set of straight
fringes.

To eliminate this problem, Murty and Shukla (1973) modified Som’s design and
proposed the interferometer shown in Figure 5.18, in which one of the reflecting
surfaces is spherical. If a and b are the distances from the concave and plane mirrors,
repectively, to the center of the beam-dividing surface, the radius of curvature r of the
reflecting surface must be

r:%. (5.16)
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FIGURE 5.17. Som’s laser radial shear interferometer.

The effective radial shear R is then
a (5.17)

“%—a

R

This interferometer can be fabricated very easily from a solid cube beam splitter.
Ideally, the reflecting surface should be a hyperboloid of revolution and thus a
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FIGURE 5.18. Murty’s laser radial shear interferometer.
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FIGURE 5.19. Steel’s laser radial shear interferometer.

spherical surface introduces a small amount of spherical aberration. Murty et al.
(1975) showed that the wavefront spherical aberration is given by

NA12 4
OPD:m (5.18)
—a) r

where N is the refractive index of the glass and « is the numerical aperture. Thus, it is
necessary to reduce a as much as possible. If the numerical aperture is small, very
high accuracies can be obtained.

Malacara et al. (1975) designed a lateral shearing interferometer for converging or
diverging laser beams that uses a plano-concave prismatic glass plate. Similar to the
interferometer just described, this instrument also produces some radial shear
together with the lateral shear.

Hariharan et al. (1984a, 1984b) has used an interferometer based on the instru-
ment designed by Murty and Shukla (1973) in order to perform phase shifting
interferometry.

Another of the early laser radial shear interferometers was designed by Steel
(1970); it is illustrated in Figure 5.19. The two beams are split and recombined at the
two surfaces of a prism, thus eliminating the possibility of unwanted fringes on the
second face of a beam splitter. The diameter of one of the beams is reduced in size by
means of a telescope with 5.5 magnification. The advantage of using glass spheres is
that they do not need to be squared to the beam; a disadvantage is that they introduce
spherical aberration. It must be pointed out that, simultaneously with the radial shear,
this interferometer also produces reversal shear, since one of the wavefronts is
reversed with respect to the other.

Another laser light radial shear interferometer has been described by Shukla
et al.(1992), as illustrated in Figure 5.20. It is made from a cube beam splitter either
by grinding and polishing or by cementing two plano convex lenses on the opposite
ends of the cube. These two convex surfaces are at different distances from the center
of the beam splitter interface surface, so that their centers of curvature are located at
this center. We can easily see that the radial shear is equal to the ratio of the two radii
of curvature. Since the surfaces are spherical, some spherical aberration is intro-
duced, but its magnitude can be set within a reasonable limit. It is also interesting to
notice that one of the two beams is reflected twice and transmitted once on the beam



5.2. RADIAL SHEAR INTERFEROMETERS 201

Wavefront
under test

Beam splitter
interface

™
/
—
\

Interfering
wavefronts

FIGURE 5.20. On-axis radial shear interferometer.

splitter, while the other beam is just transmitted once. Thus, the intensities of the two
interfering beams will be quite different. However, this is partially compensated
because the weaker beam is the one with a smaller diameter. Shukla et al. (1992) has
also described several other radial shear interferometers based on the same working
principle.

A very simple holographic radial shear interferometer, shown in Figure 5.21 was
devised by Fouéré and Malacara (1974) and Fouéré (1974). The first step in making
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FIGURE 5.21. Holographic radial shear interferometer.
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FIGURES.22. Interferogram obtained in holographic interferometer. (From Fouéré and Malacara, 1974.)

this interferometer is to fabricate a Gabor zone plate by photographing the inter-
ference between a convergent and a flat wavefront. The numerical aperture of this
plate is the numerical aperture that the interferometer will accept. The second step is
to illuminate the Gabor zone plate with a convergent wavefront. If the point of
convergence corresponds exactly to the focus of the zone plate, the diffracted +1
order beam emerges as a parallel beam. Let us now place a photographic plate behind
the zone plate and make an exposure. By developing the photographic plate, we
obtain a hologram. The convergent beam (order 0) can be regarded as the reference
beam and the diffracted parallel beam (order +1) as the object beam.

Considering Figure 5.21 now, if we place the hologram exactly in its original
position, we obtain an emergent parallel beam (0, 1) by reconstruction. The incident
parallel beam goes through the hologram as the parallel beam (1, 0). Thus, these two
beams emerge parallel but with different magnifications, achieving a radial shear
interferometer. All undesired diffracted beams are filtered out by means of a lens and
a pinhole at its focus. It may be shown that all imperfections on the glass plates are
automatically canceled out. Tilt and defocusing in this interferometer can very easily
be obtained by small lateral and longitudinal movements, respectively, of the Gabor
zone plate. Figure 5.22 shows an interferogram obtained with this interferometer.

Several variations of this basic configuration of the two-zone plates have been
proposed, in order to have rotational shear also or to produce an exiting spherical,
instead of flat wavefront.

5.2.5. Thick-Lens Radial Shear Interferometers

Steel (1975) and Steel and Wanzhi (1984) have described an interesting class of laser
interferometers called thick-lens radial shear interferometers. Figure 5.23 shows
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FIGURE 5.23. Thick-lens laser radial shear interferometers.

some designs. One of the beams is obtained from the direct beam, going through the
thick lens. The other beam is obtained with two internal reflections, first on the
second lens face and then on the first lens face. If the direct beam has an irradiance I,
the internally reflected beam has an irradiance I, given by

L= %11 (5.19)
where S is the radial shear, defined by the ratio of the diameter of the internally
reflected beam to the diameter of the direct beam. The maximum constant of the
fringes is obtained when R R, = S2. This is possible only if § < 1, in other words,
when the direct beam has the smallest diameter. Steel and Wanzhi suggest keeping
the contrast to a low value of the order of 0.8, to reduce the disturbing effects
of higher-order ghosts due to secondary internal reflections. Unfortunately, these
reflections arrive at the same focus, and thus they cannot be eliminated by a spatial
filter.

Figure 5.23 shows some thick-lens interferometers. The first one, Figure 5.23(a), is
a radial as well as a rotational shear interferometer; the rest are pure radial shearing.
The interferometer in Figure 5.23(b) may be used to test large collimated beams. In
the interferometer in Figure 5.23(c), the direct beam has a diameter smaller than the
reflected beam. Thus, the contrast of the fringes cannot be controlled. The system in
Figure 5.23(e) may be used in convergent beams with the exit pupil located far away.

The reflecting radial shear interferometer described by Wanzhi (1984) is a special
case of the thick lens interferometer working in a reflection mode as shown in
Figure 5.24(a) and 5.24(b). The fringe contrast is much better than in the transmis-
sion system. The only problem with this glass-spaced system is that the magnitude of
the shear is fixed. An alternative is the air-spaced system shown in Figure 5.24(c), as
described by Wanzhi (1985).
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FIGURE 5.24. Reflection laser radial shear interferometers.

5.3.  ROTATIONAL SHEAR INTERFEROMETERS

In rotational shear interferometers, identical wavefronts are made to interfere, but
one of them is rotated with respect to the other by a certain angle about their common
optical axis. They are useful for detecting and evaluating nonsymmetrical aberrations
such as coma and astigmatism. Many procedures have been developed for the
interpretation of rotational shearing interferograms. For example, Golikov et al.
(1981) have described a method using cylindrical coordinates.

Let a wavefront be represented by W(p, 0). A rotational shear interferometer is
one that performs the operation of rotating one wavefront with respect to the other to
give an interferogram defined by

OPD(p, 0) = W(p, 0 — %) - W(p, 0+ %) (5.20)

where ¢ is the rotation of one wavefront with respect to the other. If the wavefront is
given by general expression (5.1), we obtain

OPD(p.0) = ZZP{ aaleost(0-5) ~coi{0+3)

e o)) e

where n and / are both even or both odd. It is interesting that all terms for / = O cancel
out, rendering the rotational shear interferometers insensitive to rotationally sym-
metric wavefronts, as could be expected. Therefore, the sums in this expression can
be started from n = [ = 1. If we now assume that the aberrations are produced by an
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axially symmetric optical system, we have the wavefront symmetric about the
tangential (y — z) plane and therefore, all coefficients b,; become zero. Thus

k n
OPD(p,0) =Y > p"au [cos z(e - q;) - cosl(Q + i’)}
n=1 I=1
k n
= Z 2p"ay; sin 10 sin %

n=1 I=1

(5.22)

The only two primary aberrations contained in this expression are astigmatism
(n=2,1=2) and coma (n = 3,1 = 1), in addition to a tilt of the wavefront about
the x axis (n = 1,/ = 1) that we may ignore, thus obtaining

OPD(p, 0) = 2axnp*sin20sin ¢ + 2az; p* sin 0 sin% (5.23)

which can also be written as

OPD (p, 0) = 2ap* cos 2(0 + g) sin ¢ + 2az pcos (9 + g) sin% (5.24)

Observing this expression, we can see that the sensitivity o, for astigmatism with
respect to that of a Twyman-Green interferometer is given (Murty and Hagerott,
1966) by

Oast = 2 8in @, (5.25)

but it is also important to note that the interference pattern is rotated 45° with respect
to the Twyman—Green pattern, as shown in Figure 5.25, and that the rotational shear
interferometer is insensitive to real defocusing. The apparent focus is such that the
observed pattern is similar to the Twyman—Green pattern at the intermediate focus
between the tangential and sagittal foci.

The relative sensitivity o¢oma for coma is given (Murty and Hagerott, 1966) by

Ocoma = 2 sin%, (5.26)

and the interference pattern is rotated 90° with respect to the corresponding
Twyman—Green interferogram, as shown in Figure 5.26. No defocusing appears,
nor can it be introduced in this pattern.

The relative sensitivities g, and g.oma for astigmatism and coma, respectively,
are plotted in Figure 5.27 which shows that the ability of a rotational shear
interferometer to detect astigmatism and coma depends on the amount of rotational
shear ¢. We can see that the coma can be isolated at ¢ = 180°, but the astigmastism
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FIGURE 5.25. Astigmatism pattern in a rotational shear interferometer with maximum sensitivity
(d) = 900)(0122 = 2).).

can never be isolated. However, the coma can be eliminated and the astigmatism
doubled by the use of a small, flat mirror to allow the wavefront to go twice through
the optical system. The wavefront goes first to the system under test (concave mirror),
proceeds next to the small, flat mirror near the center of curvature of the concave
mirror, and returns through the same path.

It is important to point out the difference between the two similar processes, in
which either the symmetrical (power of cos 8 is even) or the antisymmetrical (power

FIGURE 5.26. Coma pattern in a rotational shear interferometer with maximum sensitivity
((l) = 1800)(%31 = SA)
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FIGURE 5.27. Relative sensitivity for astigmatism and coma in a rotational shear interferometer.

of cos 0 is odd) components of the wavefront are isolated. To isolate the asymmetrical
components, the wavefront is made to interfere with an image of itself that is
identical but is rotated 180°, in order to obtain the difference between them. To
isolate the symmetrical components, the wavefront is rotated 180° and then passed
again through the optical system under test, in order to duplicate the symmetrical
errors and to eliminate the asymmetrical ones. Then the wavefront is made to
interfere with an unaberrated wavefront. These two processes have been exploited
by Hariharan and Sen (1961c¢) in a single arrangement, as described in Chapter 7 of
this book.

As pointed out by Murty and Hagerott, it is interesting to consider the testing of a
ribbed lightweight mirror. When such a mirror is polished, the region of the face
directly on top of the rib is low, whereas the region between the ribs is high. The
astigmatism of a mirror of this kind (n = 2,1 = m) produces on a rotational shear
interferometer on OPD given by

me

OPD = 2p"a,; sin m0 sin > (5.27)

where m is the number of ribs supporting the faceplate. It should be noticed thatn = m
are both even or both odd. The maximum relative sensitivity is 2 and occurs for
¢ = 180°. Figure 5.28 shows the interferogram for a mirror with four ribs.

