
Optical Shop Testing
Third Edition

Edited by
DANIEL MALACARA

Wiley-Interscience

A John Wiley & Sons, Inc., Publication



Optical Shop Testing





Optical Shop Testing
Third Edition

Edited by
DANIEL MALACARA

Wiley-Interscience

A John Wiley & Sons, Inc., Publication



Copyright � 2007 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by

any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted

under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written

permission of the Publisher or authorization through payment of the appropriate per-copy fee to the

Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)

750-4470 or on the web at www.copyright.com. Requests to the Publisher for permission should be

addressed to the Permissions Department, JohnWiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,

(201) 748-6011, fax (201) 748-6008 or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in

preparing this book, they make no representations or warranties with respect to the accuracy or

completeness of the contents of this book and specifically disclaim any implied warranties of

merchantability or fitness for a particular purpose. No warranty may be created or extended by sales

representatives orwritten salesmaterials. The advice and strategies contained hereinmay not be suitable for

your situation. You should consult with a professional where appropriate. Neither the publisher nor the

author shall be liable for any loss of profit or any other commercial damages, including but not limited to

special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our

Customer Care Department within the United States at (800) 762-2974, outside the United States at (317)

572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not

be available in electronic formats. For more information about Wiley products, visit our web site at

www.wiley.com.

Wiley Bicentennial Logo: Richard J. Pacifico

Library of Congress Cataloging-in-Publication Data

Optical shop testing/edited by Daniel Malacara. – 3rd ed.

p. cm.

ISBN: 978-0-471-48404-2 (cloth/cd)

1. Optical measurements. 2. Interferometry. 3. Interferometers. I. Malacara, Daniel, 1937–

QC367.O59 2007

6810.25–dc22 2006036226

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com


Contents

Preface xvii

Contributors xix

Chapter 1. Newton, Fizeau, and Haidinger Interferometers 1

M. V. Mantravadi and D. Malacara

1.1. Introduction 1

1.2. Newton Interferometer 1

1.2.1. Source and Observer’s Pupil Size Considerations 9

1.2.2. Some Suitable Light Sources 11

1.2.3. Materials for the Optical Flats 12

1.2.4. Simple Procedure for Estimating Peak Error 12

1.2.5. Measurement of Spherical Surfaces 13

1.2.6. Measurement of Aspheric Surfaces 15

1.2.7. Measurement of Flatness of Opaque Surfaces 17

1.3. Fizeau Interferometer 17

1.3.1. The Basic Fizeau Interferometer 18

1.3.2. Coherence Requirements for the Light Source 20

1.3.3. Quality of Collimation Lens Required 22

1.3.4. Liquid Reference Flats 23

1.3.5. Fizeau Interferometer with Laser Source 23

1.3.6. Multiple-Beam Fizeau Setup 24

1.3.7. Testing Nearly Parallel Plates 26

1.3.8. Testing the Inhomogeneity of Large Glass or

Fused Quartz Samples 27

1.3.9. Testing the Parallelism and Flatness of the Faces of

Rods, Bars and Plates 28

1.3.10. Testing Cube Corner and Right-Angle Prisms 28

1.3.11. Fizeau Interferometer for Curved Surfaces 30

1.3.12. Testing Concave and Convex Surfaces 32

1.4. Haldinger Interferometer 33

1.4.1. Applications of Haidinger Fringes 35

1.4.2. Use of Laser Source for Haidinger Interferometer 36

1.4.3. Other Applications of Haidinger Fringes 39

1.5. Absolute Testing of Flats 40

v



Chapter 2. Twyman–Green Interferometer 46

D. Malacara

2.1. Introduction 46

2.2. Beam-Splitter 48

2.2.1. Optical Path Difference Introduced by the Beam Splitter Plate 49

2.2.2. Required Accuracy in the Beam Splitter Plate 51

2.2.3. Polarizing Cube Beam Splitter 53

2.2.4. Nonpolarizing Cube Beam Splitter 55

2.3. Coherence Requirements 56

2.3.1. Spatial Coherence 56

2.3.2. Temporal Coherence 60

2.4. Uses of a Twyman–Green Interferometer 62

2.4.1. Testing of Prisms and Diffraction Rulings 64

2.4.2. Testing of Lenses 69

2.4.3. Testing of Microscope Objectives 71

2.5. Compensation of Intrinsic Aberrations in the Interferometer 72

2.6. Unequal-Path Interferometer 73

2.6.1. Some Special Designs 75

2.6.2. Improving the Fringe Stability 76

2.7. Open Path Interferometers 77

2.7.1. Mach-Zehnder Interferometers 77

2.7.2. Oblique Incidence Interferometers 78

2.8. Variations from the Twyman–Green Configuration 80

2.8.1. Multiple Image Interferometers 80

2.8.2. Interferometers with Diffractive Beam Splitters 80

2.8.3. Phase Conjugating Interferometer 81

2.9. Twyman–Green Interferograms and their Analysis 83

2.9.1. Analysis of Interferograms of Arbitrary Wavefronts 91

Chapter 3. Common-Path Interferometers 97

S. Mallick and D. Malacara

3.1. Introduction 97

3.2. Burch’s Interferometer Employing Two Matched Scatter Plates 98

3.2.1. Fresnel Zone Plate Interferometer 102

3.2.2. Burch and Fresnel Zone Plate Interferometers

for Aspheric Surfaces 102

3.2.3. Burch and Fresnel Zone Plate Interferometers for Phase Shifting 102

3.3. Birefringent Beam Splitters 104

3.3.1. Savart Polariscope 104

3.3.2. Wollaston Prism 106

3.3.3. Double-Focus Systems 107

3.4. Lateral Shearing Interferometers 108

3.4.1. Use of a Savart Polariscope 108

3.4.2. Use of a Wollaston Prism 111

vi CONTENTS

Eang Seang Hor
Highlight



3.5. Double-Focus Interferometer 112

3.6. Saunders’s Prism Interferometer 114

3.7. Point Diffraction Interferometer 116

3.8. Zernike Tests with Common-Path Interferometers 118

Chapter 4. Lateral Shear Interferometers 122

M. Strojnik, G. Paez, and M. Mantravadi

4.1. Introduction 122

4.2. Coherence Properties of the Light Source 123

4.3. Brief Theory of Lateral Shearing Interferometry 124

4.3.1. Interferograms of Spherical and Flat Wavefronts 126

4.3.2. Interferogams of Primary Aberrations upon Lateral Shear 128

4.4. Evaluation of an Unknown Wavefront 134

4.5. Lateral Shearing Interferometers in Collimated Light

(White Light Compensated) 137

4.5.1. Arrangements Based on the Jamin Interferometer 137

4.5.2. Arrangements Based on the Michelson Interferometer 139

4.5.3. Arrangements Based on a Cyclic Interferometer 140

4.5.4. Arrangements Based on the Mach–Zehnder Interferometer 142

4.6. Lateral Shearing Interferometers in Convergent Light

(White Light Compensated) 143

4.6.1. Arrangements Based on the Michelson Interferometer 143

4.6.2. Arrangements Based on the Mach–Zehnder Interferometer 146

4.7. Lateral Shearing Interferometers Using Lasers 149

4.7.1. Other Applications of the Plane Parallel Plate Interferometer 152

4.8. Other Types of Lateral Shearing Interferometers 157

4.8.1. Lateral Shearing Interferometers Based on Diffraction 158

4.8.2. Lateral Shearing Interferometers Based on Polarization 162

4.9. Vectorial Shearing Interferometer 164

4.9.1. Shearing Interferometry 165

4.9.2. Directional Shearing Interferometer 166

4.9.3. Simulated Interferometric Patterns 168

4.9.4. Experimental Results 173

4.9.5. Similarities and Differences With Other Interferometers 176

Chapter 5. Radial, Rotational, and Reversal Shear Interferometer 185

D. Malacara

5.1. Introduction 185

5.2. Radial Shear Interferometers 187

5.2.1. Wavefront Evaluation from Radial Shear Interferograms 189

5.2.2. Single-Pass Radial Shear Interferometers 190

5.2.3. Double-Pass Radial Shear Interferometers 195

5.2.4. Laser Radial Shear Interferometers 197

5.2.5. Thick-Lens Radial Shear Interferometers 202

CONTENTS vii

Eang Seang Hor
Highlight



5.3. Rotational Shear Interferometers 204

5.3.1. Source Size Uncompensated Rotational Shear Interferometers 207

5.3.2. Source Size Compensated Rotational Shear Interferometers 211

5.4. Reversal Shear Interferometers 211

5.4.1. Some Reversal Shear Interferometers 213

Chapter 6. Multiple-Beam Interferometers 219

C. Roychoudhuri

6.1. Brief Historical Introduction 219

6.2. Precision in Multiple-Beam Interferometry 221

6.3. Multiple-Beam Fizeau Interferometer 224

6.3.1. Conditions for Fringe Formation 224

6.3.2. Fizeau Interferometry 229

6.4. Fringes of Equal Chromatic Order 232

6.5. Reduction of Fringe Interval in Multiple-Beam Interferometry 235

6.6. Plane Parallel Fabry–Perot Interferometer 236

6.6.1. Measurement of Thin-Film Thickness 236

6.6.2. Surface Deviation from Planeness 237

6.7. Tolansky Fringes with Fabry–Perot Interferometer 241

6.8. Multiple-Beam Interferometer for Curved Surfaces 243

6.9. Coupled and Series Interferometers 244

6.9.1. Coupled Interferometer 245

6.9.2. Series Interferometer 246

6.10. Holographic Multiple-Beam Interferometers 247

6.11. Temporal Evolution of FP Fringes and Its Modern Applications 247

6.12. Final Comments 250

Chapter 7. Multiple-Pass Interferometers 259

P. Hariharan

7.1. Double-Pass Interferometers 259

7.1.1. Separation of Aberrations 259

7.1.2. Reduction of Coherence Requirements 262

7.1.3. Double Passing for Increased Accuracy 264

7.2. Multipass Interferometry 266

Chapter 8. Foucault, Wire, and Phase Modulation Tests 275

J. Ojeda-Castañeda
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16.1.8. Two-angle Holography 778

16.1.9. Common Features 779

16.1.10. Comparison to Conventional Interferometry 779

16.1.11. Coded and Structured Light Projection 780

16.1.12. Applications 781

16.1.13. Summary 783

16.2. Holographic and Speckle Tests 783

16.2.1. Introduction 783

16.2.2. Holographic Interferometry for Nondestructive

Testing 784

16.2.3. Speckle Interferometry and Digital Holography 791

CONTENTS xv



Chapter 17. Angle, Prisms, Curvature, and Focal Length

Measurements 808

Z. Malacara

17.1. Introduction 808

17.2. Angle Measurements 808

17.2.1. Divided Circles and Goniometers 808

17.2.2. Autocollimator 810

17.2.3. Interferometric Measurements of Angles 812

17.3. Testing of Prisms 812

17.4. Radius of Curvature Measurements 817

17.4.1. Mechanical Measurement of Radius of Curvature 817

17.4.2. Optical Measurement of Radius of Curvature 820

17.5. Focal Length Measurements 823

17.5.1. Nodal Slide Bench 823

17.5.2. Focimeters 824

17.5.3. Other Focal Length Measurements 825

Chapter 18. Mathematical Representation of an Optical Surface

and Its Characteristics 832

D. Malacara

18.1. Definition of an Optical Surface 832

18.1.1. Parameters for Conic Surfaces 835

18.1.2. Some Useful Expansions of z 835

18.1.3. Aberration of the Normals to the Surface 836

18.2. Caustic Produced by an Aspheric Surface 837

18.3. Primary Aberrations of Spherical Surfaces 839

18.3.1. Spherical Aberration of and Aspherical Surface 839

18.3.2. Coma of a Concave Mirror 840

18.3.3. Astigmatism of a Concave Mirror 841

18.4. Astigmatic Surfaces 841

18.4.1. Toroidal Surface 842

18.4.2. Astigmatic Ellipsoidal and Oblate Spheroidal Surfaces 842

18.4.3. Sphero-Cylindrical Surface 844

18.4.4. Testing Astigmatic Surfaces and Reference

Astigmatic Surface 846

18.4.5. Comparison Between Astigmatic Surfaces 847

18.5. Off-Axis Conicoids 849

18.5.1. Off-Axis Paraboloids 850

Appendix. Optical Testing Programs 852

Index 855

xvi CONTENTS



Preface

Since the publication of the second edition of this book, many important advances

have taken place in the field of optical testing. On one hand, the requirements for

faster and more precise tests are stronger than ever; on the other hand, the new

technological tools permit us to do these tasks much better than before. The need to

describe these advances in this book would lead us to a thicker and hence more

expensive book. This was not compatible with our desire to keep the price as low as

possible, and therefore several new things had to be done. One of them was to reduce

the description of some of the most mathematical sections in the book so as leaving

space for some more applied subjects. Another modification was to reduce as much

as possible the number of references at the end of each chapter, leaving only the most

relevant ones. To compensate it, a CDwith the complete and almost exhaustive list of

references is included in the book. Another advantage of this is that the full list of

references is properly classified by topics or its possible applications. Since many

publications may have two, three or more subjects, it is included in each of these

sections. For example, a publication may describe a test that is useful for testing flats,

spheres, and prisms, In that case, this publication is present in all of these sections. A

reader with a particular optical tests need, may find some help by using this reference

list in PDF format. The list of publications in optical testing is so large that it is

impossible to expect that no important reference is missing. If so, the Editor

apologizes for overlooking any important reference. Of course the list may be

updated every one or two years.