5.3.1. Source Size Uncompensated Rotational Shear Interferometers

The degree of coherence g;, of a uniform circular source with angular diameter 2 is
given in Eq. (5.10). Thus to maintain good fringe contrast, the pinhole of a rotational
shear interferometer must be of the proper size. If a point of the wavefront is sheared
through an angle ¢, the distance in the wavefront between two interfering points is
given by

d=2p sin%. (5.28)
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FIGURE 5.28. Pattern for a mirror with four ribs in a rotational shear interferometer with maximum
sensitivity (¢ = 45°) (o4 = 44).

Substituting this value in Eq. (5.10), we obtain

o= 2J:1[(47/A)op sin(¢p/2)] .
(4n/2)ap sin($]2)

(5.29)

For the reasons given in Section 5.2.1, to have a good contrast on the interference
pattern, the pinhole must be smaller than the certain value given by Murty and
Hagerott (1966) as

o< i (5.30)
2Dsin(¢/2)

where D is the interferometer entrance pupil diameter, from which the angular

diameter 2o of the source is measured.

Murty and Hagerott also designed the rotational shear interferometer shown in
Figure 5.29. It is a Jamin interferometer with two identical Dove prisms between the
glass plates. A microscope objective L collimates the light from a point source, and
the pattern is observed by looking through the microscope objective L,. One of the
wavefronts is rotated an angle 2o by rotating one of the Dove prisms an angle o.

An ordinary Twyman—Green interferometer can be converted to a rotation shear
interferometer, in order to test the illuminating wavefront, by means of several
procedures. A 180° rotational shear is achieved, as suggested by Murty (1964c),
by replacing the mirror in one of the arms with a cat’s-eye retroreflector or a cube
corner prism. Armitage and Lohmann (1965) suggested using two roof prisms as
reversing prisms instead of the flat mirrors. The magnitude of the rotational shear ¢ is
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FIGURE 5.29. Murty and Hagerott’s rotational shear interferometer.

changed by rotating one of the prisms about its optical axis by an amount ¢ /2. The
interferometer proposed by Armitage and Lohmann is illustrated in Figure 5.30. The
wavefront under test is collimated by the lens L, or a pinhole is used if L, is the lens
to be tested. The pair of lenses L, and L; forms an image of the entrance pupil at L,
on the observing screen. To obtain good coherence, the state of polarization of both
beams must be identical, but this is not so when the rotating roof prism is rotated at an
angle ¢/2, because the roof prisms modify the state of polarization according to their
positions. To solve this problem, a polarization coupling is used as follows. Two
polarizers are included, one before and one after the interferometer, both at 0°. Also,
two quarter-wave plates are placed between the main interferometer body and the
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FIGURE 5.30. Armitage and Lohmann’s rotational shear inteferometer.
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FIGURE 5.31. Rotational shear interferometer with phase compensation.

rotating roof prism. One plate is fixed at 45° to the main body of the interferometer
and the other plate is fixed to the roof prism at 45° to the line of intersection of the
roof planes. Between the two quarter-wave plates, the light will be circularly
polarized. Within the roof prism, it will be linearly polarized and parallel to the
roof ridge. Upon returning into the main body, the old direction of linear polarization
is restored, independently of the rotational position of the roof prism.

The problem with the interferometer just described is that the use of the polarizers
causes an appreciable loss of light. An alternative solution has been employed by
Roddier et al. (1978, 1989) in the interferometer shown in Figure 5.31. There are two
roof prisms, one is fixed and the other is rotatable about its optical axis, as in the
interferometer by Armitage and Lohmann. Let us assume for the time being that the
light entering the interferometer is linearly polarized, with the plane of polarization
either parallel or perpendicular to the fixed roof ridge. If the rotatable roof prism is
rotated at an angle with respect to the first prism, we may decompose the electric
vector in two orthogonal components, one parallel and one perpendicular to the roof
ridge of this second prism. The phase shift upon reflection for these two components
will be different in general, so, they will recombine after leaving the prism producing
a different polarization state from that of the entering light beam. The only way to
preserve the incident polarization state is to have a phase shift difference between
these two components equal to 180°. The electrical component perpendicular to the
roof edge comes out of the prism in opposite direction because of the two reflections.
The net effect is that the linear polarization and its direction is thus preserved.

Since the total shift upon reflection for the two electrical components is about 74°,
an additional phase shift of about 106° is required. This is obtained by cementing to
the entrance face (hypotenuse) of the rotatable prism a phase plate with a phase
retardation of 53°, with its principal axes parallel and perpendicular to the roof ridge.

We assumed at the beginning that the light entering the interferometer was
linearly polarized, with the plane of polarization either parallel or perpendicular to
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the fixed roof ridge. If the light is unpolarized, the components parallel and
perpendicular to the roof ridge of the fixed prism will produce different interference
patterns. The same interference pattern is produced with these two components if
they come out of the fixed prism in phase, as when they entered the prism. This goal is
achieved by cementing another phase plate to the fixed prism. Then, unpolarized
light may be used.

Another interferometer suggested by Armitage and Lohmann (1965) is based on
the Sagnac or cyclic interferometer. Here the rotational shearing angle ¢ is produced
by a Dove prism rotation of ¢ /4 within the closed loop of the interferometer.

Although not really intended as a rotational shear interferometer, the inverting
Fizeau interferometer designed by Sen and Puntambekar (1965, 1966) produces a
rotational shear of 180°. This instrument and its adaptation to test spherical surfaces
(Puntambekar and Sen, 1971) are described in Chapter 7.

5.3.2. Source Size Compensated Rotational Shear Interferometers

A large light source cannot be used in general because of the coherence problems
explained in the preceding section. The only way to have good contrast with a large
source is to make the two images of the source coincide in position and orientation.
At the same time, the images of the object under test must be shared with respect to
each other. One solution is to shear the wavefronts before they reach the object, with
an equal magnitude but in an opposite sense to the main shear, which is to take place
after the object. These two shearing operations cancel each other as far as coherence
is concerned, but only the second shear takes place with the information about the
object. These considerations, equivalent to those made before for radial shear
interferometers, were also advanced by Armitage and Lohmann (1965) in suggesting
several compensated interferometers. The systems they proposed consist basically of
two identical interferometers placed symmetrically one after the other, with the
object under test between them.

As previously explained the same compensation can be obtained by using a
rotational shear interferometer in a double-pass configuration.

5.4. REVERSAL SHEAR INTERFEROMETERS

The reversal of a wavefront about a reversing axis is illustrated in Figure 5.32 where
point P goes to point P, according to the transforming equations

p'sin@ = psin0 (5.31)
and
p'cos® =S —pcosl (5.32)

It is easy to see that this reversing about an arbitrary axis is equivalent to a
reversion about the x axis followed by a lateral shear § in the y direction. If the
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FIGURE 5.32. Reversal of a wavefront.

wavefront is defined by Eq. (5.1), the interferogram in a reversal shear interferometer
is given by

OPD = W(p,0) — W(p',0"). (5.33)
Let us consider a wavefront that has only primary aberrations as follows:
W(p,0) = axp? + asp* + azi p° cos 0 + axnp? cos 20 + ay; p cos 0 (5.34)

where the aberrations being represented are defocusing, spherical aberration, coma,
astigmatism, and a tilt about the x axis, respectively.

We can see that the reversal shear interferometer has no sensitivity to symmetric
aberrations, such as defocusing (ay), spherical aberration (as9), and astigmatism
(ax), if the axis of reversion coincides with the x axis (S = 0). The interferometric
pattern and the sensitivity of this interferometer to symmetrical aberrations are,
however, identical to those of a lateral shearing interferometer with shear S when the
axis of reversion is shifted at a distance S/2, as in Figure 5.32

OPD = 2a3,p° cos 0 + 2ay, p cos 0. (5.33)

Thus the relative sensitivity of the reversal shear interferometer without any
lateral shear (S = 0) to antisymmetric aberrations, such as coma and tilt about the
X axis, is equal to 2.

If the interferometer is uncompensated for the size of the light source, that is, if the
reversion affects not only the object under test but also the light source, the contrast in
the fringe pattern is given by Eq. (5.10) (Murty, 1964c). The distance for any two
interfering points is (2p cos  — §). Therefore, its maximum value d is

d=D+S (5.36)
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where D is the waveform diameter. Then the maximum angular diameter o of the
pinhole will be

1.222
o < .
~D+4+S

(5.37)

An uncompensated reversal shear interferometer of this type is represented by a
Twyman—Green interferometer with a right-angle prism used as a roof prism in one
of the arms.

5.4.1. Some Reversal Shear Interferometers

In this section, three different versions of a prism reversal shear interferometer are
described. They are variations of a basic prism system invented by Kosters (1934),
who pointed out that any combination of two exactly similar prisms can be used as an
interferometer in the way he described, as long as one of the angles of the prism
adjoining the common face is exactly half the angle that is opposite this common
face.

One of the two systems suggested by Gates (1955b), based on Kosters’s prism, is
illustrated in Figure 5.33; it uses two 30°-60°-90° prisms. The intersection of the
plane defined by the beam-splitting surface with the optical system defines the axis of
reversion. Lateral shear S is produced if the axis of reversion does not coincide with a
diameter of the optical system under test. A tilting of the mirror under test provides a
control of the separation of the interference fringes. A lens can be tested if an
autocollimating flat mirror is used behind the lens.

The interferometer is compensated for use with white light because the optical
paths are exactly equal. It is also compensated for the size of the light source, but in
practice this size is limited to about 0.5 mm in diameter by small errors in construc-
tion, as pointed out by Gates.

Observing
/eye

Light
source

FIGURE 5.33. Koster’s reversal shear interferometer.



214 RADIAL, ROTATIONAL, AND REVERSAL SHEAR INTERFEROMETER

Observing

FIGURE 5.34. Gates’ reversal shear interferometer.

Using the same principle, Gates (1955a) also suggested using the popular beam
splitter cube as shown in Figure 5.34. This, however, has the disadvantage that only
optical systems with small numerical apertures can be tested.

Two common disadvantages of both instruments described by Gates are that (a)
the virtual light source and the image do not coincide but have some small separation
and (b) some aberrations are introduced on the plane exit face of the prism. These
problems are not present in a prism system invented by Saunders (1955) shown in
Figure 5.35. The use of this instrument for the testing of optical systems, as described
by Saunders (1962), is illustrated in Figure 5.36. Many other applications to metrol-
ogy have also been found (Strong, 1958; Saunders, 1960). The construction method
has been very well described by Saunders (1957).

Another interesting reversal shear interferometer to test lenses was described by
Waetzman (1912) and later by Murty (1964b). It is illustrated in Figure 5.37. This
instrument, which has also been used to test right-angle and cube corner prisms by
Murty (1964b) and Sen and Puntambekar (1966), produces reversal and lateral
shears. It is interesting to observe that the asymmetric aberrations are canceled out
because of the double passage through the lens and that the reversal interferometer is

|

Beam
splitter

FIGURE 5.35. Saunders’s prism system.
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Observing

source

Observing

source

FIGURE 5.36. Saunders’ reversal shear interferometer.
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not sensitive to symmetric aberrations. Since the symmetric aberrations are detected
by means of lateral shear only, this instrument can more properly be considered as a

lateral shearing interferometer.

Holographic techniques may also be used to obtain a reversal shear interferometer

as shown by Partiban et al. (1987, 1988).

# Right angle
or
ube corner
hp” prism
\ /
Parallel
plate -

W N

Eye

Light
source

FIGURE 5.37. Modified Jamin interferometer to test lenses and prisms.
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6

Multiple-Beam Interferometers
C. Roychoudhuri

6.1. BRIEF HISTORICAL INTRODUCTION

The historical origin of multiple-beam interference was found as early as 1836, when
Airy derived an expression for the multiple-beam interference pattern that would be
produced by a plane parallel plate. However, the idea remained unexploited since
high-reflectance coatings were not available and uncoated glass plate has a
reflectance of only 0.04. It can produce good visibility fringes but of a two-beam
type in reflection; no recognizable fringes can be seen in transmission.' Then Fizeau
(1862a, 1862b) devised his celebrated interferometer, which now bears his name (see
Chapter 1). His invention led to the idea of studying surface topography by optical
interferometer(Laurent, 1883). The interferometer, being formed by two uncoated
glass plates, gives interference fringes of a two-beam (cosine) type in reflection that
contour the surface topography. Then Boulouch (1893) revived Airy’s (1836)
derivation of multiple-beam interference and demonstrated that with increasing
reflectance of the Fizeau surfaces the multiple-beam fringes, both in reflection and
in transmission, become increasingly sharper.

A few years later Fabry and Perot (1897) recognized the potential of the
interferometer that consists of two plane parallel surfaces of high-reflection coating
with variable separation, now known as the Fabry—Perot interferometer. Today it is
still one of the most compact and highest resolving power spectrometers (Cook,
1971). To exploit this capability for high resolving power, the Fabry—Perot plates
were usually used with a large separation that obscured the great potential of this
instrument for mapping surface microtopography with ultrahigh local precision.
Then in 1913, Benoit, Fabry, and Perot used a Fizeau interferometric arrangement
with coated surfaces for their determination of the standard meter. They also missed
the “optimum conditions” under which this multiple-beam Fizeau interferometer
could be used for precision surface testing. These were provided and demonstrated

"The relative strengths of the first three reflected beams are 0.04, 0.037, and 0.000059, and those of the
transmitted beams are 0.92, 0.0015, and 0.0000024.

Optical Shop Testing, Third Edition Edited by Daniel Malacara
Copyright © 2007 John Wiley & Sons, Inc.
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by Tolansky (1944), although he himself noted (Tolansky 1948a, pp. 7, 184) from a
private communication sent to him from Williams that Adams Hilger Ltd. of England
had been using multiple-beam Fizeau fringes for optical flat testing for some years. A
lucid and detailed analysis and application of a multiple-beam interferometer of the
Fizeau type can be found in Tolansky’s books (1948a, 1948b, 1948c, 1960, 1966,
1968). Section 6.3 summarizes the essentials of the multiple-beam Fizeau interfe-
rometer.

To obtain sharp fringes as well as localized precision with the multiple-beam
Fizeau, the proper conditions of Tolansky (the following section) require a very small
separation and wedge angle between the mirrors. This mandates a high-quality test
flat to give only a few narrow fringes of 1/2 interval® in the entire field of view,
leaving most of the surface without any topographic information. The next year,
Tolansky (1945a, 1945b) developed the so-called fringes of equal chromatic order
(FECO) interferometry, where the illumination is by white light, rather than by
quasimonochromatic light, and one observes small sections of the test surface
successively through a prism spectrometer that displays fringes of equal chromatic
order. The advantages of FECO over multiple-beam Fizeau are the greater precision
of the former and its capability for distinguishing ‘“hills” from “valleys” in a
straightforward manner from the direction of bending of the colored fringes. Again,
a good expression of the field is given in Tolansky’s book (1948a). Contributions by
Koehler (Koehler, 1953, 1955a, 1955b; Koehler and Eberstein, 1953; Koehler and
White, 1955) are also worth mentioning. We describe FECO interferometry briefly in
Section 6.4, where we also mention a somewhat different but very useful technique of
illuminating the Fizeau interferometer by two different wavelengths that can be
chosen suitably from two different calibrated monochromators (Shaalan and Little
1975).

Later, several persons introduced various techniques to reduce the fringe interval
of /2 so that microtopographic information can be obtained from otherwise fringe-
free regions, using monochromatic or quasimonochromatic illumination. The first of
these techniques, by Saunders (1951), introduces optical path differences into the
interference film (formed by the two mirrors) by changing the air pressure by
controlled amounts and taking a multiple photographic exposure of the fringe
systems. Another technique to reduce the contour interval is to use a suitably chosen
discrete set of wavelengths for illumination (Herroitt, 1961; Schwider, 1968; Pilston
and Steinberg, 1969). A somewhat simpler technique by Murty (1962) employs
regular quasimonochromatic illumination but a spatially separated set of pinholes.
These techniques for reducing the fringe interval are described briefly in Section 6.5.

Some parallel development has also taken place in using the conventional Fabry—
Perot interferometer with the plates parallel (rather than wedged) for deriving surface
microtopography (Benedetti-Michelangeli, 1968; Hodgkinson, 1969) and for
precision measurement of thin-film thickness (Schulz 1950a, 1950b). See Section
6.6 for methods of using a Fabry—Perot interferometer for testing.

’In some multiple-pass interferometers, the interval between consecutive fringes in less than 2 /2; see
Chapter 7.



6.2. PRECISION IN MULTIPLE-BEAM INTERFEROMETRY 221

A somewhat different set of multiple-beam fringes, produced by a Fabry—Perot
illuminated by a point source but lacking the conventional fringe-focusing lens after the
Fabry—Perot plates (see Figs. 6.2 and 6.17), was first observed and used by Tolansky
(1943, 1946). The utility of these ‘“Tolansky fringes” is described in Section 6.7.

The development of the spherical Fabry—Perot interferometer (Connes, 1958) of
general curved mirror laser cavities (Boyd and Gordon, 1961; Fox and Li, 1961) and
of the scanning spherical Fabry—Perot (Herroitt, 1963) paved the way for an elegant
technique for testing curved surfaces with multiple-beam fringes preserving the
localized precision (Herroitt, 1966).

A similar spherical wave interferometer was also developed independently by
Perkin-Elmer of the United States (Heintze et al., 1967) and SIRA (1967) of the
United Kingdom (Biddles, 1969). A strong desire to test many spherical surfaces by
multiple-beam fringes against a single surface or a few master surfaces, coupled with
the existing knowledge of Williams’ (1950) interferometer, paved the way for this
development. We describe such multiple-beam interferometers with curved surfaces
in Section 6.8.

Other developments worthy of mention in the field of multiple-beam inter-
ferometry are the so-called dual interferometry and holographic multiple-beam
interferometry. In the former, one combines the multiple-beam fringes with another
wavefront in a dual interferometric setup to utilize a live Moiré technique or to
control the background contrast to advantage, especially while testing opaque
surfaces in reflection by multiple-beam Fizeau (Langenbeck, 1968; Pastor and
Lee, 1968). This is described in Section 6.9. The latter development can be exploited
when one has already chosen to use holographic interferometry by modifying the
system from two-beam to multiple-beam interferometry, as suggested by Matsumoto
(1969) and Bryngdahl (1969). This is mentioned briefly in Section 6.10. For a
detailed exposition of Moiré and holographic interferometry see Chapter 12.

Readers with broader interest on interferometry should consult the following
review articles: Kuhn (1951), Baird (1967), Baird and Hanes (1967), Koppelmann
(1969), Briers (1972), Malacara et al. (1975), and Vrabel and Brown (1975). For a
good review on precision interferometric testing, see Schulz and Schwider (1976)
and Hariharan (1991). Readers interested in Fabry—Perot interferometer as a high-
resolution spectrometer should consult the books by Hernandez (1988), Vaughan
(1989) and Hillebrands (1999).

6.2. PRECISION IN MULTIPLE-BEAM INTERFEROMETRY

All the preceding chapters of this book dealing with various interferometric tests of
optical components have one thing in common: The final fringe pattern, contouring
the surface or the wavefront under test is formed by interference between two
wavefronts. Then the recorded intensity variation follows the cos®> ¢ or
(1 + cos2¢) type curve shown in Figure 6.1(a). Such fringes are said to have the
so-called fringe quality, the finesse number, equal to 2. This is understood from the
definition of finesse, which is the ratio of the fringe interval to the width of the fringe
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FIGURE 6.1. The finesse, the ratio of the fringe interval to the full width of the fringe at half its height,
(a) for two-beam cosine fringes and (b) for multiple-beam Fabry—Perot fringes. For example, the finesse of
(b) is 50.

at half its height (Fig. 6.1). In general, the fringe interval being 4/2, visual observa-
tion of two-beam cosine fringes can rarely achieve an error estimation of precision
better than 4/20.

In contrast, multiple beam fringes are extremely sharp and can have finesse as
high as 200 to 300 for commercial Fabry—Perot interferometers (FP) and many tens
of thousands for specialized FP’s with mirrors having super flatness and super high
reflectance. Very large super finesse FP’s are now used for trace gas detection
[O’Keefe and Deacon, 1988] and gravitational wave detection [LIGO, 2005]. Micro
super finesses cavities are used in studying cavity quantum electrodynamics
[Kimble, 1994; Blais et al., 2004]. And the mirrors for such super finesse FP can
be tested only as apart of a super finesse FP in the production facility [Herbelin et al.,
1980; Itoh et al., 2001].

It must be realized, however, that to obtain multiple-beam fringes the
interferometer plates must be coated with high-reflectance coating. This unquestion-
ably interrupts the polishing process for a period of time, in contrast to two-beam
interferometry, in which the surfaces under test can be simply cleaned and tested
directly as frequently as the polisher wishes. For this reason multiple-beam
interferometric tests are applicable chiefly to the field of thin-film technology
(Bennett and Bennett, 1967; Eastman, 1975). The technique is also applied with
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relative ease (say, instead of electron microscopy) for special precision testing of the
surface roughness of high-quality optical surfaces (Koehler, 1955b; Koehler and
White, 1955; Hodgkinson, 1970), but here one must be careful to choose a surface
coating material (usually silver is selected; see Tolansky, 1960) that contours the
substrate as closely as possible and also to analyze the phase change on reflection
from the coating substance (Tolansky, 1948a; Koehler, 1953). These problems
usually do not arise in two-beam interferometry. Multiple-beam interferometry is
not advisable for routine shop testing unless the surface to be tested is definitely
better than 1/20.

Of course, multiple-beam interferometry is not the only method for obtaining high
spatial precision. If fringe sharpening is the main criterion, one can simply image the
two-beam Fizeau fringes on a high-resolution vidicon camera and observe the fringes
on closed circuit television. The fringes can be artificially sharpened through
electronic control of the contrast. The precision by simple visual observation can
certainly exceed //50, and an on-line computer analysis may give ultrahigh
precision. Fringe sharpening can also be achieved through nonlinear photography.
Precision densitometric traces of a regular photographic record of two-beam fringes
or a direct photoelectric scanning of the fringe field, when suitably analyzed, can also
give very high precision (Rosier, 1962; Roesler and Traub, 1966; Dew 1964, 1966). A
more recent technique, oscillating mirror interferometry (see Chapter 13) with a
simple two-beam instrument but with an electronic analyzing system, can also
achieve a precision of 1/1000 (Raymond, 1970; Bruce and Sharpless, 1975). In
fact, Moss et al. (1971) and Logan (1973) stated that their two-beam heterodyne
(Michelson) interferometry, used in a gravitational wave detection system, can detect
a displacement of a mirror with a precision of 107° A. A somewhat different
technique of detecting an optical path variation down to 107> A through the
measurement of the beat signal from a three-longitudinal-mode three-mirror laser
cavity has also been reported in the literature (Boersch et al., 1974).

Here one should remember that the overall thermal and mechanical stability of
the interferometer assembly must be higher by an order of magnitude than the
precision expected from the system, unless the very purpose of the testing is to
measure the relative “instability” (Dyson, 1968). The ultimate precision in inter-
ferometry is limited by the noise inherent in photoelectric detection (Hanes, 1959,
1963; Hill and Bruce, 1962; Raymond, 1970) and also by the diffraction phenomena
that lead to the “optical uncertainty principle,” analogous to Heisenberg’s uncer-
tainty principle (Heisenberg, 1949), discussed by Tolan-sky and Emara (1955),
Thornton (1957), Koppelmann (1966), and Lang and Scott (1968). The very high
resolution, on the order of an angstrom ora fraction thereof, that is obtained through
multiple-beam interferometry is in the longitudinal, not in the lateral direction. The
resolution in the lateral direction is determined by the wavelength of the radiation
due to diffraction.

The choice of multiple-beam interferometry should be guided by the following
considerations: (a) the time available for the test, (b) the maximum precision of the
test that is really necessary for the particular job the test surface is designed for, and
(c) the equipment available in the laboratory.
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6.3. MULTIPLE-BEAM FIZEAU INTERFEROMETER

6.3.1. Conditions for Fringe Formation

A multiple-beam Fizeau interferometer constitutes a very thin wedge-shaped film
formed by two highly reflecting flat surfaces. Any incident beam falling on this film
will, in general, produce a series of increasingly diverging beams (Fig. 6.3). These
multiply reflected beams cannot be superposed in any plane with exactness. How-
ever, within certain approximations multiple-beam fringes are formed. Because the
necessary conditions are more easily appreciated after following the process of
formation of the ideal multiple-beam fringe by a Fabry—Perot interferometer, we
shall briefly digress to describe fringe formation by this instrument.