In the CD, which is included in the book, the reader will also find two programs for

Windows, which may be useful when teaching or working in optical testing. One of

these programs displays on the screen of the computer some of the most common

interferogram types, test patterns, or transverse or wave aberration functions. These

images as well as their associated numerical results can be saved in computer files.

The other program helps in the design of phase shifting algorithms with the desired

properties by using its Fourier mathematical representation.

Some classic chapters where no important recent advances have taken place

remain almost the same, but most chapters are substantially modified, updated and

enlarged, describing the most important new developments.

In the process of revising the book many important people have contributed, for

example, the highly important work of authors of each chapter. A book like this

would have been absolutely impossible without their fundamental contributions. The

Editor is deeply thankful to all of them. Also, many other people, colleagues, and

xvii



friends contributed with many constructive criticisms and suggestions and some

times with hard work, preparing figures, or collecting references. The help of my

secretary Marisa and my student Armando Gómez has been extremely useful.

Finally, I cannot conclude without acknowledging the support and encouragement

of my wife Isabel and all my family with whom I am indebted and grateful.

DANIEL MALACARA

xviii PREFACE



Contributors

John H. Bruning

GCATropel Div.

60 O’Connor Road

Fairport, NY 14450

U.S.A.

Phone: (585) 388-3500

Fax: (585) 377-6332

E-mail: bruningjh@corning.com

Alejandro Cornejo-Rodrı́guez

Instituto Nacional de Astrofisica, Optica

y Electrónica

Luis Enrique Erro # 1

P.O Box 51, 216

Postal Code 72840

Tonantzintla, Puebla

Mexico

Phone: 52 (222) 266 31 00

Fax: 52 (222) 247 22 31

E-mail: acornejo@inaoep.mx

Katherine Creath

Optineering

Tucson Arizona

U.S.A.

Phone: (520) 882-2950

Fax: (520) 882-6976

E-mail: kcreath@ieee.org

Parmeswaran Hariharan

School of Physics, University of Sydney

Australia

Phone: (612) 9413 7159

Fax: (612) 9413 7200

E-mail: hariharan_optics@hotmail.com

Virendra N. Mahajan

The Aerospace Corporation

2350 E. El Segundo Blvd

El Segundo, CA 90245

U.S.A.

Daniel Malacara

Centro de Investigaciones enOptica, A. C.

Loma del Bosque # 115 Col. Lomas del

Campestre

P.O. Box 1-948

Postal Code 7 150

León, Gto.
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1

Newton, Fizeau, and Haidinger
Interferometers

M. V. Mantravadi and D. Malacara

1.1. INTRODUCTION

This chapter has been updated by the second author; it includes much of the material

from the previous version of the book. Newton, Fizeau, and Haidinger interferom-

eters are among the simplest and most powerful tools available to a working optician.

With very little effort, these interferometers can be set up in an optical workshop for

routine testing of optical components to an accuracy of a fraction of the wavelength

of light. Even though these instruments are simple in application and interpretation,

the physical principles underlying them involve a certain appreciation and applica-

tion of physical optics. In this chapter, we examine the various aspects of these

interferometers and also consider the recent application of laser sources to them. The

absolute testing of flats will also be considered in this chapter.

1.2. NEWTON INTERFEROMETER

We will take the liberty of calling any arrangement of two surfaces in contact

illuminated by a monochromatic source of light a Newton interferometer. Thus,

the familiar setup to obtain Newton rings in the college physical optics experiment is

also a Newton interferometer; the only difference being the large air gap as one

moves away from the point of contact, as seen in Figure 1.1. Because of this, it is

sometimes necessary to view these Newton rings through a magnifier or even a low-

power microscope. In the optical workshop, we are generally concerned that an

optical flat, one being fabricated, is matching the accurate surface of another

reference flat or that a curved spherical surface is matching the correspondingly

opposite curved spherical master surface. Under these conditions, the air gap is

seldom more than a few wavelengths of light in thickness. In the various forms of the

Optical Shop Testing, Third Edition Edited by Daniel Malacara
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Newton interferometer, we are mainly interested in determining the nonuniformity of

this air gap thickness by observing and interpreting Newton fringes. A simple way to

observe these Newton fringes is illustrated in Figure 1.2. Any light source such as a

sodium vapor lamp, low-pressure mercury vapor lamp, or helium discharge lamp can

be used in the setup. Under certain situations, even an ordinary tungsten lamp can

serve this purpose.

Let us first see what happens when two perfect optical flats are placed one

over the other with only a thin air gap between them as illustrated in Figure 1.3.

The surfaces are not exactly parallel, so that the air gap is thinner on the left than on

the right. Generally this separation is not zero at any place, unless the surfaces are

extremely clean, and one presses very hard to get them in close contact. Hence, we

may imagine that the two planes are projected backward, as shown in Figure 1.3, and

they meet at a line of intersection. Let the monochromatic light of wavelength l be

incident on the optical flat combination having an angle a between them, almost

normally. If the air gap is x at a given point, the two reflected rays will have an

optical path difference (OPD) equal to 2x. One of the reflected rays is reflected

internally on one of the surfaces, while the other is reflected externally. We know

that in dielectrics, like glass, one of these two reflected rays, and only one of them,

has a phase change by 180�. In this case it is the reflected ray on the bottom surface

which will have this phase change. Thus, the phase difference between the two

reflected rays will produce a dark fringe when the optical path difference is an

Observing
eye

Magnifier focused
on the air gap

Monochromatic
extended
light source

Beam
divider

Air
gap

Convex surface
plane surface

FIGURE 1.1. Illustration of the setup for Newton rings. A plano-convex lens of about 1 or 2 m in focal

length is placedwith its convex surface in contact with the plano surface of an optical flat and illuminated by

monochromatic light.
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integer multiple of the wavelength. We may easily conclude that if the separation x is

zero, there is a dark fringe.

Hence the dark fringes may be represented by

2ax ¼ nl; ð1:1Þ

where n is an integer, and the bright fringes may be represented by

2axþ l

2
¼ nl: ð1:2Þ

Each of these equations represents a system of equally spaced straight fringes, and

the distance d between two consecutive bright or dark fringes is

d ¼ l

2a
: ð1:3Þ

Thus the appearance of the fringes is as shown in Figure 1.3, when two good optical

flats are put in contact with each other, forming a small air wedge, and are viewed in

monochromatic light.

Now let us see what the appearance of Newton fringes is when one surface is

optically flat while the other surface is not. Several situations are possible and in fact

occur in actual practice.When one starts making a surface a plane, it does not turn out

to be a plane on the first try; probably it becomes spherical with a long radius of

curvature. It is necessary to test the surface from time to time with a reference flat to

Observing
eye

Monochromatic
extended
light source

Beam
divider

Air
gap

Collimator

FIGURE 1.2. A simple arrangement to observe the Newton fringes in the optical workshop. With this

arrangement plane and long radius spherical surfaces can be tested.
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ascertain its deviation from flatness. Let us consider a spherical surface of large

radius of curvature R in contact with the optical flat.

Then the sag of the surface is given by x2=2R, where x is the distance measured

from the center of symmetry. Hence the OPD is given by x2=Rþ l=2, and the

positions of the dark fringes are expressed by

x2

R
¼ nl: ð1:4Þ

Hence the distance of the nth dark fringe from the center is given by

xn ¼
ffiffiffiffiffiffiffiffi

nRl
p

: ð1:5Þ

From this, it is easy to show that the distance between the ðnþ 1Þth and the nth fringe
is given by

xnþ1 � xn ¼
ffiffiffiffiffiffi

Rl
p

ð
ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

�
ffiffiffi
n

p
Þ; ð1:6Þ

FIGURE 1.3. The principle of the formation of straight, equally spaced fringes between two optically

plane surfaceswhen the air gap is in the formof awedge. The fringes are parallel to the line of intersection of

the two plane surfaces.
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and similarly the distance between the ðnþ 2Þth and the ðnþ 1Þth fringe is given by

xnþ2 � xnþ1 ¼
ffiffiffiffiffiffi

Rl
p

ð
ffiffiffiffiffiffiffiffiffiffiffi

nþ 2
p

�
ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

Þ: ð1:7Þ

From Eqs. (1.6) and (1.7) we can form the ratio

xnþ1 � xn

xnþ2 � xn�1

� 1þ 1

2n
: ð1:8Þ

Thus, it is seen that when we look at fringes with large values of n, they appear to

be almost equally spaced. Hence, when we are testing for the presence of curvature in

the surface, it is desirable to manipulate the plates in such a way that we see the

fringes with lower order n. In Figure 1.4, the appearance of Newton fringes is shown

when the maximum value of x2=2R is 2 l. Thus, there will be four circular fringes in

this situation. If the maximum value of x2=2R is l=2, we have just one circular fringe.
Thus, by observation of full circular fringes, we can detect a maximum error of l=2 in
the flatness of the surface. If the maximum error is less than l=2, we have to adopt a
different procedure. In this case, the center of the symmetry of the circular fringes is

displaced sideways by suitable manipulation of the two components. Thus, we obtain

fringes in the aperture of the two surfaces in contact with a larger value of n; these

fringes are arcs of circles, and their separations are almost, but not exactly, equal. Let

us take as examples of maximum value x2=2R ¼ l=4 and l=8. Figures 1.5 and 1.6,

respectively, illustrate the appearance of the fringes in these two cases. As can be

inferred, the fringes become straighter and straighter as the value of R increases.

In the optical workshop, it is also necessary to know whether the surface that is

being tested is concave or convex with respect to the reference optical flat. This can

FIGURE1.4. Appearance of theNewton fringeswhen a long radius of curvature is kept on a good optical

flat. This situation is for a surface deviating 2l from the plane at its maximum.
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be easily judged by several procedures. One simple method involves pressing near

the edge of the top flat gently by means of a wooden stick or pencil. If the surface is

convex, the center of the fringe system moves toward the point of the application of

pressure. If the surface is concave, the center of the fringe system moves away from

the point of the application of pressure, as shown in Figure 1.7 (a).

A second very simple method is to press near the center of the ring system on the

top flat, as shown in Figure 1.7 (b). If the surface is convex, the center of the fringe is

not displaced but the diameter of the circular fringes is increased.

FIGURE 1.5. Appearance of the Newton fringes when a surface of long radius of curvature is kept on a

goodoptical flat. This situation is for a surface deviatingbyl=4 from the plane at itsmaximum.The center of

symmetry of the fringes is outside the aperture of the surfaces, and hence only arcs of circles are seen.

FIGURE 1.6. Same as Figure 1.5 except that the maximum error is l=8 and some tilt is introduced.
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Another method of deciding whether the surface is convex or concave involves the

use of a source of white light. If slight pressure is applied at the center of the surfaces,

the air gap at this point tends to become almost zero when the surface is convex.

Hence the fringe at this point is dark, and the first bright fringe will be almost

colorless or white. The next bright fringe is tinged bluish on the inside and reddish on

the outside. On the contrary, if the surface is concave, the contact is not a point

contact but occurs along a circle, and the air gap thickness tends to become zero

along this circle. The dark fringewill be along this circle, and the sequence of colored

fringes will be the same as before as one proceeds from the black fringe. This

situation is illustrated in Figures 1.8 and 1.9. This procedure is not very easy to

perform unless the surfaces are clean and is not generally recommended.

A fourth and simpler procedure is based on the movement of the fringe pattern as

one moves the eye from a normal to an oblique viewing position. Before explaining

this procedure, it is necessary to find a simple expression for the optical path

difference between the two reflected rays at an air gap of thickness t and an angle

of incidence y. This is illustrated in Figure 1.10, where it can be seen that

OPD ¼ 2t

cos y
� 2t tan y sin y ¼ 2t cos y: ð1:9Þ

Thus, the OPD at the normal of incidence, namely 2t, is always greater than the OPD

at an angle y for the same value of air gap thickness t. Using this fact, let us see what

happens when we have a convex contact between the two surfaces. The air gap

increases as we go away from the point of contact. When we view the fringes

obliquely, the OPD at a particular point is decreased, and consequently the fringes

appear to move away from the center as we move our eye from the normal to oblique

(b) Enlargement or contraction of rings

(a) Displacement of  the center of rings

FIGURE1.7. Twomethods to determinewhether the surface under test is convex or concavewith respect

to the surface: (a) by pressing near the edge and (b) by pressing near the center of the top plate.
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Almost white

Blue

Red

Red

Blue

Convex (central contact)

FIGURE 1.8. Convex contact and appearance of the colored fringes with white light illumination.

Pressure is applied at the center.

Almost white

Concave (edge contact)

Blue

Red

Red

Blue

FIGURE 1.9. Convex contact and appearance of the colored fringes with white light illumination.

Pressure is applied at the center.
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position. The reverse of this situation occurs for a concave surface in contact with a

plane surface.

We may consider many other situations where the surfaces are not plane or

spherical. The nature and the appearance of such fringes when viewed are given in

the usual manner in Table 1.1.

We have mentioned that the reference surface is a flat surface against which a

nearly plane surface that is being made is tested. By the same procedure, spherical or

cylindrical surfaces having long radii of curvature can be tested. However, when such

surfaces have very short radii of curvature, it is necessary to use special illumination,

which will be discussed in Section 1.2 on the Fizeau interferometer.

1.2.1. Source and Observer’s Pupil Size Considerations

The OPD given in Eq. (1.9) shows that this value depends on the angle of the reflected

rays being observed, which for small angles y can be approximated by

OPD ¼ 2t cos y � 2t � ty2: ð1:10Þ

Now, in the Newton interferometer we are interested in measuring glasses where t is

not constant and thus y is not constant either. Hence, to reduce the influence of y, as

much as possible, we should have

ty2 � l

k
; ð1:11Þ

where l=k is the maximum allowed error due to variations in y. Typically, to have a

reasonably small error, we at least require that

ty2 � l

4
: ð1:12Þ

A

B

C

D

t

OPD = AB ++ BC − AD = 2 t cos q 

FIGURE1.10. Ray diagram for calculation of the optical path difference between two reflected rays from

an air gap of thickness t and angle of incidence y.
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Thus, to ensure a small error, both t and y should be small. Regarding the value of t,

we may safely assume that the value of t should never exceed a few wavelengths in

the gap. If the surfaces are clean, then flat t should not exceed about 6l. With this

maximum value of t, the maximum allowed value of y is such that y2 � 1=24 or

y � 0:2. For example, let us set the accuracy, to which the thickness t is to be

assessed, to be equal to l=20, thus, writing Eq. (1.12) as

ty2 � l

20
or 2y � 0:2: ð1:13Þ

From the foregoing analysis, it can be seen that the illumination angle on the two flats

in contact should never exceed 0.2 rad or 12� approximately.

The size of the light source becomes irrelevant if the angular diameter of the

entrance pupil of the observer, as seen from the flats, is smaller than this value. The

light source can thus be extended to any size. It is only necessary that the observation,

visual or photographic, is made nearly perpendicular to the flats and from aminimum

distance, such that it is roughly five times the diameter of the optical flats in contact.

To obtain higher accuracy, the distance from which the observation is made has to be

larger. Alternatively, a collimating lens can be used and the entrance pupil of the

observing eye or camera is then placed at the focus of the collimator.

TABLE 1.1. Nature of Newton fringes for different surfaces

with reference to a standard flat.

Appearance of the Newton fringes

S. No. Surface type Without tilt With tilt

1 Plane

2 Almost plane

3 Spherical

4 Conical

5 Cylindrical

6 Astigmatic

(curvatures of

same sign)

7 Astigmatic

(curvatures of

opposite sign)

8 Highly irregular

10 NEWTON, FIZEAU, AND HAIDINGER INTERFEROMETERS



If the observing distance is not large enough, equal thickness fringes will not be

observed. Instead, localized fringes will appear. These fringes are called localized

because they seem to be located either above or below the air gap. The fringes are

localized in the region where corresponding rays from the two virtual images of the

light source intersect each other. It has been shown that this condition may be derived

from the van Cittert–Zernike theorem (Wyant, 1978; Simon and Comatri, 1987;

Hariharan and Steel, 1989).

1.2.2. Some Suitable Light Sources

For setting up a Newton interferometer, we require a suitable monochromatic source.

Several sources are available and are convenient. One source is, of course, a sodium

vapor lamp, which does not require any filter. Another source is a low-pressure mer-

cury vapor lamp with a glass envelope to absorb the ultraviolet light. A third possible

source is a helium discharge lamp in the form of a zigzag discharge tube and with a

ground glass to diffuse the light. Table 1.2 gives the various wavelengths that can be

TABLE 1.2. Characteristics, such as wavelength, of various lamps suitable as light

sources in Newton’s interferometer.

Serial Wavelength(s)

number Lamp type normally used (nm) Remarks

1 Sodium vapor 589.3 The wavelength is the average

of the doublet 589.0 and

589.6 nm. Warm-up time is

about 10 min.

2 Low-pressure 546.1 Because of other wavelengths

mercury vapor of mercury vapor present,

the fringes must be viewed

through the green filter,

isolating the 546.1 nm line.

There is no warm-up time.

Tube lights without fluorescent

coating can be used.

3 Low-pressure 587.6 Because of other wavelengths

helium discharge of helium discharge present,

a yellow filter must be used

to view the fringes.There

is no warm-up time.

4 Thallium vapor 535.0 Characteristics are similar

to those of the sodium

vapor lamp. Warm-up

time is about 10 min.

5 Cadmium vapor 643.8 Red filter to view the fringes

is required. Warm-up

time is about 10 min.
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used in these different spectral lamps. Even an ordinary fluorescent lampwith a plastic

or glass green filter in front of the lamp works, but the fringe visibility is not high.

1.2.3. Materials for the Optical Flats

The optical flats are generally made of glass, fused silica, or more recently developed

zero expansion materials such as CerVit and ULE glass. Small optical flats of less

than 5 cm in diameter can be made of glass; they reach homogeneous temperature

conditions reasonably quickly after some handling. It is preferable to make optical

flats of larger sizes from fused silica or zero expansion materials. Table 1.3 gives

relevant information regarding the materials commonly used for making optical flats.

When making a reference optical flat, it is necessary to consider carefully not only

the material to be used but also the weight, size, testing methods, and many other

important parameters (Primak 1984, 1989a, 1989b; Schulz and Schwider 1987).

1.2.4. Simple Procedure for Estimating Peak Error

Generally, optical surfaces are made to an accuracy ranging from a peak error of 2l

on the lower accuracy side to l=100 on the higher side. It is possible by means of the

TABLE 1.3. Materials used for making optical flats and their properties.

Serial Coefficient of linear

number Material expansion (per �C) Remarks

1 BK7, BSC 75--80� 10�7 These are borosilicate glasses

that can be obtained with a high

degree of homogeneity.

2 Pyrex 25--30� 10�7 This is also a borosilicate glass but

has higher silica content. Several

manufacturers make similar type of

glass under different brand names.

This is a good material for making

general quality optical flats

and test plates.

3 Fused silica 6� 10�7 This is generally the best quartz

or quartz material for making optical flats.

Different grades of the material are

available, based mainly on the

degree of homogeneity.

4 CerVit, Zerodur 0--1� 10�7 This material and similar ones made

by different companies under

different trade names have practically

zero expansion at normal ambient

temperatures.

5 ULE fused silica 0--1� 10�7 This is a mixture of silica

with about 7% titania.
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Newton interferometer to estimate peak errors up to about l=10 by visual observation
alone. Beyond that, it is advisable to obtain a photograph of the fringe system and to

makemeasurements on this photograph. Figure 1.11 shows a typical interferogram as

viewed in a Newton interferometer. Here, we have a peak error much less than l=4.
Consequently, the top plate is tilted slightly to obtain the almost straight fringes. The

central diametral fringe is observed against a straight reference line such as the

reference grid kept in the Newton interferometer in Figure 1.2. By means of this grid

of straight lines, it is possible to estimate the deviation of the fringe from its

straightness and also from the fringe spacing. The optical path difference is 2t, so

the separation between two consecutive fringes implies a change in the value of t

equal to l=2. Thus, if the maximum fringe deviation from the straightness of the

fringes is d=k with d being the fringe separation, the peak error is given by

Peak error ¼ k

d

� �
l

2

� �

ð1:14Þ

In Figure 1.11 k ¼ 2:5mm and d ¼ 25mm; hence, we can say that the peak error is

l=20. Even in this case, it is desirable to know whether the surface is convex or

concave, and for this purpose we can use the procedure described earlier. The only

difference is that we have to imagine the center of the fringe system to be outside the

aperture of the two flats in contact.

1.2.5. Measurement of Spherical Surfaces

Probably one of the most common applications of the Newton interferometer is the

testing of the faces of small lenses while they are being polished. A small test plate

FIGURE 1.11. Newton fringes for an optical flat showing peak error of l=20.
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with the opposite radius of curvature is made according to the required accuracy and

then placed over the surface under test. A test plate is useful not only to detect surface

irregularities but also to check the deviation of the radius of curvature from the

desired value (Karow 1979).

The observation should be made in such a way that the light is reflected almost

perpendicular to the interferometer surfaces. Convex surfaces can be tested with the

test plate shown in Figure 1.12(a), with a radius of curvature r in the upper surface

given by

r ¼ ðN � 1ÞðRþ TÞL
NLþ Rþ T

; ð1:15Þ

where N is the refractive index of the test plate glass. Concave surfaces can be tested

as in Figure 1.12 (b). In this case, the radius of curvature r of the upper surface is

r ¼ ðN � 1ÞðR� TÞL
NL� Rþ T

ð1:16Þ

It is important to remember that the fringes are localized very near to the inter-

ferometer surfaces, and therefore the eye should be focused at that plane.

The radius of curvature is checked by counting the number of circular fringes. The

relation between the deviation in the radius of curvature and the number of rings can

be derived with the help of Figure 1.13, where it can be shown that the distance

Surface
under test

Surface
under test

Test
plate

Test
plate

(a) (b)

R R

r

r

L L

T
T

FIGURE 1.12. Test plates to test spherical surfaces with Newton fringes.
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e between the two surfaces, measured perpendicularly to one of the surfaces, is given

by

e ¼ ðr þ�rÞ 1� 1� 2ð1� cos yÞr�r

ðr þ�rÞ2

" #1=2
8

<

:

9

=

;
: ð1:17Þ

If either�r or the angle y is small, this expression may be accurately represented by

e ¼ ð1� cos yÞ�r: ð1:18Þ

Since the number of fringes n is given by n ¼ 2e=l, we can also write

n

�r
¼ 2ð1� cos yÞ

l
ð1:19Þ

IfD is the diameter of the surface, the angle y is defined as sin y ¼ D=2r. Therefore, a
relation can be established between the increment per ring in the radius of curvature

and the surface ratio r=D, as shown in Table 1.4.