The Fabry-Perot interferometer consists of two perfectly plane and parallel
mirrors (Fig. 6.2). Naturally, a single incident wave will produce a series of waves
by multiple reflection, and all of them can be superposed to form ideal Airy fringes
(Tolansky, 1948a) at the focal plane of a lens.

We are assuming that the incident wave is continuous with a single carrier
frequency v. The intensity reflectance is R and the transmittance is 7. The mirror
spacing is d and hence the round trip phase delay, ¢ = (2n/1)2d = 2nvt, T being the
round trip time delay. Then the normalized amplitude transmittance i, (v, 7) is given
by

o0 o0
iew(v,T) = Y TR'™ = TR"e™™" =T/(1 — Re™™") (6.1)
n=0 n=0

Then the normalized irradiance is given by the square modulus of Eq. (6.1),

Iow(v,7) = T?/[(1 = R)* + 4R sin” 7v1] (6.2)

t

FIGURE 6.2. Fringe formation by a Fabry—Perot interferometer consisting of a pair of plane parallel
mirrors My, M, followed by a fringe focusing lens L, S is the fringe plane in the focal plane of L.
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The ideal reflective finesse N for these fringes (neglecting mirror aberrations and
misalignments) is given by

N =nVR/(1 —R) (6.3)

where T and R are the intensity transmittance and reflectance, respectively, of both
mirrors and ¢ is the total effective phase or optical path delay between any two
consecutive wavefronts.

Although the series in Eq. (6.1) is infinite, in practice, the total effective number of
interfering beams is finite because of the fact that the energy carried by the nth
transmitted beam, T?R?", becomes negligible for sufficiently large n. [See the solid
curves of Figure 6.4, which indicates the number of superposed beams required to
form a multiple-beam fringe, for a particular reflectance, within 1% of the ideal
(infinite sum) of the Airy curve.] This is a useful practical point to remember for any
type of multiple-beam interferometry, as we shall soon see. If it were really necessary
in practice to superpose the infinite sequence of multiply reflected beams to form the
ideal Airy fringe, the interferometrist would have to wait throughout eternity to
observe it (Roychoudhuri, 1975)! For recent developments in time domain use of FP
for testing and characterizing super finesse Fabry—Perot mirror see Section 6.11.

The next point of practical interest in multiple-beam Fabry—Perot fringe forma-
tion is that the phase delay ¢ between any two consecutive wavefronts is constant.
Then, once ¢ has been determined, the entire series of multiply reflected beams
combines to form the appropriate part of the ideal Airy fringe. Thus, when ¢ is either
2nm or (2n 4+ 1)7 (n any integer), the entire series of beams, when superposed, either
combines constructively to form a bright fringe or adds destructively to form a dark
fringe.

This is where the major point of departure appears between a plane parallel
Fabry—Perot and a wedge-shaped Fizeau interferometer. The phase delay between
the consecutive wavefronts produced by the wedged Fizeau mirrors is a progressively
increasing quantity, rather than a constant one as in a parallel Fabry—Perot. The other
difference is the spatial walk-off of the beams with multiple reflection (in Fizeau
interferometry) that cannot be compensated for perfectly by any focusing or imaging
device. Both these effects are displayed in Figure 6.3 (see also Rogers, 1982).

The progressive phase delay is easily derived by using Brossel’s (1947) very
general but elegant method developed to compute the intensity distribution and
localization of Fizeau fringes (see also Born and Wolf, 1975, p. 286). We shall
consider the particular case of perpendicular illumination of one of the mirrors by a
collimated beam that is used in many optical shops (Fig. 6.3 and 6.6). Two partially
transmitting mirrors M; and M, form a very small wedge angle €, whose apex is at O.
An incident plane wavefront, parallel to the mirror M,, produces a series of beams
due to multiple reflection. The arrow heads in Figure 6.3(a) correspond to the
“center” of the incident wavefront and hence demonstrate the beam walk-off defect
of the Fiteau interferometer. Figure 6.3(b) shows the position of the multiply
reflected wavefronts relative to the incident one at the plane of the mirror M,
(Y plane). The choice of such a diagram to compute the phase delay (Brossel, 1947;
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FIGURE 6.3. (a) Multiply reflected beams produced by a Fizeau interferometer consisting of a pair of
“plane” mirrors M;, M, with a wedge angle € between them when illuminated by a collimated wavefront
parallel to M,. (b) Geometrical construction to aid in the computation of the relative path difference between
multiply reflected beams produced by a Fizeau interferometer.

Tolansky, 1948a) was based on the fact that none of the multiply reflected wavefronts
suffers any phase delay relative to the incident one (OA ) at the apex of the wedge O,
formed by the two Fizeau mirrors. The tilts of the multiply reflected wavefronts are
designed by lines OA;((2¢), OA3({4¢), - - -, OA,((2ne). If the effect of superposition
is observed in transmission at a general point P(x, y), the path difference between the
first and the nth wavefronts is

d,(x,y) = PA, — PA, (6.4)
But
PA, = PQ + QA, = PQ + OQsin 2n¢
=PQ + (y — QA,) sin 2ne¢ = x cos 2ne + y sin 2ne
Then

d,(x,y) = x(cos 2ne — 1) + ysin2ne (6.3)
If the fringes are observed on mirror surface M, (x = 0), as is customarily done in

optical shops through an imaging device, the expression for the phase difference
simplifies to

4
d,(0,y) =2t — §n362t (6.6)
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where we have used ¢ = ye, the separation between the plates at y and the first two
terms of the series expansion of sin 2n¢, considering 2ne to be still a small angle. For a
parallel plate Fabry—Perot with orthogonal collimated illumination, the phase
difference between the first and nth wavefronts is 2¢n. Then the nth beam of a Fizeau
interferometer lags behind in phase, compared to 2n, by

4
od, = §n362t‘ (6.7)

This lesser delay in the Fizeau than in the Fabry—Perot arithmetic series (2tn) is the
single most important restriction against forming high-quality symmetric and sharp
fringes, as was first realized by Tolansky. (This problem is avoided in white-light
FECO interferometry, described in the following section, where the mirrors are set as
nearly parallel as possible.) In particular, if

4 )
§n362l = E (68)
the nth beam will add destructively rather than constructively to the first one. Hence

to obtain symmetric and sharp Fizeau fringes, one should restrict one-self to the
Tolansky inequality,

gn%zr < % (6.9)
Here the most rapidly varying quantity is n, the number of interfering beams. But we
cannot set a low value for it because the very purpose of a multiple-beam Fizeau is to
produce high-quality, high-finesse fringes that require superposition of a large
number of regularly delayed beams; this number, in turn, depends on the reflectance
of the surfaces. The broken curve in Figure 6.4 shows how the finesse N (the ratio of
the fringe interval to the full width of a fringe at half the height from its peak) of
Fabry—Perot fringes increases with increasing reflectance. The solid curve in the
same figure shows the effective number of beams M added by a computer to obtain a
peak transmittance within 0.1 % of the ideal Airy value [infinite sum of Eq. (6.1)] for
different reflectances. It can be seen that for a reflectance below 90%, the effective
number of beams M that are superposed to obtain a finesse Ny is roughly equal to
2Ng. For higher reflectivity, the required value of M steadily increases. See also
Eq. (6.5) and the rationale given there.
These curves can be exploited for Fizeau interferometry in the following manner.
If the surfaces to be tested have a given reflectance R (or equivalently, R = /R R,
when the reflectances are different for the surfaces), or one requires a desired finesse
Ng such that the reflectance is R, then the curves of Figure 6.4 indicate the value of M,
the effective number of beams that are superposed. Then to maintain the Tolansky
inequality, one substitutes M for n in Eq. (6.9) and reduces the values of ¢ and ¢
accordingly. Tolansky (1948a) gave some typical values of #n, ¢, and ¢ for obtaining
symmetric Fizeau fringes. The lowest limit of 7, the plate separation, is usually
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FIGURE 6.4. The number of interfering beams M that gives a value for the ideal Airy curve within 0.1%
plotted against the reflectance R (continuous curve.) The discontinuous curve shows the reflective finesse Ng

plotted against the reflectance R.

determined by omnipresent dust particles whose average size is generally of the order
of 1 um. The lowest limit for the wedge angle ¢ is determined by the minimum
number of fringes one wants within the field of view. The smaller the angle the larger
is the spatial separation between two adjacent fringes.

When the Tolansky inequality [Eq. (6.9)] is not satisfied (in other words, under the
most general condition), the intensity profile of each Fizeau fringe at high reflectance
is an asymmetric and composite one and constitutes a primary maximum followed by
a series of secondary maxima on the side of the thicker wedge. The intensity of these
secondary maxima rapidly decreases in the same direction as the increasing wedge
separation. The primary maximum is broadened and is no longer symmetric like the
Fabry—Perot fringes; also, its peak shifts toward the opening of the wedge with
reduced height (Kinosita, 1953). Figure 6.5 shows a qualitative representation of a
general Fizeau fringe profile plotted against one due to Fabry—Perot. These general
Fizeau fringes show a remarkable similarity to Tolansky fringes (Fig. 6.17) produced
through a plane parallel Fabry—Perot but illuminated by various tilted rays from a
point source. Such composite fringes will not destroy precision testing if the smooth
edge of the fringes is used (Polster, 1969). Characteristic Fizeau fringes are formed
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FIGURE 6.5. A composite Fizeau fringe (continuous curve) produced by a pair of flat wedged
(~1073 radian) mirrors compared with a symmetric Fabry—Perot fringe (discontinuous curve) produced
by the same mirrors when they are perfectly parallel.

not only on the plane of the thin wedged film but also at various well-defined
distances on planes named after Feussner (Barakat et al., 1965).

There is another important constraining parameter of a Fizeau interferometer: the
lateral displacement A,, of the nth beam due to the wedge angle ¢ (Tolansky, 1948a),

A, = 2n’te. (6.10)

This implies that each multiple-beam fringe formed by a Fizeau interferometer
always gives the contour map of the average surface topography over a region
spanned by A, rather than a precise geometrical point-by-point mapping.

6.3.2. Fizeau Interferometry

The essential components of a Fizeau interferometer arrangement are shown in
Figure 6.6. A monochromatic or quasimonochromatic collimated beam illuminates
the coated flats (M;, M,) forming a wedge. The fringes can be observed both in
transmission (Or) and in reflection (Og). The fringes in transmission are sharp and
bright, in very high contrast against an almost dark background, and those in
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Ty,

FIGURE 6.6. The essential components of Fizeau interferometric arrangement: S, point source. B. beam
splitter to observe fringes in reflection (Og); Ly, collimator; M;, M,, Fizeau mirrors, the wedge and
separation very much exaggerated; L,, observing lens, which images the localized fringes between the
mirrors at the observation plane Or.

reflection are exactly complementary (by simple energy conservation), that is, they
are dark fringes against a bright background (Fig. 6.7). The fringes in reflection,
however, may have very poor contrast when the reflection coating (such as a silver
layer) has a very high absorption coefficient (Tolansky, 1948a). All Fizeau fringes
have the same fringe interval of 1/2, just as do the multiple-beam Fabry—Perot or
regular two-beam fringes. This is the reason why sharp Fizeau fringes leave most of
the surface area under test without much available information. Alternatives to this
arrangement are discussed in the following sections.

Since the surface contour fringes show the total optical path variation of both flats,
one of them should be a very high quality reference flat so that the fringes can be
interpreted as contours only because of the flat being tested (Clapham and Dew,
1967). One way of obtaining an extremely high quality flat is to use a liquid surface
such as liquid mercury. A detailed description of such a Fizeau interferometer has
been given by Biinnagel et al. (1968). However, deviation of a surface from absolute
planeness can also be obtained without the use of an absolute reference flat. The
method (Schulz, 1967; Schulz and Schwider, 1967; Schulz et al., 1971) requires the
use of three flats, none of which is a high-quality reference flat.

Because of the Tolansky inequality [Eq. (6.9)], good-quality Fizeau fringes are
obtained more easily if the separation between the plates, ¢, is set to a very small
value. However, this is not an absolute necessity, as has been demonstrated by Moos
et al. (1963), who used a highly collimated laser beam to obtain the surface contours
with a plate separation as large as 20 cm. Of course, the tilt must be very small; in
their case, it was less than 10~ rad. This point is worth remembering for shopwork
because a large separation ensures against developing scratches or spoiling the
reflection coating by physical contact. A large separation requires a high-quality
mounting to maintain a stable relative alignment.

In an interesting example of off-axis illumination for improving fringe sharpen-
ing, described by Langenbeck (1970), the incident angle is chosen in such a way that
the incident beam is first reflected toward the apex of the Fizeau plates and then, after
a controllable finite number of reflections, it is reflected away from the apex. This can
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(b)

FIGUREG6.7. Fizeau fringesin transmission and in reflection, (a) Fringes in transmission constitute sharp,
bright lines against a dark background. Insert, the same transmission fringes but without the collimating lens
L, of Figure 6.6. (b) Fringes in reflection constitute complementary fringes of dark lines against a bright
background. (Fine fringes are due to back reflection from the beam splitter.)

be appreciated from Figure 6.8, where if the illumination follows the direction of the
ray SA, after a few reflections it becomes perpendicular to mirror M, at A,, and starts
retracing its path. In this manner, sharper Fizeau fringes can be formed in special
situations where a relatively large separation between Fizeau mirrors is required by a
particular test object, such as a corner cube (Langenbeck, 1970).

Eastman and Baumeister (1974) designed a regular Fizeau interferometer with
one of the mirrors mounted on a piezoelectric scanning device. Instead of photo-
graphic recording, the fringes can be detected and analyzed electronically. The
reported accuracy is about 20 A, but techniques to improve the measurement
precision are probably available. Fizeau interferometry with illumination of two
wavelengths (Shaalan and Little, 1975) is discussed briefly in the following section.
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FIGURE6.8. Fringe sharpening in a Fizeau interferometer. For a given wedge between the Fizeau mirrors
M, My, a suitable choice of the direction of illumination SA; can reduce the range of beam walk-off and
increase the effective number of interfering beams to sharpen the fringes.

6.4. FRINGES OF EQUAL CHROMATIC ORDER

In 1945, Tolansky developed a new technique of surface microtopography using
white-light illumination. The interferometer has evolved from the multiple-beam
Fizeau interferometer, where the fringes are formed by a thin, wedge-shaped film
bounded by two highly reflecting surfaces. This wedge reduces the fringe sharpness
(finesse) because of beam walk-off (Fig. 6.3). Therefore, Tolansky (1945a, 1945b)
had set the surfaces as parallel as possible, increasing the inherent finesse. With this
arrangement a collimated and orthogonal illumination with white light will produce a
channeled spectrum (Jenkins and White, 1957) of all the wavelengths, /;, that satisfy
the relation

2t = nih;. (611)

However to see the spectrum, one needs to use a spectrograph for dispersion. When a
narrow section of an ideal interference film (# constant) is imaged through a spectro-
graph, a series of laterally separated and parallel straight fringes (the channeled
spectrum) that satisfy Eq. (6.11) is displayed. If there is a variation in 7 within the
imaged section of the film, each point is passing a group of waves corresponding to
the local value of r. The spectrographic image then consists of nonstraight “fringes,”
each one of which shifts along the wavelength scale, keeping 7// constant. As stated
earlier, the name fringes of equal chromatic order (FECO) is used since along each
fringe the order number # is constant.

The basic interferometric setup is illustrated in Figure 6.9. Figure 6.10(a) shows
some FECO fringes (black and white reproduction) of a cleaved mica surface, the
topographic variation of which is shown in Figure 6.10(b) (Tolansky, 1945a).
Determination of the “hills” and ‘““valleys” of a surface microtopography becomes
very simple since fringes are convex to the violet on the “hills” and are concave to
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FIGURE6.9. The essentials of the interferometric arrangements for observing fringes of equal chromatic
order (FECO) either in transmission (Or) or in reflection (Og): Sy, white-light point source; B, beam splitter
to aid observation in reflection; L, collimating lens; M;, M,, parallel mirrors forming the interferometer,
one of which is being compared to the other as areference; L,, lens that images the channeled spectrum from
a small section of M;—M, on the spectrographic slit S, (slit S,, lenses L3 and Ly, and prism P form the
spectrograph); Or, observation plane for fringes in transmission.

the violet on the ““valleys.”” The steepness of the incline at a local region of a surface
is given by the number of fringes intersected per unit length of the vertical section of
the fringes (Fig. 6.10). For a detailed exposition of FECO interferometry, the reader
should refer to Tolansky (1948a).
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FIGURE 6.10. (a) Fringes of equal chromatic order (in black and white) from a freshly cleaved and
silvered mica surface tested against a reference flat mirror. The dense fringes at the central region along the
vertical direction indicate a sharp ridge, (b) A quantitative plot of the surface height variation along the
vertical direction depicted by the fringes of (a). (From Tolansky, 1948a.)
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FIGURE 6.11. Fizeau interferometry with white light, using two calibrated monochromators: Sy, L, P;
and S,, L, P,, the two monochromators; B, beam splitter; L3, common spectrum-forming lens for both
monochromators; S;, entrance split for the Fizeau interferometer (M;—M,); L4, collimator for the
interferometer; Ls, observing lens.

Fringes of equal chromatic order interferometry find a very useful application in
the accurate determination of thin-film thickness and in surface roughness
measurement (Bennett and Bennett, 1967; Eastman, 1975; Bennett, 1976). The
steadily increasing demand for very high quality optical surfaces in modern optical
technology has motivated the development of FECO interferometry for studying
surface roughness and has led to a better understanding of the mechanism of
polishing (Koehler and White, 1955; Koehler, 1955b; Vinokurov et al., 1962;
Hodgkinson, 1970). One should be careful, however, to consider the problem of
the phase change on reflection due to the material coated on the substrate (Tolansky,
1948a; Koehler, 1953; Schulz, 1951a) and also the dependence of the phase change
on the thickness of the thin-film material (Schulz and Scheibner, 1950). It has been
observed that the original surface microtopography is more faithfully contoured by a
metallic silver film (Tolansky, 1948a) than by a dielectric film.

Following the lead of Tolansky, Shaalan and Little (1975) reported a different
technique of exploiting white-light fringes for the study of surface micro-topography.
To exploit the full advantage, one should use an illumination for the Fizeau
interferometer that has two wavelengths simultaneously present from two calibrated
monochromators (like constant deviation spectrometers). Figure 6.11 shows the
experimental arrangement. With this technique, the direction and the height of
crystal cleavage steps or of thin films can be measured with great facility. Any
region of the surface under test can be scrutinized by first choosing one of the
wavelengths to form a fringe in the region of interest, and then adjusting the second
monochromator to produce a different colored but matched fringe on the other side of
the step (Fig. 6.12). Since the two wavelengths are known, the direction and the
height of the step are determined easily using Eq. (6.11); but one should take into
account the phase change on reflection, which is not explicit in this equation (Shaalan
and Little, 1975).
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FIGURE 6.12. Multiple fringes of variable chromaticity meeting across a step. The lighter fringe
corresponds to the red and the darker one to the green radiation as they appear in the original, which was
in color. (From Shaalam and Little, 1975.)

6.5. REDUCTION OF FRINGE INTERVAL IN MULTIPLE-BEAM
INTERFEROMETRY?

In most regular interferometry with monochromatic or quasimonochromatic
illumination, the fringe interval is 1/2, the fringes being contours of equal optical
thickness. This is the reason why in multiple-beam interferometry, the fringes being
very sharp and of high contrast, most of the surface area under test produces almost
no information about the surface topography. Even in the case of interferometry with
white light, discussed in Section 6.4, only a small surface area is imaged on the
spectrometer slit. One can scan the surface of the test object region by region.
However, this procedure is somewhat tedious.

A simpler solution (Saunders, 1951), using “pressure scanning” with normal
quasimonochromatic illumination, gives sharp Fizeau fringes but obtains a fringe
interval less than A/2. The basic technique requires placing the entire interferometer
in an airtight chamber and taking a series of exposures of the fringe system, the
fringes being shifted between every exposure by the desired amount. The shift is
achieved by a controlled amount of change in the optical path through a change in air
pressure. The same objective can be achieved a bit more conveniently by mounting
one of the mirrors on piezoelectric scanning devices and applying a suitable staircase
voltage to the piezoelectric (Roychoudhuri, 1974). This eliminates the necessity of
putting the entire interferometer within an airtight system.

In a different solution demonstrated by Herriott (1961), one illuminates the
interferometer simultaneously with a discrete set of wavelengths obtained through

3The fringe interval can also be decreased by multipass interferometry, which is discussed in Chapter 7.
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a monochromator whose entrance illumination consists of a set of spatially separated
slits, instead of a single slit. Later Murty (1962) suggested a simpler solution,
whereby one can use a regular quasimonochromatic (or monochromatic) source
with a set of spatially separated pinholes to illuminate the interferometer. A multiple
set of fringes with a reduced fringe interval is provided. A simple computation to
achieve the desired fringe interval has been given by Murty (1962). Schwider (1968)
also used Herriott’s idea of multiple-wavelength illumination but employed the
channeled spectra from a suitable Fabry—Perot. The flexibility of the test is greatly
increased if one uses a tunable laser source, as described by Pilston and Steinberg
(1969). With the continuously tunable dye lasers currently available, such tests can
be carried out very conveniently and rapidly.

6.6. PLANE PARALLEL FABRY-PEROT INTERFEROMETER

It is somewhat surprising that even though the capabilities of the plane parallel
Fabry—Perot (1897) interferometer as a high-resolution spectroscopic instrumerit
were well understood, the interferometer was not used for surface measurements
until fairly recently (Schulz, 1950a, 1950b). The standard techniques that evolved for
its utility as a spectroscopic instrument require (a) illumination by an extended
source to obtain fringes of sufficient brightness and (b) a reasonable separation
between the plates to provide sufficient resolving power. These two general
conditions probably inhibited the use of this interferometer for surface topography
because the fringes formed under these conditions cannot describe the local defects
region by region; rather, every part of the fringes is characteristic of the overall
defects of the entire surface (Chabbal, 1953, 1958). In the following discussion we
describe briefly, in chronological order, a series of uses of the Fabry—Perot
interferometer for surface testing.

6.6.1. Measurement of Thin-Film Thickness

The thickness of thin evaporated films can be measured to an accuracy of £ 15 A (or
better) by using conventional Fabry—Perot fringes (Schulz, 1950a, 1950b). The
method exploits the fact that a simple sodium vapor lamp emits a close doublet
(5890 and 5896 A) that forms, in general, a pair of closely spaced fringes and, in
particular, consonance and dissonance of the pair of fringes, depending on the
separation between the plates. Then a knowledge of the wavelengths and plate
separations for suitable positions of the pair of fringes on the two different layers
of the plate gives one the thickness of the thin film. The precise method of
quantitative analysis has been described by Schulz (1950a, 1950b). The advantage
of the method over the multiple-beam Fizeau is that the interferometer-forming
surfaces do not have to be pressed together so closely as to endanger the high-quality
surfaces and/or reflection coatings. [But here it should be remembered that Fizeau
fringes can also be formed with large separation of the plates but with a very small
wedge angle (Moos et al., 1963).]
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Schulz (1951a, 1951b) extended this technique to measure the phase change on
reflection from a thin film, its dependence on the wavelength and the thickness of the
material, and also the absorption coefficient of the film.

6.6.2. Surface Deviation from Planeness

Benedetti-Michelangeli (1968) developed a method to measure the local defects of
plane surfaces by using a narrow collimated laser beam to illuminate the local region
of the Fabry—Perot interferometer formed by the test and the reference plate. The
computation of the defect is carried out by using the standard relation for the
diameter of the Fabry-Perot fringes with the interferometer parameters as explained
in this paper. The method of illumination consists of a narrow collimated beam
incident on the parallel plates at an angle that can be varied in a smooth manner. The
reported accuracy of the flatness variation is /400, bul, as has been rightly claimed,
the potential limit is much higher.