1.2.6. Measurement of Aspheric Surfaces

Malacara and Cornejo (1970) used the method of Newton fringes to determine the

aspheric profile of a surface that deviates markedly from a spherical surface. This

method is useful if the aspheric deviates from the nearest spherical by a few

wavelengths of light (say, 10–20l). The method consists in using a spherical test

plate in contact with the aspherical surface and finding the position of the fringes by

means of a measuring microscope. From these position values, one can then obtain

the actual air gap as a function of the distance, and a plot can be made and compared

with the required aspheric plot. Figure 1.14 shows a typical schematic arrangement

for this method.

It is important to consider that the surface under test probably does not have

rotational symmetry. Therefore, the measurements must be made along several

diameters in order to obtain the complete information about the whole surface.

r

e
q

r + ∆ r
∆ r

FIGURE 1.13. Geometry to find the separation between two spherical surfaces with different radii of

curvature measured along the radius of one of them.
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TABLE 1.4. Radius of curvature increment per fringe for

several values of the power ratio r=D of the spherical surface

being tested with newton fringes.

r=D �r=n (cm)

1.0 0.00020

2.0 0.00086

3.0 0.00195

4.0 0.00348

5.0 0.00545

6.0 0.00785

7.0 0.01069

8.0 0.01397

9.0 0.01768

10.0 0.02183

20.0 0.08736

30.0 0.19661

40.0 0.34970

50.0 0.54666

60.0 0.78712

70.0 1.07033

80.0 1.39665

90.0 1.77559

100.0 2.18144

Aspheric surface
under test

Spherical
test plate

Low power
traveling
microscope

Monochromatic
light source

Reticle

FIGURE 1.14. Schematic arrangement showing the method of measuring aspheric surfaces with a

spherical test plate using Newton fringes.
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Instead of directly measuring the fringe positions with a microscope, a photograph

can be taken, and then the fringe positions can be measured with more conventional

procedures.

If the reference surface is spherical and the surface under test is aspherical

(hyperboloid or paraboloid), the ideal fringe patterns will be those of a Twyman–

Green interferometer for spherical aberration as described in Chapter 2.

The reference surface may also be another aspherical surface that exactly matches

the ideal configuration of the surface under test. This procedure is useful when a

convex aspheric is to be made, since a concave aspheric can be made and tested more

easily than a convex surface. The advantage of this method is that a null test is

obtained. It has the disadvantage that the relative centering of the surfaces is very

critical because both surfaces have well-defined axes, and these must coincide while

testing. This problem is not serious, however, because the centering can be achieved

with some experience and with some device that permits careful adjustment.

When mathematically interpreting the interferograms, it should be remembered

that the OPD is measured perpendicularly to the surfaces, whereas the surface sagitta

z is given along the optical axis. Therefore the OPD is given by 2ðz1 � z2Þ cos y,
where siny ¼ Sc.

1.2.7. Measurement of Flatness of Opaque Surfaces

Sometimes we encounter plane surfaces generated on such metal substrates as steel,

brass, and copper. An optical flat made of glass should be put on top of such objects

for viewing Newton fringes. It is not always the case that the metal object is in the

form of a parallel plate. The plane surface may be generated on an otherwise irregular

component, and hence some means of holding the component while testing becomes

necessary. This can be avoided if we can put the object on top of the optical flat and

observe the fringes through the bottom side of the flat. This sort of arrangement is

shown in Figure 1.15. Since most metal surfaces have reflectivities that are quite high

compared to the value for a glass surface, the contrast of the fringes is not very good.

To improve this situation, the optical flat is coated with a thin evaporated film of

chromium or inconel having a reflectivity of about 30–40%. This brings about the

formation of sharper, more visible fringes.

It is necessary to point out that if the object is very heavy, it will bend the optical

flat and the measurement will not be accurate. Therefore, this kind of arrangement is

suitable for testing only small, light opaque objects. In dealing with heavy objects, it

is preferable to place the optical flat on top of the object.

1.3. FIZEAU INTERFEROMETER

In the Newton interferometer, the air gap between the surfaces is very small, and of

the order of a few wavelengths of light. Sometimes it is convenient to obtain fringes

similar to the ones obtained in the Newton interferometer, but with a much larger air

gap.When the air gap is larger, the surfaces need not be cleaned as thoroughly as they
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must be before being tested in the Newton interferometer. Also, due to the larger gap,

the requirements for the collimation and size of the light source become stronger.

This is called a Fizeau interferometer.

The Fizeau interferometer is one of the most popular instruments for testing

optical elements. Some of its main applications will be described here, but the basic

configurations used for most typical optical elements are identical to the ones used

with the Twyman-Green interferometer to be described in Chapter 2. The reader is

referred to that chapter for more details.

1.3.1. The Basic Fizeau Interferometer

From the foregoing considerations, it is seen that we should have a collimating

system and a smaller light source in a Fizeau interferometer. Figure 1.16 shows the

schematic arrangement of a Fizeau interferometer using a lens for collimation. The

optical flat that serves as the reference is generally mounted along with the lens and is

preadjusted so that the image of the pinhole reflected by the reference surface falls on

the pinhole itself. Either the back side of the flat is antireflection coated or (more

conveniently) the reference optical flat is made in the form of a wedge (about 10–

20 min of arc) so that the reflection from the back surface can be isolated. To view the

fringes, a beam divider is located close to the pinhole. The surface under test is kept

below the reference flat, and the air gap is adjusted to the smallest value possible;

then the air wedge is gradually reduced by manipulating the flat under test. When the

air wedge is very large, two distinct images of the pinhole by the two surfaces can be

Observing
eye

Monochromatic
extended
light source

Beam
divider

Object under test

Reference flat

FIGURE1.15. Schematic arrangement showing themethod of testing opaque plane surfaces on irregular

objects by placing them on top of the optical flat.
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seen in the plane P in Figure 1.16. By making use of screws provided to tilt the flat

under test, one can observe the movement of the image of the pinhole and can stop

when it coincides with that of the reference flat. Then the observer places his eye at

the plane P and sees, localized at the air gap, the fringes due to variation in the air gap

thickness. Further adjustment, while looking at the fringes, can be made to alter the

number and direction of the fringes. The interpretation of these fringes is exactly the

same as that for Newton and Twyman-Green fringes.

Figure 1.17 is a schematic of a Fizeau interferometer using a concave mirror as the

collimating element. If a long focal length is chosen for the concave mirror, a

spherical mirror can be used. For shorter focal lengths, an off-axis paraboloidal

Surface
under test

Reference
flat

Collimator

Beam
splitter

Interferogram

Monochromatic
point
light source

Eye or
imaging
system

FIGURE 1.16. Schematic arrangement of a Fizeau interferometer using a lens for collimation of light.

Surface
under test

Reference
flat

Beam
splitter

Interferogram

Monochromatic
point
light source

Eye or
imaging
system

Concave
collimating
mirror

FIGURE1.17. Schematic arrangement of a Fizeau interferometer using a concavemirror for collimation

of the illuminating beam.
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mirror may be required. Both the schemes of Figures 1.16 and 1.17 may be arranged

in either a vertical (upright and inverted) or a horizontal layout. In the vertical

situation the optical flats are horizontal, whereas in the horizontal layout the optical

flats stand on their edges.

If the optical system or element under test has a high reflectivity and the reference

flat is not coated, then the two interfering beams will have quite different intensities,

and thus the fringes will have a poor contrast. On the contrary, if the reference flat is

coated with a high reflectivity, but smaller than 100% to allow some light to be

transmitted, a confusing system of fringes will appear because of multiple reflections.

Commonly, to obtain two-beam interference fringes effectively, the reference surface

must be uncoated. Then, to match the intensities, either the reflectivity of the optical

element under test also has to be low or the amplitude of the beam under test has to be

attenuated. The fact that the two surfaces reflecting the interfering beams have a low

reflectivity makes it very important to take all necessary precautions to avoid spurious

reflections at some other surfaces, mainly when a laser light source is used.

1.3.2. Coherence Requirements for the Light Source

As in the Newton interferometer, in the Fizeau interferometer the maximum allowed

angular size of the light source to be used depends on the length of the air gap.

For instance, if the air gap between the flats is 5 mm, and taking l ¼ 5� 10�4 mm,

the permissible value of 2y given by Eq. (1.12) is 0.01 rad. Such a small angle can

be obtained by using a collimator with the entrance pupil of the observer located at

the focus, to observe the angle almost perpendicularly to the air gap for all points of

the observed flats. Also, either the pupil of the observer or the light source has to be

extremely small. Frequently the pupil of the eye has a diameter larger than required,

so that it is simpler to have a light source with a pinhole. The larger the air gap is, the

smaller the pinhole has to be.

When plane surfaces are tested in the Fizeau interferometer the air gap can be

made quite small if desired. The total optical path difference involved does not

exceed a few millimeters. Thus, a small low-pressure mercury vapor lamp can be

used with a green filter as the source of light. When testing for the wedge of thick

plates of glass, the OPD is larger due to the thickness. For gas or metal vapor lamp,

this OPD is about the maximum we can use. For plates of greater thickness, the

contrast of the interference fringes is greatly reduced because the lamp does not give

a very sharp spectral line with a large temporal coherence. Similarly, the same

situation of low contrast occurs when thick glass shells are tested or when spherical

test plates are tested with one test plate.

This limitation can be eliminated, however, if we can use a source of very high

monochromaticity. Fortunately, such a source, the laser, has recently become avail-

able. For our application, the low-power (2 mW) helium–neon gas laser operating in

a single mode TEMoo and with a wavelength of emission at 632.8 nm is ideal. With

this as the source of light, we can tolerate an OPD of at least 2 m and obtain Fizeau

fringes of high contrast. Even larger OPDs are possible provided that a properly

stabilized laser is chosen and vibration isolation is provided for the instrument.

20 NEWTON, FIZEAU, AND HAIDINGER INTERFEROMETERS



Most of the coherence requirements for Fizeau interferometers are similar to the

requirements for Twyman–Green interferometers as described in section 2.3. There,

it is pointed out that a gas laser has perfect spatial coherence, and can have almost

perfect temporal coherence and thus we might think that this is the ideal light source

for interferometry, but this is not always the case. The reason is that many unwanted

reflections from other surfaces in the optical system may produce a lot of spurious

fringes that can appear. Also, the laser light produces scattering waves from many

small pieces of dust or scratches in the optical elements. To solve this problem, the

light source can be extended even when using a laser by introducing a thin rotatory

half ground glass close to the point light source. Deck et al. (2000) have proposed an

annular shape for the light source by using a diffracting element to produce a small

cone of light illuminating the rotating ground glass. The effect of the spurious

reflections has been studied by several researchers, for example by Ai and Wyant

(1988 and 1993) and by Novak and Wyant (1997).

Another possible effect to be taken into account is that some optical elements or

systems to be tested may be retroreflectors, either in one dimension like a porro

prism, or in two dimensions like a cube corner prism. The retroreflection has

associated an inversal, reversal, or both (which is equivalent to a 180� rotation) of
the wavefront. A point of view is that then the interference takes place between two

different points on the wavefront, symmetrically placed with respect to the optical

axis if the wavefront was rotated, or symmetrically placed with respect to the

inversion or reversion axis. The fringes will have a good contrast only if the spatial

coherence of the wavefront is high enough. This condition imposes a stronger

requirement on the small size of the point light source.

Another equivalent explanation for this retroreflection effect is illustrated in

Figure 1.18. Let us consider the pinhole on the light source to have a small finite

Retroreflecting
system

(porro or cube corner prism)
Reference
flat

Incident
wavefront

Reference
wavefront  

2 q

Retroreflected
wavefront

FIGURE 1.18. Interference between the reference wavefront and the wavefront retroreflected by a porro

prism under test. Both wavefronts originate at one point on the edge of the small light source. The angle

between these two wavefronts reduces the contrast of the fringes.
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size and a flat collimated incidence wavefront coming from the edge of that

pinhole at a small angle y. It is easy to see that the two interfering wavefronts

will not be parallel to each other, but will make an angle 2y between them. Of

course, there are infinite number of wavefronts coming from different points at the

pinhole of the light source, all with different orientations and angles, smaller than

y. This multiplicity of wavefronts with different angles will reduce the contrast of

the fringes from a maximum at the center where all the wavefronts intersect,

decreasing towards the edge of the pupil. This effect is also present for the same

reason in the Twyman–Green interferometer as described in Chapter 2 in more

detail.