Again, one advantage of this method is that the plates under test do not have to be
pressed together so closely as to endanger the surfaces. [An important virtue of this
short paper of Benedetti-Michelangeli (1968) is that it describes briefly but
succinctly all the important factors that influence the fringe qualities of the
Fabry—Perot]. A more accurate method is to exploit the steep slope of an Airy
transmission curve and use a narrow collimated illumination that is orthogonal to the
parallel plates. The regional defects are obtained by changing the position of the
narrow collimated beam. An accuracy of /1000 can be obtained by this method
(Koppelmann and Krebs, 1961). A major defect of either of these methods is that the
minimum area for which the average defect can be determined is limited by the
spatial size of the collimated scanning beam, which can be scarcely smaller than a
millimeter. Methods for determining point-by-point defects of surfaces are described
in the following paragraphs.

It appears that Hodgkinson (1969) was the first one to exploit the full potentiality
of the Fabry—Perot interferometer for the study of surface defects. Most multiple-
beam interferometric tests for surface topography suffer from the general
disadvantage that they do not record the complete topography of the entire surface
at a time; rather, they sample it only along the narrow fringes, leaving most of the
surface without any available information, as mentioned before. Techniques to
reduce the fringe interval (Section 6.5) alleviate the problem only partially.
Hodgkinson (1969) developed a method of recording an integrated interferogram
with the transmitted wavefront by slowly moving one of the mirrors of the
Fabry—Perot parallel to itself. The illuminating beam being an orthogonal collimated
monochromatic radiation, the transmission of the interferometer at every point is
proportional to the local plate separation. All the topographic information as well as
the defect distribution function (Chabbal, 1958) can be obtained from the
transmission characteristics of this integrated interferogram when it is properly
developed (Hodgkinson, 1969). The exposure and the development are such as to
produce a transmission characteristic that is almost linearly proportional to the
surface defects. Because of the limits on the precision obtainable from photographic



238 MULTIPLE-BEAM INTERFEROMETERS

M, M, S,
i F[ ] []
== _—

| |

L1 L

FIGURE 6.13. A Fabry—Perot interferometric arrangement for evaluating the surface defects of all the
points of a pair of mirrors. The entire interferometer is illuminated by a collimated beam. Defects are
determined from the change in transmission. One of the mirrors is mounted on piezoelectric material (PZ) to
choose the desired value of transmission.

work, the measurement of surface defects by this method has a precision of around
2/500.

It is possible to dispense with the intermediate record of an integrated interfer-
ogram if the transmitted wavefront is sensed by a spatially scanning photo detector
(or a high-resolution vidicon camera) and the information is stored for detailed
analysis (Fig. 6.13). The reference mirror can be mounted with pi-ezoelectrical
scanning devices, and the separation between the mirrors adjusted precisely so
that the detector records half the peak transmission, say, from a small central area.
Then the transmission from this central spot can be used as the reference signal to
measure the deviation from planeness of the other points. For a direct graphical
computation, the transmission curve along any diameter of the test surface is
compared against the “ideal” Airy curve, recorded through the reference central
spot as an oscilloscopic trace while scanning one of the mirrors. This is illustrated in
Figure 6.14. The half-width of the “ideal” Airy curve is given by

27 A

A 6.12
PP =N = N (6.12)

Also, the abscissa [Fig. 6.14(a)] is linear in phase, and the finesse N is known either
by measurement from the actual Airy curve obtained from a small central reference
region or from the value of the reflection coating (Fig. 6.15). Then any fluctuation in
the transmission, AQ or BR, that corresponds to an optical path change of pq or pr,
respectively, can be directly transformed into fractions of a wavelength using Eq.
(6.12). The precision of the method depends on the minimum detectable signal like
pq that is controlled by the slope of the Airy curve (Polster, 1969). This precision is
limited by the noise inherent in the photodetection. Nevertheless, the measurement
precision good to 1/2300 for surface flatness and roughness has been achieved by
Itoh et al. (2001). This paper demonstrates the extreme precision achievable by using
the principle of multiple-beam Fabry—Perot interferometer.
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FIGURE 6.14. Determination of the surface defects every point of a pair of mirrors by Fabry—Pcrot
interferometry. (a) Reference (or ideal) Airy transmission curve for a Fabry—Perot with calibrated axes, (b)
Transmission curve along a particular diameter of the Fabry—Perot when the transmission from the small
central reference region was adjusted (using the PZ) to exactly half the peak transmission.

We conclude this section by mentioning another advantage of Fabry—Perot
interferometry. So far, we have discussed the problem of determining the positions
and sizes of local defects of surfaces. However in most optical testing, the approx-
imate overall (average) quality, 1/m, of the entire surface is also of interest. This is
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FIGURE 6.15. Effective surface finesse N plotted against reflectance R for a Fabry—Perot with mirrors
having a surface defect of residual spherical curvature. Curves for four different cases of surface flatness are
shown.
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most readily obtained by assembling a master plate and the plate under test to form a
Fabry—Perot of known ideal reflective finesse and comparing this quantity with the
experimental finesse given by the interferometer. Presented in Figures 6.15 and 6.16
are two sets of curves for effective finesse against surface reflectivity; the first one is
for pure residual spherical curvature and the second one is for Gaussian random
deviation from perfect flatness. These curves were computed (Roychoudhuri, 1973b)
using Chabbal’s analysis (1958). The usefulness of the curves is illustrated by a
simple example. Suppose that the reference flat and the flat under test have 98%
reflectivity, giving an ideal reflectivity finesse close to 155, but the experimental
finesse is, say, 80 then with a careful look at the curves of Figures 6.15 and 6.16, one
can conclude that if the surface under test has a pure residual spherical curvature, the
magnitude of the mean deviation from flatness is somewhat below 4/200; or if
the deviation is of Gaussian nature or is a combination of both regular and Gaussian,
the mean deviation must certainly be less than 1/400. Furthermore, one can use the
value of the peak transmission (Chabbal, 1958; Jacquinot, 1960; Hodgkinson, 1969)
or the nature of the broadened Fabry—Perot fringes (Hill 1963; Bhatnagar et al.,
1974) to discern and characterize the surface deviation more precisely.
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FIGURE 6.16. Effective surface finesse N plotted against reflectance R for a Fabry—Perot with mirrors
having a surface defect of the Gaussian type. Curves for four different cases of surface flatness are shown
[Roychoudhuri and Hercher, 1978].
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6.7. TOLANSKY FRINGES WITH FABRY-PEROT INTERFEROMETER

When a pair of highly reflecting plane parallel surfaces is illuminated by a point
source, a characteristic series of composite circular fringes (with decaying secondary
maxima) can be observed at any distance from the surfaces. Such nonlocalized
fringes appearing on diverging conical surfaces were first noted and used for the
study of thin crystal plates by Tolansky (1943, 1946). Therefore, we shall call these
nonlocalized multiple-beam fringes Tolansky fringes.

Tolansky fringes can be used for localized precision testing by imaging a point
source between the mirror surfaces. For this method to be effective, the mirrors must
be fairly close. The observation can be carried out without the use of any microscope
or similar device by simply intercepting the fringes with a distant wall (Fig. 6.17).
Tolansky (1948a) gave a simplified analysis. The angular diameters of the fringes are
approximately given by 26,, where 0, follows the Fabry—Perot formula,

2tcos B, = nAi. (6.13)

A detailed computation of the characteristics of these fringes was made by
Aebischer(1971).

Tolansky fringes also find useful application in the quick alignment of a laser
cavity (Bergman and Thompson, 1968) and the Fabry—Perot interferometer (Ford
and Shaw, 1969; Roychoudhuri, 1973b). For this purpose, if transmission fringes are
used, the secondary maxima should be aligned to be perfectly concentric with the
primary maxima; a clear residual tilt in the alignment is indicated when the
secondary maxima cross the primary maxima [Figure 6.18(a,b)]. However, when

- 0¢

4
r-
! edlne=
’

L S
.

T
s
3

VYA

FIGURE 6.17. Formation of nonlocalized Tolansky fringes at plane (Or) by a Fabry—Perot (M;—M,)
when it is illuminated by a point source S.
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(b)

FIGURE 6.18. Some nonlocalized Tolansky fringes, (a) Fabry—Perot plates were “‘perfectly” parallel
and (b) the plates were tilted.

the fringes in reflection are used for alignment (the weak secondary, dark fringes are
almost invisible), the fringe system should be made concentric with the axis of the
cone of fringes (or the illuminating point source).

Another application of Tolansky fringes involves measurements of the long-term
stability of high-quality Fabry—Perot interferometers (or a laser cavity). As
mentioned before, the fringes formed by the Fabry—Perot under test can be
intercepted with a distant wall, and the contraction (expansion) of the fringes
measured in millimeters to obtain the longitudinal expansion (contraction) of the
Fabry—Perot separation in fractions of a wavelength. The tilt of the plates can also be
measured by observing the crossing of the secondary fringes over the primary ones.
We have used this technque to measure the long-term stability of a commercial
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Fabry—Perot (all Invar structure) and one of our own constructions (all Cervit
structure with thermally compensated mounts) (Roychoudhuri, 1973a, 1973b).
The latter Fabry—Perot shows better stability.

6.8. MULTIPLE-BEAM INTERFEROMETER FOR CURVED SURFACES

As mentioned in the introduction, multiple-beam interferometers to test curved
surfaces were developed independently by Herriott (1966), by Heintze et al.
(1967), and by Biddles (1969). Such interferometers are very useful for precision-
testing of various surfaces of different curvatures against a suitable master surface
when they are arranged as a concentric system. A similar interferometric setup can
also be adapted to other possible precision measurements, such as thermal, pressure,
or composition gradients in wind tunnels, shock tubes, and so on (Herriott, 1966).
The generic natures of interference fringes formed by multiple spherical wave fronts
have been developed by Zerbino et al. (1984).

The essential elements of the interferometer are portrayed in Figure 6.19, where a
master aplanatic M and a surface under test M, form a concentric system. The point
source S is imaged at C, the common center, by the lens L. With the precise
concentric arrangement, one finds at the observation plane (O7 or Og) a uniform
wavefront with perfectly spherical surfaces. To produce contour fringes, one
displaces one of the mirrors by a short distance either laterally (to obtain straight
fringes) or longitudinally (to obtain circular fringes). [The latter technique is also
used with a confocal spherical Fabry—Perot to produce high-dispersion spectral
fringes (Persin and Vukicevic, 1973).] Since such displacement introduces
walk-off of the beams, Herriott (1966; see Fig. 5) introduced a compensating lens
at the common center to image one mirror to the other in such a way that the reflected
rays are deviated back to the same points on the mirrors, thus preserving the localized
surface testing capability. For various modifications of this basic interferometer see
the original references (Herriott, 1966, Heintze et al., 1967; Biddies, 1969). See
Rafalowski (1988, 1990) for testing coma of decentration and asymmetric
wavefronts with confocal Fabry—Perot interferometers.

FIGURE 6.19. Multiple-beam interferometric arrangement for testing curved surfaces. Mirrors M, and
M, are set almost concentric with point C. Lens L, images point source S at common center C. Observation
can be carried out both in transmission (Or) and reflection (O). Lens L, images surface M; on M, and vice
versa to correct the walk-off defect.
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Such spherical interferometers can also be used with multiple (say, n) wavelength
illumination (Herriott, 1966) to reduce the fringe interval from 4/2 to some 1/2n and
thus increase the precision of testing, discussed in Section 6.5. Since such
interferometers normally have large separation, one can use regular multilongitudi-
nal mode lasers to advantage by appropriately matching the lengths of the laser and
the interferometer cavities. In matching the cavities, one should carefully take into
account the separation of the laser modes (laser cavity length), the free spectral range
of the interferometer (interferometric cavity length), and the finesse of the
interferometer. Here matching does not imply equality of the cavity lengths; they
can be integral or fractional multiples of each other as the situation demands
(Herriott, 1966). In using a regular multilongitudinal laser for long-path interferom-
eters, one must be aware of the difficulties in obtaining stable high-contrast fringes
(Batishko and Shannon, 1972).