The strong spatial coherence requirements when a retroreflecting system is tested

is difficult to satisfy with gas or metal vapor lamps, but with gas lasers it is always

fulfilled.

1.3.3. Quality of Collimation Lens Required

We shall briefly examine the quality of collimating lens required for the Fizeau

interferometer. Basically, we are interested in determining the variation in air gap

thickness. However, the OPD is a function of not only the air gap thickness but also

the angle of illumination, and at a particular point this is 2t cos y. The air gap t varies

because of the surface defects of the flats under test, while the variation of y is due to

the finite size of the source and the aberration of the collimating lens.

For Fizeau interferometers using conventional sources of light, the maximum air

gap that is useful is 50 mm. Also, in this case we have to consider the size of the

source and the aberration of the lens separately. The effect of the size of the source is

mainly on the visibility of the Fizeau fringes. The excess optical path difference ty2

should be less than l=4 for good contrast of the Fizeau fringes and the pinhole is

chosen to satisfy this condition. The effect of the pinhole is uniform over the entire

area of the Fizeau fringes. On the contrary, the effect of aberration in the collimating

lens is not uniform. Thus, we have to consider the angular aberration of the lens and

its effect. If f is the maximum angular aberration of the lens, then tf2 should be less

than kl, where k is a small fraction that depends on the accuracy required in the

instrument. Thus, let us set k ¼ 0:001, so that the contribution of tf2 is 0:001l.
Taking a maximum value of t ¼ 50mm for the ordinary source situation, we have

f2 � 0:001l

t
� 10�8;

or

f ¼ 10�4 rad: ð1:20Þ

This angular aberration is quite large, being of the order of 20 s of arc. Hence,

suitable lenses or mirror systems can be designed for the purpose (Taylor, 1957;

Yoder, 1957; Murty and Shukla, 1970).
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1.3.4. Liquid Reference Flats

It is well known that a liquid surface can be used as a reference flat. Basically the

liquid surface has a radius of curvature equal to that of the earth. If the radius of the

earth is taken as 6400 km, the sag of the surface is (Grigor’ev et al., 1986; Ketelsen

and Anderson 1988)

y2

2R
¼ y2

2� 6:4� 10�9
mm ð1:21Þ

where 2y is the diameter of the liquid surface considered. If we stipulate that this

should not exceed l=100 ðl ¼ 5� 10�4Þ, then

y2 � 6:4� 104

or

2y � 512 mm ð1:22Þ

Thus, a liquid surface of about 0.5 m diameter has a peak error of only l=100 as

compared to an ideal flat. Therefore, it has been a very attractive proposition to build

liquid flats as standard references. In practice, however, there are many problems,

mainly in isolating the disturbing influence of vibrations. It is also necessary to

exclude the region near the wall of the vessel that holds the liquid and to make sure

that no dust particles are settling down on the surface. Possible liquids that can be

useful for the purpose are clear and viscous, such as glycerin, certain mineral oils,

and bleached castor oil. Water is probably not suitable because of its low viscosity.

Mercury may not be suitable because of its high reflectivity; the two interfering

beams will have very unequal intensities, resulting in poor contrast of the fringes

unless the surface under test is also suitably coated. However, mercury has been used

as a true horizontal reference plane reflecting surface in certain surveying and

astronomical instruments.

1.3.5. Fizeau Interferometer with Laser Source

We shall now describe a Fizeau interferometer using a source such as the helium–

neon gas laser of about 2 mW power lasing at 632.8 nm in the single mode. A

schematic diagram is shown in Figure 1.19. Avery well corrected objective serves to

collimate the light from the pinhole, illuminated by a combination of the laser and a

microscope objective. Between the collimating objective and the pinhole (spatial

filter), a beam divider is placed so that the fringes can be observed from the side. It is

also desirable to provide a screen, upon which the Fizeau fringes are projected, to

avoid looking into the instrument as is normally done when conventional light

sources are used. The laser has a high radiance compared to other sources, and a

direct view may be dangerous to the eye under some circumstances. The reference
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plane surface is permanently adjusted so that the reflected image of the pinhole is

autocollimated. The surface under test is adjusted until the image reflected from it

also comes into coincidence with the pinhole. To facilitate preliminary adjustment,

the screen is used to project the two pinhole images from the two reflecting plane

surfaces. This is accomplished by removing the negative lens between the beam

divider and the ground glass screen. The pinhole image from the reference surface is

at the center of the screen, whereas the one from the surface under test is somewhere

on the screen; by manipulation of this surface, the two spots of light on the screen can

be brought into coincidence. Then the negative lens is inserted in the path, and the

Fizeau fringes are projected on the screen. These fringes can be further adjusted in

direction and number as required. By the use of another beam divider, it is possible to

divert part of the beam to a camera for taking a photograph of the fringe pattern. The

whole instrument must be mounted on a suitable vibration-isolated platform.

This instrument can be used for various other applications that are normally not

possible with conventional sources of light. We describe some such applications in

the sections that follow. In addition, many possibilities exist for other applications

depending on the particular situations involved.

Several commercial Fizeau interferometers have been available for several years,

but probably the two most widely known are the Zygo interferometer (Forman,

1979), shown in Figure 1.20, and the Wyko interferometer, shown in Figure 1.21.

1.3.6. Multiple-Beam Fizeau Setup

If, instead of two-beam fringes, multiple-beam fringes of very good sharpness are

required, the reference optical flat and the optical flat under test are coated with a

splitter
Beam

Monochromatic

source
light
point

Imaging
system

Reference
flat

Collimator under test
Flat

(camera)

Ground glass
screen

Negative lens
out for coincidence of spots
for viewing fizeau fringes

Laser

Beam
splitter

FIGURE1.19. Schematic arrangement of aFizeau interferometerusinga laser source.The schemeshown

here is for plane surfaces. The system is easily aligned with the help of a sliding negative lens.
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reflecting material of about 80–90% reflectivity (see Chapter 6) such as aluminum or

silver. If higher reflectivities are required, multilayer dielectric coatings can be

applied. In fact, the instrument may be provided with several reference flats having

coatings of different reflectivities.

2mW. Laser

TV camera

Cooke
triplet

Imaging
lens

Zoom lens

Rotating
diffuser disc

Imaging lens

Polarizing beam splitter cube

Microscope
objetive

Negative lens

Field
lens
and
screen

Beam splitter

Mirror to illuminate screen

/4 plate at 45°

FIGURE 1.20. Fizeau interferometer manufactured by Zygo Corp. (Courtesy of Zigo Corp.).

Rotating
diffusing disc

Reference
flatCollimatorCubic

beam splitterSpatial
filter

Microscope
objective

Laser

TV camera

Attenuator

Zoom lens

FIGURE 1.21. Fizeau interferometer manufactured by Wyko Corp. (Courtesy of Wyko Corp.).
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1.3.7. Testing Nearly Parallel Plates

In many applications, glass plates having surfaces that are both plane and parallel are

required. In such cases, the small wedge angle of the plate can be determined by the

Fizeau interferometer, and the reference flat of the interferometer need not be used

since the fringes are formed between the surfaces of the plate being tested. If a is the

angle of the wedge and N is the refractive index of the glass, the angle between the

front- and back-reflected wavefronts is given by 2na, and hence the fringes can be

expressed as

2Na ¼ l

d
; ð1:23Þ

where d is the distance between two consecutive bright or dark fringes. Hence the

angle a is given by

a ¼ l

2nd
: ð1:24Þ

To determine the thinner side of the wedge, a simple method is to touch the plate

with a hot rod or even with a finger. Because of the slight local expansion, the

thickness of the plate increases slightly. Hence a straight fringe passing through the

region will form a kink pointing toward the thin side, as shown in Figure 1.22. For

instance, if we take N ¼ 1:5, l ¼ 5� 10�4 mm, and a ¼ 5� 10�6 (1 s of arc), we

get for d a value of about 33 mm. Hence a plate of 33 mm diameter, showing one

fringe, has a wedge angle of 1 s of arc. If the plate also has some surface errors, we

FIGURE 1.22. Kink formation in the straight Fizeau fringes of a slightly wedged plate, obtained by

locally heating the plate. The kink is pointing toward the thin side of the wedge.
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get curved fringes, indicating both surface and wedge errors. If the surfaces are

independently tested and found to be flat, and even in this situation one is getting

curved fringes, these should be attributed to variation of the refractive index inside

the plate in an irregular manner. In fact, by combining the tests on the Newton

interferometer and the Fizeau interferometer for a parallel plate, it is possible to

evaluate the refractive index variation (inhomogeneity) (Murty, 1963; Murty,

1964a; Forman, 1964).

1.3.8. Testing the InhomogeneityofLargeGlass orFusedQuartz Samples

The sample is made in the form of a parallel plate. The surfaces should bemade as flat

as possible with a peak error of not more than l. Then the plate is sandwiched

between two well-made parallel plates of glass with a suitable oil matching the

refractive index of the sample. This will make the small surface errors of the sample

negligible, and only straight fringe deformation due to the inhomogeneity of the

sample will be seen. If the sandwich is kept in the cavity formed by the two coated

mirrors, very sharp dark fringes on a bright background are obtained. If, for instance,

the maximum fringe deviation from straightness is k and the distance between two

fringes is d, the optical path difference is (k=dÞl. Now the OPD due to the inhomo-

geneity �N and thickness t of the sample is given by 2�N � t, and hence

�N ¼ k

d

� �
l

2t

� �

ð1:25Þ

As an example, if k=d ¼ 0:25, l ¼ 632:8 nm, and t ¼ 50mm, we have

�N ¼ 1:6� 10�6. Thus a maximum variation of 1:6� 10�6 may be expected in

the sample for the direction in which it has been tested. Figure 1.23 shows the

schematic arrangement of the Fizeau interferometer for the method just described.

Plate
under test

Reference
flat

Collimator

Beam
splitter

Interferogram

Monochromatic
point
light source

Eye or
imaging
system

Reference
flat

FIGURE 1.23. Schematic arrangement of a Fizeau interferometer for testing the homogeneity of solid

samples of glass, fused quartz, and so on.
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1.3.9. Testing the Parallelism and Flatness of the Faces of Rods, Bars, and

Plates

Frequently, the need for testing the parallelism and the flatness of two opposite faces

in a rod, plate, or bar arises. If the plate to be tested is transparent and has a highly

homogeneous refractive index, the problem is not so complicated. If the refractive

index of the material is inhomogeneous or if it is not transparent, special techniques

have to be developed.

Vannoni and Molezini (2004) described a configuration for this purpose, as

illustrated in Figure 1.24. The first step is to adjust the interferometer to produce

theminimum number of fringes without the plate or rod to be tested. The field of view

will show the fringes due to any possible defect in the right angle prism. Then the

plate is inserted as shown in the figure.

1.3.10. Testing Cube Corner and Right-Angle Prisms

In their retro-reflective configuration, if the right angles of cube comer and right-

angle prisms are exact without any error, they reflect an incident plane wavefront as a

single emerging plane wavefront. Otherwise the reflected wavefront consists of

several plane wavefronts with different tilts, making possible the measurement of

the prism errors. Because of the total internal reflection, the intensity of reflected

light from these prisms is very high, nearly 100%. Since the reference flat is not

coated, the fringes will have a poor contrast. To optimize the fringe contrast, either

the reflectivity of the optical element under test also has to be low or the amplitude of

the beam under test has to be attenuated.

To reduce the effective reflectivity of the right angle or cube prism, we can

introduce a parallel plate of glass coated with a metallic film having a transmis-

sion between 20% and 30%. In this case the intensities of the two beams matched

reasonably well, and we get a good contrast of two-beam fringes. The coated

plate between the prism and the uncoated reference flat should be tilted
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Eye or
imaging
system
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Field of
view

FIGURE1.24. Schematic arrangement to test an opaque bar or rod for flatness and parallelism of the two

opposite faces.
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sufficiently to avoid the directly reflected beam. This method is shown schema-

tically in Figure 1.25.

Another possible method is to reduce the reflectivity of one of the total reflecting

surfaces. This can be done by constructing a special cell in which the prism is

mounted, and behind one reflecting surface, a thin layer of water or some other

suitable liquid is in contact with the surface. Thus, in effect, the refractive index

difference is reduced at one total internal reflecting surface, and hence, the intensity

of the wavefront reflected from the prism matches that of an uncoated flat. This

method is shown schematically in Figure 1.26.
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point
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or
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FIGURE 1.25. Schematic arrangement of a Fizeau interferometer for testing cube corner prisms and

right-angle prisms. Here an absorbing plate is inserted between the prisms and the reference flat surface to

equalize the intensities of the two interfering beams.
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FIGURE 1.26. A scheme for reducing the intensity of reflected light from the corner cube prism and the

right-angle prism.One of the total internally reflecting faces is brought into contactwithwater or some other

liquid by the use of a cell behind it.
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The interferograms obtained when testing of these prisms are identical to those in

the Twyman–Green interferogram. For more details please see Chapter 2.

1.3.11. Fizeau Interferometer for Curved Surfaces

Just as collimated light is employed for testing optical flats on the Fizeau inter-

ferometer, it is possible to use either divergent or convergent light for testing curved

surfaces. Figure 1.27 shows an arrangement for testing a concave surface against a

reference convex surface. The point source of light is located at the center of the

curvature of the convex reference surface. The concave surface under test is adjusted

until its center of curvature, too, almost coincides with the point source of light. The

procedure is exactly the same as before except that to achieve the uniform air gap, we

have to provide some translational motion also (Moore and Slaymaker, 1980).

The same setup can be used very easily for checking the uniformity of the

thickness (concentricity) of spherical shells. In this case the interfering beams are

obtained from the front and back of the two spherical concentric surfaces. Figure 1.28

shows this setup for testing the concentricity of a spherical shell. If the radii of

curvature are correct but the shell has a wedge (the centers of curvature are laterally

displaced), we get straight fringes characteristic of the wedge. The hot rod or finger

touch procedure described in Section 1.2.3 can be adopted to determine which side is

thinner. If the two radii are not of proper value (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1 � r2

p 6¼ t, where r1 and r2 are the

two radii and t is the center thickness), the value of t is not constant over the entire

shell. Hence, we get circular fringes like Newton fringes. If in addition a wedge is

present, the center of these circular fringes will be decentered with respect to the

center of the shell. In this situation also, we can adopt the hot rod or finger touch

procedure to decide whether the shell is thin at the edge or at the center.

Beam
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Monochromatic
point
light source

Imaging
system
or eye

Reference
surface

Surface
under test

FIGURE 1.27. Fizeau interferometer set up for curved surfaces. Here the convex surface is the reference

surface and the concave surface is under test.
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We can also have an arrangement for testing convex surfaces against a concave

reference surface, as shown schematically in Figure 1.29. Here we use a lens or a

group of lenses at finite conjugate distances such that the point source of light is at

one conjugate, whereas the common center of curvature of the test surface and the

reference surface is at the other conjugate. The concave reference surface is fixed to

the instrument, while the convex surface under test is manipulated in the usual

manner to obtain a uniform air gap.
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FIGURE 1.28. Fizeau interferometer setup for testing the concentricity of the spherical shell.
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FIGURE 1.29. Fizeau interferometer setup for testing a convex surface against a concave reference

surface.
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1.3.12. Testing Concave and Convex Surfaces

The reference surface is again the uncoated flat surface that is part of the Fizeau

interferometer. The collimated light from the instrument, after passing through the

optical flat, is again focused by the use of another highly corrected lens. If the

surface is concave, it is set up as shown in Figure 1.30; if convex, as shown in

Figure 1.31. When the surface is spherical and the center of curvature coincides

with the focus of the lens, a plane wavefront is reflected back. Hence, we should

obtain straight fringes due to the interference of the two beams. If the optical

reference flat and the spherical surfaces are coated with high reflecting material,

we can get very sharp, multiple-beam Fizeau fringes. If the surfaces are not

spherical but are aspheric, appropriate null lenses must be used in the interfe-

rometer. This setup can also be used to measure the radius of curvature if a length-

measuring arrangement is provided.

The testing of convex surfaces with the Fizeau interferometer presents many

interesting problems, mainly if the surface is large and/or aspheric, which have been

analyzed by several authors, for example by Burge (1995).

Another interferometer, which may be considered as a Fizeau interferometer, was

devised by Shack (Shack and Hopkins, 1979; Smith, 1979). The difference is that this

scheme uses a He–Ne laser source to give very large coherence length. Hence, the

separation between the convex reference surface and the concave surface under test

can be very large (typically several meters). Also, the convex reference surface
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FIGURE 1.30. Schematic diagram of a Fizeau interferometer for testing a concave surface using a

concave reference surface or a flat reference surface.
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becomes a part of the instrument and can be of very short radius of curvature. The

scheme, in fact, incorporates the device in the form of a beam-divider cube with one

of the faces made into a convex spherical surface. The Shack interferometer is shown

schematically in Figure 1.32. It is possible to test a large aspherical surface with this

interferometer if a suitable null corrector is inserted between the interferometer and

the surface under test.

1.4. HALDINGER INTERFEROMETER

With the Newton and Fizeau interferometers, we are basically interested in finding

the variation in the air gap thickness. In these cases, the fringes are referred to as

fringes of equal thickness. If, however, the thickness of the air gap is uniform and it is

illuminated by a source of large angular size, we get what are called fringes of equal

inclination. These fringes are formed at infinity, and a suitable lens can be used to

focus them on its focal plane. If the parallel gap is that of air, we have the simple

relation 2t cos y ¼ nl, as given in Eq. (1.9), from which we can easily see that, for a
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FIGURE 1.31. Schematic diagram of a Fizeau interferometer for testing a convex surface using a flat

concave reference surface or a flat reference surface.
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constant value of t, we obtain fringes of equal inclination that are circles and are

formed at infinity.

If the air gap is replaced by a solid plate such as a very good parallel plate of glass,

Eq. (1.9) is modified slightly to include the effect of the refractive indexN of the plate

and becomes

2Nt cos y0 ¼ nl ð1:26Þ

where y’ is the angle of refraction inside the glass plate. For small values of y’, we

may approximate this expression as

2Nt ¼ t

N

� �

y2 ¼ nl ð1:27Þ

To see Haidinger fringes with simple equipment, the following method, illustrated in

Figure 1.33 may be adopted. A parallel plate of glass is kept on a black paper and is

illuminated by the diffuse light reflected from a white card at 45�. At the center of the
white card is a small hole through which we look at the plate. With relaxed

accommodation our eyes are essentially focused at infinity, i, and we see a system
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Surface
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FIGURE 1.32. Schematics of a Shack–Fizeau interferometer.
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of concentric circular fringes. For the light source we can use a sodium or even a

fluorescent lamp.

In the situation where the laser is the source of light, there is a much higher

limit for the value of t. Even though several meters can be used for t, we shall set

t ¼ 1000mm. In this case, using l ¼ 632:8 nm, we get for f an upper limit of 5 s

of arc. Hence it is not difficult to design a collimating system to satisfy this

condition.

Another aspect that is important, especially with large values of t, is the lateral

shear one can get in the instrument. To avoid this, the autocollimated pinhole images

must coincide with the pinhole itself. Similarly, if the collimating lens is not properly

collimated, either a convergent or a divergent beam will emerge. The collimation

may be accurately performed by using any of the various devices available, such as

the plane parallel plate shearing interferometer (Murty, 1964b).

A somewhat better method is to use a lens for focusing the system of Haidinger

fringes on its focal plane. This requires a setup almost identical to that for the Fizeau

interferometer. The only difference is that, instead of a pinhole, a wider aperture is

used to have a large angular size for the source. The Haidinger fringes are then

formed in the focal plane of the lens.

1.4.1. Applications of Haidinger Fringes

The Haidinger fringes may be used as a complementary test to that provided by

the Fizeau interferometer. If we are testing a nearly parallel plate, we can find its

wedge angle either by the Fizeau or by the Haidinger method. In the Haidinger

method we look for the stability of the concentric fringes as we move our line of

sight across the plate with a small aperture. If t is slowly varying, the center of the
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FIGURE 1.33. A simple arrangement to see Haidinger fringes for a nearly parallel glass plate.
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circular fringe system also appears to change. If t is decreasing, we are moving

toward the thinner side of the wedge, and in this case the circular Haidinger

fringes appear to expand from the center. On the contrary, the fringes appear to

converge to the center if we are moving toward the thick side of the wedge. If we

note how many times the center of the fringe system has gone through bright and

dark cycles, we can also estimate the wedge angle in the same manner as for the

Fizeau situation.

1.4.2. Use of Laser Source for Haidinger Interferometer

A helium–neon laser source of low power is very useful for this interferom-

eter, as it is for the Fizeau instrument. It enables the fringes to be projected on a

screen. In this case, the laser can be made to give effectively a point source of

light, and consequently, the Haidinger fringes can be considered as the inter-

ference from two point sources that are coherent to each other. Hence it is

possible to obtain the circular fringes even at a finite distance from the two

coherent point sources, and no lens is needed to form the fringes in its focal

plane. Figure 1.34 shows the two point images of a point source reflected from a

glass plate having a wedge. For the purpose of analysis, it is sufficient for us to

consider two point sources of light that are coherent to each other. Then, if we

place a screen sufficiently far away and perpendicular to the line joining the two

sources, we get a system of concentric circular fringes similar to Newton’s rings

and the center of the fringes is collinear with the two point sources. Also, for a

glass plate of refractive index N, the distance between the virtual point sources is

2t=N, where t is the thickness of the plate. Now, if the glass plate has a small

wedge, the two virtual sources will also have a slight lateral displacement with

respect to each other; this is given by 2Nar, where a is the wedge angle and r is

the distance of the point source from the wedged plate. These various parameters

are illustrated in Figure 1.34.

To apply this theory in practice, several methods are available. One method,

proposed by Wasilik et al. (1971), is illustrated in Figure 1.35. The laser beam is

allowed to pass through a small hole in a white cardboard and is then incident on
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as seen in the wedged plate
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2 N a r
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FIGURE 1.34. Various parameters related to the formation of two virtual coherent sources from a single

point source by a wedged plate.

36 NEWTON, FIZEAU, AND HAIDINGER INTERFEROMETERS



the glass plate under test. To provide some divergence for the laser beam, a

negative or positive lens of about 50–100 mm focal length is introduced centrally

behind the cardboard. The lens can be fixed in such a manner that it does not

deviate the beam but only expands it slightly. This cardboard may be made

specially, along with the lens, to fit on the laser. Several concentric circles with

known spacing may be drawn on the cardboard for measuring purposes. The plate

under test is kept on a platform that can be tilted. The plate is adjusted until the

spot of laser light reflected from it goes back through the hole in the cardboard. In

this situation concentric circular Haidinger fringes will be seen on the cardboard

surrounding the hole. If the plate is free from the wedge, the center of the

Haidinger fringe system coincides with the center of the hole. If the plate has a

wedge, the center of the Haidinger fringe system is displaced with respect to the

center of the hole. An approximate formula relating this displacement to the

wedge angle of the wedged glass plate is as follows:

d ¼ 2N2r2a

t
ð1:28Þ

where d¼ displacement of the Haidinger fringe system,

a¼wedge angle of the plate,

t¼ thickness of the glass plate,

N¼ refractive index of the glass plate,

r¼ distance of the point source from the glass plate.

For example, if a ¼ 1 s of arc ð5� 10�6 radÞ, N ¼ 1:5, r ¼ 1000mm, and

t ¼ 10mm, we have d ¼ 2:25mm, which can be easily detected. Hence this method

is quite sensitive and useful.

Another method is illustrated in Figure 1.36. Here the laser beam passes

through the wedged-glass plate and falls on a specially prepared ground-glass

plate in the center of which a small concave or convex reflector of about
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in contact with hole

or
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FIGURE 1.35. A schematic arrangement for observing the Haidinger fringes and measuring the

displacement of the center. Here a laser beam is passed through a cardboard, and the Haidinger fringes

are observed around the hole on the cardboard.
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50–100 mm radius of curvature is cemented. The size of the reflector should be

slightly greater than the spot size of the laser. Thus, the laser beam is reflected

back onto the glass plate. The wedged plate is adjusted until the reflected spot

from it coincides with the small reflecting mirror on the ground glass. Now,

Haidinger fringes can be seen on the ground glass, and the center of the fringe

system is displaced with respect to the mirror on the ground glass. The same

formula, Eq. (1.28), is also valid for this case.