6.9. COUPLED AND SERIES INTERFEROMETERS

In this section, we describe two interesting and useful modifications of
multiple-beam Fizeau interferometers. The first one consists in coupling a Fizeau
interferometer into a Twyman-Green interferometer as the dual interferometric
arrangement shown in Figure 6.20 (Pastor and Lee, 1968: Langenbeck, 1968;
Aebischer, 1970). For more details on such interferometers, see Cagnet (1954) and
Candler (1951). The second modification uses three plates in series instead of two
(see Fig. 6.22), as in conventional Fizeau interferometers (Post, 1954; Saunders,
1954; Roberts and Langenbeck, 1969).
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FIGURE 6.20. A coupled interferometric arrangement between a Twyman-Green and a Fizeau to control
the contrast and exploit the dynamic moire technique in Fizeau interferometry.
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6.9.1. Coupled Interferometer

The coupled interferometer, which consists of a Twyman-Green interferometer with
one of its mirrors replaced by a Fizeau interferometer, combines several advantages
in a single setup. Studying opaque optical flats in a Fizeau setup poses a general
drawback because the fringes in reflection are sharp black lines against a bright
background. This in itself does not create the main problem, although the contrast is
poor with absorbing reflection coatings like silver film (Tolansky, 1948a; Schulz,
1951b). The Tolansky condition [Eq. (6.9)] for good-quality Fizeau fringes forces
one to have low-frequency fringes in the field of view, and since the fringes are very
sharp, most of the area does not produce any information, as has already been
mentioned. (Several solutions to this problem were discussed in Sections 6.4 and
6.5.) The use of white-light (Section 6.4) or multiple-wavelength illumination
(Section 6.5) is ruled out for reflection fringes since the large bright background
due to one wavelength will wash out the sharp dark fringes due to another
wavelength. This problem, which is inherent in studying opaque surfaces by
reflection Fizeau, can be eliminated by the use of this dual interferometer
(Fig. 6.20) to reverse the contrast and obtain transmission-like fringes in reflection
Fizeau interferometry (Pastor and Lee, 1968). However, in such a coupled
interferometer the reference surface (of the Fizeau arm), the Twyman mirror surface,
the beam splitter, and the light collimation must be of very good optical quality.

The other advantages of this coupled interferometer have been described in detail
by Langenbeck (1968), and we shall mention only the major points. It is well known
that the Moiré interferometry increases the sensitivity of the test under proper
conditions (see Chapter 12 for detailed background), where one superposes the
test interferogram against a suitable master reference pattern. A Moiré pattern
displaying only the absolute error will be presented, provided that the master
reference pattern has been made to include the inherent aberrations of the
interferometer itself (e.g., the errors introduced by the beam splitter in a
Twyman-Green). Such a master reference can be obtained “live” from the Fizeau
wedge in one arm of the dual interferometer. Such “live” fringes also have another
very useful advantage: The absolute direction of a surface deviation (“hills” and
“valleys”’) can be read directly from the resultant interferogram, especially if the
Fizeau fringes are used as the reference Moiré grid (because of the direct knowledge
of the order of the reference fringes). This is illustrated by the photograph in
Figure 6.21, taken from Langenbeck (1968).

Recently Gillen and Guha (2005) have demonstrated the use of the principle of the
coupled interferometers, a Michelson and an FP, to independently measure the
thickness and the refractive index of a substrate when available as a parallel plate.
Schwider (1968) has demonstrated a superposition fringe shear interferometer
(SFSI), which is a combination of an FP etalon and a shear plate to measure all
the complex aberrations of a microscope objective in a single and very stable set up.
Later Schwider (1997) developed this concept into a white light Fizeau
interferometer where the illumination passes through an FP etalon. When the air
gap (spacing) between the FP etalon plates and the Fizeau plates are equalized, one
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FIGURE6.21. (a) Twyman-Green interferogram of a deformed mirror. Concentric fringes may be high or
low areas. Dynamic observation is needed to determine the direction of order or interference. (b) Same, but
with superimposed wedge field, permitting determination of the direction of the order of interference. (From
Langenbeck 1968.)

can take advantage of the order number of the fringes with reference to the OPD=0
fringe.

6.9.2. Series Interferometer

In this second modification of a Fizeau interferometer, introduced to measure the
homogeneity of optical plates, the plate under test is inserted between two reference
Fizeau mirrors (Figure 6.22). Such a device is necessary for testing high-quality beam
splitters whose function is not only to reflect but also to transmit wavefronts without
distortion. Hence, a simple surface flatness test of the reflecting surface of the beam
splitter is not sufficient. The Fizeau fringes alone in reflection, with the plate under test
on the side of the observer, cannot directly map the index variation when there is a
simultaneous surface variation. Since the interfering light beams in such a three-plate
interferometer (Fig. 6.22) pass through the plate under test many times, the sensitivity
of the measurement of the index variation or homogeneity increases by a large factor.
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FIGURE 6.22. A series interferometer with three mirrors for precision testing of the homogeneity of aflat
(Mp).
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Such interferometers have been named by their independent discoverers as the “in-line
interferometer” (Saunders, 1954) and the “series interferometer’” (Post, 1954).

The various different conditions and reflectances for the plates of such
interferometers have been described in the references cited. Of the more recent
papers along similar lines by Ashton and Marchant (1967) and by Roberts and
Lan-genbeck (1969), the latter describes how to evaluate and obtain a contour map of
fractional index variation better than 107°.

6.10. HOLOGRAPHIC MULTIPLE-BEAM INTERFEROMETERS

The advantages of holographic interferometric tests of optical components are
described in Chapter 12. When the choice has been made in favor of holographic
interferometry, one can introduce the precision associated with multiple-beam
interferometry by employing the hologram to reconstruct many wave-fronts that
can be combined to produce sharp multiple-beam fringes. This is achieved by the
hologram, nonlinearly recorded, that produces several higher order reconstructed
beams. Matsumoto (1969) and Bryngdahl (1969) described such techniques, by
which they recorded single-exposure holograms with single-wavelength
illumination. An obvious advantage of this method is that one can obtain
multiple-beam Fizeau type fringes from diffuse surfaces under test.

Burch et al. (1966) described a different method that uses linear holographic
recording, but has multiple exposures made while bending the object. Multiple
exposures can also be obtained by changing the direction of illumination or by using
multiple-wavelength illumination, instead of bending the object. But before
undertaking multiple-beam holographic testing (Shaalan and Jonathan, 1978) with
its attendant difficulties, one should make reasonably certain that simple two-beam
interferometry with a good-quality fringe detecting device is insufficient for the
precision necessary.

6.11. TEMPORAL EVOLUTION OF FP FRINGES
AND ITS MODERN APPLICATIONS

With the advancement of sophisticated mirror coatings, polishing, and alignment
technologies, people have been able to achieve reflectance exceeding 0.9999 and
effective finesses exceeding 10,000. Such super finesse FPs are becoming critically
important tools for various specialized applications such as gravitational wave
detection [LIGO], trace amount of gas detection by methods called CRDS (cavity
ring down spectroscopy) (Casaes et al., 2002), and study of micro cavity quantum
electrodynamics (Kimble, 1994; Blais et al., 2004). Optical testing of the surface
quality and/or alignment of such mirrors is a daunting task, but the principle of
operation of FP itself comes to rescue (Herbelin, 1980; Itoh, 2001). In fact, Herbelin
et al. exploited the long photon life time of super finesse FP to measure the high
reflectance, low absorption, and scattering losses using a modulated laser beam. Then
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this basic concept has been reinvented (O’Keefe and Deacon, 1988) for ultra
sensitive measurement of very low concentration of gases inside the FP cavity.

In Section 6.3.1, we have underscored that the multiply reflected infinite FP series
can be effectively terminated at n = N, the finesse number [Eq. (6.3)], because the
energy carried by the beams after the Nth reflection become very small and hence
negligible. Here we justify it numerically. The relative reduction in intensity, b, of the
nth transmitted beam compared to the first one can be given by

b=1,/I, = T*R*/T? or Inb = 2nInR (6.14)

For arange of moderate to high finesse FP with R = 0.9000 to 0.9999, the intensity of
the Nth beam will be reduced approximately by the same factor of b = 1.87 x 1073,
So, one can safely terminate the infinite FP series by a finite sum of N terms, and the
normalized intensity can be reformulated as a series by complex conjugate
multiplication of the transmitted amplitude from Eq. (6.1),

N—-1 N—1
Icw(V7 ’L') o (Z TRmei2nnvr> (Z TRneiZHmvr)
n=0 m=0

Vol N (6.15)
= Z T°R* 42 Z T*R™™ cos[2n(n — m)v1]
n=0 n#m

We have numerically verified that this Eq. (6.5) quite accurately represents the
traditional FP Eq. (6.1) as the superposition of a finite number of cosine fringes of
varying contrast (fringe visibility). We can now appreciate that for a high finesses FP,
the quantitative representation of FP fringes would require one to wait for a time 7
till the FP has been able to generate N transmitted beams. Thus, we define a very
important parameter for an FP; its characteristic time constant as [Kastler, 1974;
Roychoudhuri, 1975],

70 = Nt (6.16)

This time duration 7 is required for the FP to establish its steady state fringe pattern
if a light beam is suddenly turned on. With the routine availability of light sources of
very short duration and very high speed detectors, the use of super finesses FP (large
79) requires a simple classical understanding of the evolution of the FP fringes. If the
incident light beam, a(z) exp[i2nvi], is a pulse of finite duration, dt, then following the
model of Eq. (6.15), the time varying, transmitted intensity can be given by
(Roychoudhuri et al., 2003; Roychoudhuri, 2004),

2
J(tv,1) = a(t — nt)TR" ™00

= T*R*a®(t — nt) +2 Z T2R"™"a(t — nt)a(t — mr) cos[2n(n — m)vr
n=m=0 n>m

(6.17)
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After integration over the entire train of the Ng replicated pulses,

Ls(v,7) Z T’R*" +2 Z T*R"™™y(|n — m|t) cos[2n(n — m)v1] (6.18)
n#m

Here, y(7) is the normalized autocorrelation function between the mth and the nth
replicated pulses that reduce to unity when the width of the pulse a(z) is theoretically
infinite. We have found that numerically it only needs to exceed 79 = Nt.

()Z_L,t Lpis(v,7)] 22 Iy (v, 1) (6.19)
This is a very important result because it shows by very simple mathematics that the
generalized time integrated fringe pattern for a pulse converges to the standard CW
fringe pattern (from Eq. (6.15) to Eq. (6.18); this recognizes that an FP is a pair of
beam splitters that replicates an incident pulse into a train of Ny effective pulses with
the periodic delay of 7. One does not need to complicate this simple physical picture
by introducing time-frequency Fourier transformations that tend to bring confusion
between the actual carrier frequency of the incident radiation and the mathematical
Fourier frequencies of a transformed pulse. Thus, if the width of the incident pulse
exceeds the characteristic time constant of the FP, it produces CW-like fringes;
otherwise the fringe becomes broader than the CW situation due to the factor (7).
This y(t) represents the reduction in the fringe contrast due to physical superposition
of unequal amplitudes (translated pulses). In the extreme case where 0f < 1, a fast
detector can only detect an exponentially dying train of pulses for lack of
superposition, irrespective of whether the carrier frequency of the pulse is in
resonance or antiresonance with FP spacing. This last case of nonoverlapping pulses
(Fig. 6.23c) can be represented by after using Eq. (6.7) and neglecting the cross terms
due to absence of overlapping,

Ls(2,v) TZZRZ" 2( (6.20)

If one considers only the peak intensity, then a® at the peak is a fixed number and the
time envelope of the intensity fall can be represented by

I [Lis(t = n7)| e = In [@®T°R*"] = (2InR)n + 21n (aT) (6.21)

If one plots the log of the transmitted peak intensities against the pulse number, n, this
will give a straight line with a slope of (21n R) and an intercept of (2 In (aT)). Since

T+R+A=1 (6.22)

where A represents the absorption and scattering losses, one can use a single short
pulse to characterize the FP mirror properties or the absorption loss of trace gases if
its absorption frequency matches with the carrier frequency of the incident pulse.
Conceptually, this is the foundation behind characterizing FP mirrors with a
modulated laser (Herbelin et al., 1980) and the success of CRDS (O’Keefe and
Deacon, 1988). Readers should note that our 7y = Ngt, although closely similar, is
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FIGURE 6.23. A pair of beam splitters create a train of delayed, identical pulses of reduced amplitudes
from a single incident pulse. The width of the pulse, dt, relative to the FP transit time, t = 2d/c, determines
the degree of real physical superposition of the folded pulse inside the FP. For 0f ~ 7, the partial
superposition of the amplitudes is depicted in (a), and the corresponding, resultant intensity transmittance
isdepictedin (b) at the FPresonance (2d = m4). When the pulse is very much longer than 7, we have a steady
state condition, or CW interference. When of < 1, there is no physical overlap between the train of pulses.
Thisis depicted in (c). In the absence of superposition, the transmitted intensity peaks are given by the square
modulus of the individual replicated pulses; the roundtrip phase shift is no longer operative and the
resonance enhanced higher transmittance is also absent (Lee, 2005).

not the photon life time for an FP, as is popularly defined in the literature using FP
with short pulses. We have defined it as the FP time constant that represents the actual
physical time period during which useful Ny pulses are generated by the FP mirror
pair.