A third method utilizes a beam divider, as shown in Figure 1.37. The laser

beam passes through the beam divider, which after reflection from the wedged

plate is again reflected at the beam divider and finally falls on a ground-glass

screen. The plate under test is adjusted until the laser spot reflected from it goes

back on itself. After the position of the spot on the ground glass has been noted, a

negative or positive lens is introduced into the laser beam close to the laser side.

This widens the beam sufficiently so that circular Haidinger fringes can be seen on

Wedge
under test

Gas laser
light beam

Ground glass
screen

Small concave or
convex reflector

FIGURE 1.36. A schematic arrangement for observing the Haidinger fringes and measuring the

displacement of the center. Here the laser beam is directed back into the wedged glass plate by a small

concave or convex mirror on the ground glass. The Haidinger fringes are formed on the ground glass.

Wedge
under test

Low power
positive lens

Gas laser
light beam

White card with
central hole

Beam
divider

Ground glass
screen

FIGURE 1.37. A schematic arrangement for observing the Haidinger fringes and measuring the

displacement of the center. Here the fringes are observed on the ground glass and by means of a beam

divider, the central obscuration is avoided.
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the ground-glass screen. The displacement of the center of the Haidinger fringe

system is measured, and the same formula, Eq. (1.28), can be used for calculating

the wedge angle a.

1.4.3. Other Applications of Haidinger Fringes

We have discussed earlier the application of Haidinger fringes for the determination

of the very small wedge angle of a nearly parallel plate of glass. There are many types

of prisms that can be reduced to equivalent parallel plates and hence can be tested

for deviation from their nominal angles. A typical example is a right-angle prism

with nominal angles of 90�, 45�, and 45�. In such a prism, it is usually required that

the 90� angle be very close to its nominal value and that the two 45� angles be

equal to each other. In addition, all the faces of the prism should be perpendicular

to a base plane. If not, we say that the prism has pyramidal error that is objec-

tionable in many applications. Figure 1.38 shows how the right-angle prism can be

treated as an equivalent parallel plate with a very small wedge angle. If the beam is

incident first on the face AC, the beam returning after reflection from the face BC

is nearly parallel to the one reflected from the face AC, and hence Haidinger

fringes are seen as a result of the interference between these two beams. This

arrangement checks the equality of the angles A and B. If there were no pyramidal

error and the two angles are equal, the center of the Haidinger fringes will be

exactly at the center of the beam spot. If the angles are equal but there is a

pyramidal error, the center of the Haidinger fringes will be displaced vertically.

If both errors are present, the center will be displaced both vertically and horizon-

tally. The effect of the pyramidal error is to rotate the line of intersection of the two

planes of the equivalent wedge so that it is neither vertical nor horizontal. If the

beam is incident first on AB, the return beam reflected from the internal face of AB

will be nearly parallel to the one reflected from AB externally, and hence we again

get Haidinger fringes due to the interference of these two beams. This arrangement

checks the exactness of the 90� angle of the angle C. If the center of the Haidinger
fringes is not displaced horizontally, the 90� angle is exact; and, if in addition there

A C

B

C A

B

45°

45°

90° 90° 45°

45°

FIGURE 1.38. Schematic of the 45� �90� �45� prism to be equivalent parallel plates of glass.
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is no vertical displacement, there is no pyramidal error. More details of this method

may be found in the paper by Saxena and Yeswanth (1990).

Other examples of prisms that may be treated as equivalent parallel plates are

shown in Figure 1.39. Readers may come across other examples depending on

particular situations.

The formula given in Eq. (1.27) is applicable in the situations described noting

that the displacement has two components, one in the vertical direction and one in the

horizontal direction.

1.5. ABSOLUTE TESTING OF FLATS

Until now, we have considered the testing of flats against a ‘‘perfect’’ flat taken as a

reference. It is, however, often necessary to make a flat when a good reference flat is

not available. In this case, an alternative is to use a liquid flat as mentioned in Section

1.2.2. Another possibility is to make three flats at the same time and test them with

several combinations in order to obtain the absolute departure of the three surfaces

with respect to an ideal flat.

Let us assume that we have three surfaces that will be tested in many combinations

by placing them in pair, one against the other. One of the two glass disks (A) is placed

on top of the other by flipping in x by rotation about an axis that is parallel to the y-

axis. If the surface deformation is represented by FAðx; yÞ as illustrated in Figure 1.40
(a), it is now expressed by

½FAðx; yÞ�x ¼ �FAð�x; yÞ ð1:29Þ

The glass disk at the bottom (B) may be rotated by an angle y with respect to its

original position, as in Figure (1.40)(c). Then, its surface deformation is represented

by ½FBðx; yÞ�y as expressed by

½FBðx; yÞ�y ¼ FBðx cos y� y sin y; x sin yþ y cos yÞ ð1:30Þ

60°

60°60° 60° 30°

90°

FIGURE 1.39. Schematics of two other prisms to be equivalent parallel plates of glass.
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Then, by measuring the fringe pattern we can obtain the value of the difference:

GBAðx; yÞ ¼ ½FBðx; yÞ�y � ½FAðx; yÞ�x ð1:31Þ

If, following the treatment by Schulz and Schwider (1976) we take y ¼ 0 and take the

three possible combinations, (see Figure 1.41) we obtain

GBAðx; yÞ ¼ FBðx; yÞ þ FAð�x; yÞ
GCAðx; yÞ ¼ FCðx; yÞ þ FAð�x; yÞ
GCBðx; yÞ ¼ FCðx; yÞ þ FBð�x; yÞ

ð1:32Þ

This system has more unknowns than equations. Along the y axis, if we make x ¼ 0,

the system has a simple solution. A solution for all the plane can be obtained only the
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FIGURE 1.41. Three different combinations for the three surfaces to be measured.
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if the symmetry about the y axis at least for one surface is assumed, for example for

surface B, by taking FBðx; yÞ ¼ FBð�x; yÞ. Then, we may obtain

FAðx; yÞ ¼
GBAð�x; yÞ þ GCAð�x; yÞ � GCBð�x; yÞ

2
;

FBðx; yÞ ¼
GBAðx; yÞ � GCAðx; yÞ þ GCBðx; yÞ

2
;

FCðx; yÞ ¼
GCAðx; yÞ � GBAðx; yÞ � GCBðx; yÞ

2
:

ð1:33Þ

Several other methods had been devised, for example by Truax (1988). A specially

interesting method is that of Ai andWyant (1992) as follows next. Let us assume that

the shape of one of the surfaces may be represented by the function Fðx; yÞ. Any one-
dimensional asymmetrical function can be represented by the sum of one even

(symmetrical) function and one odd (antisymmetrical) function. On the contrary,

for any asymmetrical function f ðxÞ the following properties hold:

ð1Þ FeðxÞ ¼ f ðxÞ þ f ð�xÞ is even;

ð2Þ FoðxÞ ¼ f ðxÞ � f ð�xÞ is odd:
ð1:34Þ

Generalizing this result to two dimensions

ð1Þ Feeðx; yÞ ¼ f ðx; yÞ þ f ð�x; yÞ þ f ðx;�yÞ þ f ð�x;�yÞ is even-even;

ð2Þ Feoðx; yÞ ¼ f ðx; yÞ þ f ð�x; yÞ � f ðx;�yÞ � f ð�x;�yÞ is even-odd;

ð3Þ Foeðx; yÞ ¼ f ðx; yÞ � f ð�x;�yÞ þ f ðx; yÞ � f ð�x; yÞ is odd-even;

ð4Þ Fooðx; yÞ ¼ f ðx; yÞ � f ð�x; yÞ þ f ðx;�yÞ � f ð�x; yÞ is odd-odd:

ð1:35Þ

The conclusion is that any two-dimensional asymmetric function Fðx; yÞ can always
be decomposed into the sum of four functions, even-even, even-odd, odd-even, and

odd-odd as follows:

Fðx; yÞ ¼ Fee þ Foo þ Foe þ Feo; ð1:36Þ

where

Feeðx; yÞ ¼ ðFðx; yÞ þ Fð�x; yÞ þ Fðx; �yÞ þ Fð�x; �yÞÞ=4;
Fooðx; yÞ ¼ ðFðx; yÞ � Fð�x; yÞ � Fðx; �yÞ þ Fð�x; �yÞÞ=4;
Feoðx; yÞ ¼ ðFðx; yÞ þ Fð�x; yÞ � Fðx; �yÞ � Fð�x; �yÞÞ=4;
Foeðx; yÞ ¼ ðFðx; yÞ � Fð�x; yÞ þ Fðx; �yÞ � Fð�x; �yÞÞ=4:

ð1:37Þ

Let us now assume that we test two flats with surface shapes FAðx; yÞ and FBðx; yÞ by
placing one over the other. Following Ai andWyant, eight combinations are selected,
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as in Figure 1.42, where the optical path difference producing Newton or Fizeau

fringes will be

G1ðx; yÞ ¼ ½FBðx; yÞ�x � FAðx; yÞ
G2ðx; yÞ ¼ ½FBðx; yÞ�x � ½FAðx; yÞ�180
G3ðx; yÞ ¼ ½FBðx; yÞ�x � ½FAðx; yÞ�90
G4ðx; yÞ ¼ ½FBðx; yÞ�x � ½FAðx; yÞ�45
G5ðx; yÞ ¼ ½FCðx; yÞ�x � ½FAðx; yÞ�180
G6ðx; yÞ ¼ ½FCðx; yÞ�x � FBðx; yÞ
G7ðx; yÞ ¼ ½FCðx; yÞ�x � ½FBðx; yÞ�90
G8ðx; yÞ ¼ ½FCðx; yÞ�x � ½FBðx; yÞ�45

ð1:38Þ
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FIGURE 1.42. Eight different combinations for the three surfaces to be measured.
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With these expressions, the entire profile of the three planes can be calculated. First,

the odd-even, the even-odd, the even-even, and the odd-odd components of the three

desired functions FAðx; yÞ, FBðx; yÞ, and FCðx; yÞ are calculated. The odd-odd com-

ponent is the most difficult to evaluate, which is obtained using Fourier sine series.

Tilt and piston term are not obtained, but this is not a problem since they do not have

any practical interest.

Fritz (1983 and 1984) proposed a method using Zernike polynomials to decom-

pose the desired functions into orthogonal functions. Later, Shao et al. (1992) found

that by neglecting some high spatial frequencies, the solution can be obtained by

using only four combinations.
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2

Twyman–Green Interferometer

D. Malacara

2.1. INTRODUCTION

The Twyman–Green interferometer is a modification of the Michelson interferom-

eter used to test optical components. It was invented and patented by Twyman and

Green (1916) for the testing of prisms and microscope objectives and was later

adapted and applied to the testing of camera lenses (Twyman, 1919). The first

publications on this instrument were those of Twyman (1918a, 1918b, 1920,

1920–1921, 1923). The instrument has been very useful and so popular that many

review papers (Briers, 1972) and books (Candler, 1951; Twyman, 1957; U.S.

Department of Defense, 1963; Cook, 1971; Horne, 1972) describe it in detail. One

of the basic Twyman–Green configurations is illustrated in Figure 2.1. After the

system has been illuminated with a quasi-monochromatic point light source, the light

is collimated by means of lens L1 in order to form a flat wavefront. The wavefront is

divided in amplitude by means of a beam-splitter plate. After reflection, light from

both mirrors M1 and M2 impinges again on the beam splitter. Two interference

patterns are then formed, one going to lens L2 and the other going back to the light

source. Lens L2 permits all of the light from the aperture to enter the eye so that the

entire field can be seen. The observed fringes are of equal thickness type.

It is easy to see that if the beam splitter is all dielectric, the main interference

pattern is complementary to the one returning to the source; in other words, a bright

fringe in one pattern corresponds to a dark fringe in the other. This has to be so

because of the conservation of energy principle, even though the optical path

difference is the same for both patterns. Phase shifts upon reflection account for

this complementarity. The case of a absorbing beam splitter has been treated by

Parmigiani (1981).