6.12. FINAL COMMENTS

Multiple-beam interferometry provides very high precision surface measurements
compared to two-beam interferometry under comparable data processing
environments. However, the requirements on source coherence and the basic
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experimental setup are more expensive and time consuming, so multiple-beam
interferometry is less useful in routine shop floor testing, where 4/10 precision is
adequate. Measuring surface quality to much better than 1/50 is more efficient using
various forms of multiple-beam interferometry exploiting principles of Fabry-Perot
interferometry and multiple-beam Fizeau interferometers including fringes of equal
chromatic order (FECO). There are many unique niches where multiple-beam
interferometers are ideally suited. The first historic example is the characterization
of surface microtopography using multiple-beam Fizeau interferometer (Bennett and
Bennett, 1967). However, readers interested in measuring surface roughness to a root
mean square (rms) accuracy of 20 A using two-beam Fizeau interferometer may see
Eastman (1980), where he uses a piezoelectrically scanned interferometer. A natural
application of Fabry-Perot interferometry is to test the component Fabry-Perot plates
or solid etalons requiring a precision of /200 or better (Hariharan et al., 1984;
Hernandez, 1988). Measurements of parallelism of optically contacted etalons have
been described by Killeen et al. (1981). Modern electronic industry requires bonding
optically flat, large silicon crystal wafers with precision micrometric spacing. Rhee
et al. (1990) have successfully exploited the principle of Fabry-Perot interferometry.

Multiple-beam interferometry using grating as one of the two conventional
mirrors has been developed for special applications. Useful examples can be found
from Bates and Li (1986) and also from Rodriguez-Zurita et al. (1998) and from
references there. A combination of a Fabry-Perot interferometer and a two-beam
interferometer has been cleverly used to very accurately measure the thickness of air
layers by Schwider (1979). Precision associated with multiple-beam fringes can also
be generated using holography that is suitable for realtime testing of deformation of
microobjects (Shaalan and Jonathan, 1978).

Sometimes, four-beam and three-beam interferometry are also useful. Ma kosch
and Jaerisch (1978) have described four-beam Fizeau interferometry for contactless
surface testing using a grating as the reference flat. Lin and Cowley (1986) have
described the advantages of using three-beam Ronchigram in measuring primary
aberrations. Strains of curved surfaces that are coated with photosensitive material
have been measured by Chiang and Kim (1984) by three-beam holographic
interferometeric techniques.

It is worth mentioning that there have been rapid technological advancements in
the diverse use of the principle of multiple-beam Fabry—Perot interferometry that are
beyond the domain of this book. Miniaturization of all instruments has become the
general technological drive. With the advancements in fiber Bragg gratings,
micro-opto-electromechanics (MOEMs) and nano photonics, Fabry—Perot interfe-
rometers are also getting integrated into miniature and micro-optical systems.
Testing such micro Fabry—Perots will become the next challenge.
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7

Multiple-Pass Interferometers

P. Hariharan

This chapter discusses some variants of the conventional interferometers used for
optical testing in which one (or more) of the wavefronts is sent back and makes two or
more traverses of either the whole system or a part of it. Such double- or multiple-
pass interferometers offer definite advantages for some testing applications.

7.1. DOUBLE-PASS INTERFEROMETERS

7.1.1. Separation of Aberrations

The interference pattern obtained with a lens in a Twyman—Green interferometer
gives a contour map of the wavefront leaving the lens aperture; however, when many
aberrations are present, estimation of the individual aberrations becomes difficult.
This problem can be simplified if the Twyman-Green interferometer is used in a
double-pass configuration (Hariharan and Sen, 1961d) so that the symmetrical and
the antisymmetrical parts of the wave aberration (see Chapter 13) are displayed in
separate interferograms.

As shown in Figure 7.1, the beams emerging from the interferometer through the
lens L, are reflected back through it by the plane mirror M3 placed at its focus, and
the double-pass beams emerging from L, are brought to a focus at the eye stop by the
auxiliary beam divider S,. If the source is shifted very slightly sideways, the two
images formed at the eye stop move off the axis in opposite directions, and it is
possible to view either the fringes produced by the double-pass beams or the normal
interference pattern.

The four double-pass rays derived from a ray incident on the beam divider S; at O
can be identified as the AA’ ray (SOAOM;0’A’O’S), the AB’ ray (SOAOM;0'B’O’S),
the BA’ ray (SOBOM;0’'A’0’S), and the BB’ ray (SOBOM;0'B’Q’S), corresponding
to the paths they follow on the outward and return journeys. Since the wavefronts
emerging from the interferometer are inverted before they are sent back, it is easily
seen that if on the first pass the BB’ ray traverses the pupil of the lens under test at a
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FIGURE 7.1. Double-pass Twyman-Green interferometer for separation of symmetrical and antisym-
metrical wavefront aberrations. (From Hariharan and Sen, 1961d.)

point P(r, ¢), it traverses the pupil on the second pass at the diametrically opposite
point P'(r, @ + ¢). In the same manner, while the BA’ ray traverses the pupil at P, the
AB' ray traverses it at P’.

At these two points, the terms in the expressions for the total wavefront aberration
(Hopkins, 1950) involving even powers of cos ¢ (i.e., the defocusing, spherical
aberration, and astigmatism terms) have the same value, whereas the terms involving
odd powers of cos ¢ (i.e., the distortion and coma terms) are of equal magnitude but
have opposite signs. The total paths of the four double-pass rays can therefore be
written as follows:

Daa = D (say)
Dga =D+ 2Vveven + 2‘/Vodd +AD
Dap' = D + 2Weyen — 2Woad + AD (7.1)

Dgpr = D + 2Weyen + 2Woaa + AD + 2Weven — 2Woaa + AD
=D + 4Weyen + 2AD

where Weye, is the sum of the terms involving even powers of cos ¢ Woqq is the sum of
the terms involving odd powers of cos ¢ (see Appendix 3), and AD is the difference
in the lengths of the A and B paths for the principal ray.

To select the required combinations of double-pass beams, the beam from the
collimator is polarized in the vertical plane, and a quarter-wave plate is introduced in
the A path. The plane of polarization of the AB’ and BA’ beams is then rotated
through 90°, while the plane of polarization of the AA’ and BB’ beams remains
unchanged. Hence, when the analyzer is set with its axis vertical, the AB’ and BA’
beams are extinguished, and interference takes place between the AA’ and BB’
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beams. The path difference between these is
Dgp' — Dapnr = 4Weyen + 2AD. (7.2)

Accordingly, symmetric errors such as change of focus, spherical aberration, and
astigmatism are shown in this interferogram with doubled sensitivity, whereas
features that depend on odd powers of cos ¢ are eliminated.

When the analyzer is rotated so that its axis is horizontal, the AB’ and BA' rays are
isolated and made to interfere. The path difference between these rays is

Dpa — Dapr = 4Woad (7.3)

Only antisymmetric aberrations such as distortion and coma are shown in this
interferogram, along with any tilt of the reference mirror (which is equivalent to
the introduction of an additional “odd” term).

A typical set of interferograms obtained with an uncorrected lens is shown in
Figure 7.2. Figure 7.2(a) is a normal Twyman-Green interferogram, and
Figures 7.2(b, c) are double-pass interferograms, which show the “even” and
“odd” components of the wavefront aberration. The patterns obtained by plotting
the expressions for the most important aberration terms are shown below each
interferogram.

(a) (b) (c)

FIGURE 7.2. Interferograms obtained with the double-pass Twyman interferometer. The patterns
obtained by plotting the expressions for the most important aberration terms are shown below each
interferogram. (a) Normal interferogram: 2W = 0.25 + 1.85r cos ¢ — 3.99/> —2.75r% cos® ¢p—
1.57r cos ¢ +4.33r* +1.72* cos? ¢. (b) Double-pass interferogram showing only the “even” terms:
4Woyen = 0.50 — 7.98r% — 5.507% cos® ¢ + 8.66r* + 3.44r* cos’> ¢. (c) Double-pass interferogram
showing only the “odd” terms: 4Wyqq = 3.70r cos ¢ — 3.14r> cos ¢. (From Hariharan and Sen, 1961d.)



262 MULTIPLE-PASS INTERFEROMETERS

7.1.2. Reduction of Coherence Requirements

Residual wedge errors in plane parallel plates are commonly measured with the
Fizeau interferometer. This has the disadvantage that the path difference between the
interfering wavefronts is twice the optical thickness of the plate under test. It is
therefore essential to use a well-collimated beam of monochromatic light when
testing thick plates. Even with a laser source, a well-corrected objective must be used.
However, this problem can be eliminated if the interferometer is double passed, so
that superposition fringes are formed between the plate under test and its inverted
image.

One method (Cagnet, 1954) is to use the wavefronts transmitted through the plate
under test and reflect them back by means of an auxiliary afocal system. In this case,
it is necessary to coat the surfaces of the plate so that their reflectivity R is fairly
high. With a broadband source such as a high-pressure mercury vapor lamp, the
fringes then have the same intensity distribution as those obtained with strictly
monochromatic light in a conventional Fizeau interferometer with surfaces having
reflectivity R>.

An alternative that does not require the surfaces to be coated and involves very
little in the way of additional optics is to use a doubly reflected system of fringes (Sen
and Puntambekar, 1965). The optical arrangement shown in Figure 7.3 is the same as
that in a conventional Fizeau interferometer, except that the pinhole source is on the
reflecting surface of a plane mirror. If this pinhole is shifted slightly off axis, the rays
reflected back from the plate under test are brought to a focus at a point on this mirror
on the other side of the axis, so that they are reflected back once more through the
system. The double-pass rays are finally brought to a focus at the eye stop by a beam
divider.

A ray traversing the plate under test at a point P(x, y) on the first pass traverses
it at P’(—x, —y) on the second pass. Let #(x, y) be the optical thickness of the plate
at B, ¢ = (2n/A)[t(x, y) + t(—x, —y)). and ¥ = 2n/A)(x, y) — t(~x, )], and
assume that the spectral bandwidth of the source is such that no interference can take
place for a phase difference of ¢, while the variation of s over this bandwidth can be

Mirror with Collimator lens
pinhole

P

Eye sto
y P Plote under

test

FIGURE 7.3. Double-pass Fizeau interferometer for testing plane parallel plates. (From Sen and
Puntambekar, 1965.)
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FIGURE 7.4. Double-pass Fizeau interferometer for testing reflecting prisms. (From Sen and Puntam-
bekar, 1966.)

neglected. With an uncoated glass plate whose reflectivity R is small, the fringe
irradiance at any point is then

I(x, y) = 2IpR*(2 + cos 2y) (7.4)

where [, is the irradiance of the original incident ray. This corresponds to the
irradiance distribution in two-beam fringes with a visibility of 0.5, which is adequate
for most measurements. The interferogram shows only the antisymmetrical (wedge)
errors in the plate under test, for which i