It is interesting that Michelson (1918) did not consider the instrument applicable

to the testing of large optics, pointing out at the same time that the arrangement we

now know as an unequal-path interferometer was impractical because of the lack of

sufficiently coherent light sources. To answer Michelson’s comments, Twyman
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(1918) pointed out that the arrangement shown in Figure 2.2 had been suggested in

his patent (Twyman and Green, 1916) for the testing of large mirrors or lenses. This

procedure eliminates the need for a large collimator and beam splitter but unfortu-

nately requires (for sources of limited coherence) a concave spherical mirror as large

as the optical element under test. This kind of arrangement is often referred to as a

Williams interferometer (De Vany, 1965; Grigull and Rottenkolber, 1967) because

Burch (1940) attributed it to Williams. ATwyman–Green interferometer for general

laboratory usage is shown in Figure 2.3.

Compensator

Beam
splitterCollimator L1

Mirror M1

Mirror M2
A

B

Observing
eye

Lens L2

Light
source

FIGURE 2.1. Basic Twyman–Green interferometer configuration.

Compensator

Beam
splitter

Mirror M1

Mirror M2
A

B

Observing
eye

Light
source

FIGURE 2.2. Twyman–Green interferometer (Williams type).
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2.2. BEAM-SPLITTER

The beam-splitter can take the form of glass plate as shown in Figure 2.4 or a cube. It

is made in such away that the splitting face reflects the light in appropriate amount by

means of a partially reflective coating. If it is a plate, the other face should not reflect

any light. To avoid reflections on the second face, a multilayer antireflection coating

FIGURE 2.3. A general purpose Twyman–Green interferometer.

splitter
Beam

Collimator

Mirror M1

Mirror M2

Light
source

Collimator

source
light

Beam
splitter

(a)

(b)

Polarized Mirror M2

Mirror M1

FIGURE 2.4. TwymanGreen interferometer with beam splitter (a) at 45� and (b) at the Brewster’s angle.
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can be used. However, an easier solution is to place the plate at Brewster’s angle as

shown in Figure 2.4(b) and to use a source of light with p polarization, which goes

through the interface without any reflection. Still another solution is to introduce a

wedge angle on the plate so that the unwanted reflected light escapes from the

system. The contrast of the fringes does not depend on the reflectance R of the beam

splitter; only the irradiance I on the fringe maxima is affected, since

I ¼ 4I0RT ; ð2:1Þ

where I0 is the irradiance of the incident wavefront and T is the transmittance. If there

is no absorption (nonmetallic coating), T � 1� R and there is a maximum value of I

for R ¼ T � 1=2.
If one of the twomirrors has a higher reflectance than the other, for example if one

of the them is a highly reflective mirror and the other is still uncoated, the intensity of

one of the two interfering beams can be about 25 times higher than the other. Under

these conditions, the fringe contrast is greatly reduced. A solution is to use a beam

splitter with a different reflectivity. Another possibility is to use both mirror without

coating.

2.2.1. Optical Path Difference Introduced by a Beam Splitter Plate

We can show with a few algebraic steps and the law of refraction that a beam splitter

or compensating plate shifts the optical axis laterally and parallel to itself by the

following amount:

d ¼ t sin y 1� cos y

ðn2 � sin2 yÞ1=2

" #

; ð2:2Þ

where y is the incidence angle, t is the plate thickness, and n is the refractive index.

The light going to the observer from mirror M1 has traversed the beam splitter

only once, whereas the light from mirror M2 has gone through it three times. An

interferometer that has more glass in one arm than in the other, as in this case, is said

to be uncompensated. The interferometer can be compensated by inserting another

piece of glass in front of mirror M1 as shown in Figures 2.1 and 2.2.

The importance of compensating an interferometer is clearly seen in the following

section. Adjustable compensators for Williams configurations (Steel, 1963) and

Twyman–Green configurations (Connes, 1956; Mertz, 1959; Steel, 1962) have

been described in the literature.

As pointed out before, an interferometer is said to be uncompensated when it

has more glass in one of its arms than in the other, because (a) an optical

component (lens or prism) is present in one arm in order to test it or (b) the light

travels once through the beam splitter in one path and three times in the other

path, and the compensating plate is absent. Both of these situations can be

included in a general case in which an inclined plane glass plate is placed in

one of the arms. The unfolded optical paths for both arms of the interferometer
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are shown in Figure 2.5. Here we may see that the complete effect is equivalent to

going through a system of two plates. The optical path difference (OPD) intro-

duced by one passage through a glass plate is a function of the angle of incidence

of the light, as shown in Figure 2.6, yielding

OPD ¼ n ðABÞ þ ðBCÞ � ðADÞ ð2:3Þ

and then

OPDðjÞ ¼ tNðn cosj� cosjÞ ð2:4Þ

If the plates are inclined at an angle j0 with respect to the optical axis and the ray

direction is defined by the angles y and c as shown in Figure 2.7, the OPD introduced

by both passages may be computed by

OPDðjÞ ¼ tNðn cosj0
1 þ n cosj0

2 � cosj0
1 � cosj0

2Þ þ 2t0 cos y ð2:5Þ

(a) Path to Tilted Mirror

(b) Path to Fixed Mirror

Observer
Light source

Tilted
mirror

Mirror

Observer

Light source

FIGURE 2.5. Light paths for both interfering beams in an uncompensated interferometer.

N

tN

A

D

CB

FIGURE 2.6. Optical path difference introduced by a plane parallel plate.
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where subscripts 1 and 2 designate the first and second passages, respectively,

through the plate. The last term corresponds to an additional OPD introduced by a

shift t0 of one of the mirrors along the optical axis. Angles j1 and j2 are obtained

from angles j1, c, and j0 by means of the relations

cosj1 ¼ cosj0 cos yþ sinj0 sin y cosc

cosj21 ¼ cosj0 cos y� sinj0 sin y cosc
ð2:6Þ

If the glass plate is normal to the optical axis, j0 ¼ 0 and j1 ¼ j2 ¼ y thus

j0
1 ¼ j0

2 ¼ y0. In this case Eq. (2.5) reduces to

OPDðyÞ ¼ 2tNðn cos y0 � cos yÞ þ 2t0 cos y ð2:7Þ

2.2.2. Required Accuracy in a Beam Splitter Plate

When constructing a Twyman–Green interferometer with a beam splitter plate, it is

very important to determine the required surface quality in each one of the two faces

of the beam splitter, for a desired interferometer accuracy. These may be found

considering the following model of a beam splitter with three small localized defects

with thicknesses d t1, d t2, and d t3 as shown in Figure 2.8.

In this model we use the fact that in the external reflection in defect 1, if the

reflection is displaced a small distance t from the plate, then the optical path is

reduced by an amount

OPD ¼ 2t cos y: ð2:8Þ

0

o

Plate norm
al

Optical axis

Light ray

FIGURE 2.7. Light passing through an inclined plane parallel plate.

2.2. BEAM-SPLITTER 51



For beams reflected in the two faces of glass plate with plane and parallel faces, there

is an optical path difference given by

OPD ¼ 2nt cos y0: ð2:9Þ

Thus, in the internal reflection at the localized defect 1, the optical path is increased.

Upon transmission through a glass plate with thickness t, the additional optical path

introduced by the plate is

OPD ¼ tNðn cos y0 � cos yÞ: ð2:10Þ

Thus, the optical path introduced by the plate defects for the beam reflected from

mirror A is

dOPA ¼ �2dt1 cos yþ ðdt1 þ dt3Þ½n cos y0 � cos y�; ð2:11Þ

and the optical path introduced by the plate defects for the beam reflected frommirror

B is

dOPB ¼ �2ndt1 cos y
0 þ ðdt1 þ 2dt2 þ dt3Þ½n cos y0 � cos y�: ð2:12Þ

Thus, the difference between these two quantities is the optical path difference OPD

introduced by the plate errors:

dOPD ¼ �2dt1ðcos yþ n cos y0Þ þ 2dt2ðn cos y0 � cos yÞ ð2:13Þ

As expected, this optical path difference does not depend on the error d3, since it is

common for both beams. Of course, any error d2 it is also an error d3 for some

other ray.

d t2

d t3

d t1

FIGURE 2.8. Effect of errors in the faces of the beam splitter of a Twyman-Green interferometer.
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If OPD is the desired interferometer accuracy, the required accuracy d1 on the

plates face 1 is given by

dt1 ¼
dOPD

2ðcos yþ n cos y0Þ ; ð2:14Þ

and the required accuracy d t2 on the plate face 2 is

dt2 ¼
dOPD

2ðcos y0 þ n cos yÞ : ð2:15Þ

These results mean that, roughly, the reflecting face must be polished with about

twice the interferometer required accuracy, while the other face must have a quality

of only about half the interferometer accuracy.

2.2.3. Polarizing Cube Beam Splitter

The beam splitter can also take the form of a glass cube. It can be a non-polarizing

beam splitter or a polarizing beam splitter. The second option has many advantages

that we will describe in Section 2.8.1, as pointed out by Bruning and Herriott (1970)

and Bruning et al. (1974).

Two important properties of the cube beam splitter are that the interferometer

is automatically compensated and that most beam splitter faces are all dielectric

with no absorption. If polarized light is used, some other important character-

istics are present. Figure 2.9 shows an interferometer using a polarizing cube

beam splitter, where all the P polarized component of the light beam is trans-

mitted while the S polarized component of the light beam is reflected. If the

Collimator

Mirror M1

Mirror M2

Observing
screen

Imaging
lens

Laser

Linearly
polarized
light at 45°

Polarizing
beam
splitter

1/4 Phase plates
axis at 45°

1/4 Phase plate
axis at 45°

1/2 Phase plates
vertical axis

Analyzer

P

S

FIGURE 2.9. Twyman Green interferometer with a polarizing cube beam splitter.

2.2. BEAM-SPLITTER 53



incident light beam is linearly polarized in a plane at 45� with respect to the

square cube edges the reflected intensity is equal to the transmitted intensity.

However, as mentioned before, if the mirrors M1 and M2 have different reflec-

tivities, a half wave phase plate can be inserted before the cube beam splitter to

maximize the fringe contrast. If the angle between the slow or fast axis of the

phase plate forms an angle y=2 with respect to the plane of polarization of the

incident beam, this plane of polarization will rotate an angle y. If the fast and

slow axes of the phase plate are interchanged by rotating the phase plate 90�, the
phase or the output beam whose plane of polarization is rotated changes 180�.
The S and the P components will have different intensity as desired depending on

this angle.

When the transmitted and the reflected light go to mirrors M1 and M2, both

beams pass twice through quarter wave phase plates with their axes at 45�

before returning to the beam splitter. Thus, both planes of polarization will

rotate by 90�. This allows the returning beams to go to the observing screen

instead of returning to the light beam. So, there is no returning complementary

interference pattern when using a nonpolarizing beam splitter. Both interference

patterns go to the observing screen, but we can separate them later, as we will

next describe. Figure 2.10 illustrates the polarization states at different points

along the light trajectories. We can see that after recombining and exiting the

beam splitter, the two beams are orthogonally polarized. So, interference cannot

take place. Let us assume that these two beams with S and P polarizations have

the amplitudes

Ex ¼ Aeikz and Ey ¼ AeikðzþOPDÞ; ð2:16Þ

where OPD is the optical path difference between the two beams. A l/4 phase plate

with its axis at 45� is placed after the beam splitter to transform these two beams into

0

Illuminating
light beam 

1/2 Plate
axis

1/2 Plate
axis

1/4 Plate
axis

1/4 Plate
axis

After
1/2 plate

After first
time through
beam splitter

After mirrors,
just before
beam splitter

After
beam splitter

Analyzer
axis

Analyzer
axis

After last
1/4 plate

After
analyzer

FIGURE 2.10. Polarization states at different locations in the interferometer in Fig. 2.9.
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two circularly polarized beams with opposite sense. The total electric field due to the

superposition of the two fields along the slow axis can be shown to be

ESlow ¼ 1
ffiffiffi

2
p Að1þ e�ikOPDÞeikz; ð2:17Þ

and along the fast axis

EFast ¼
1
ffiffiffi

2
p Að1� e�ikOPDÞeiðkzþp=2Þ: ð2:18Þ

If we place a linear polarizer (analyzer) in front of these circularly polarized

beams, only the components along the axis of the polarizer forming an angle a with

the slow axis of the phase plate will pass through. Thus, the amplitude along this axis

of the polarizer is

Ea ¼ ESlow cos aþ EFast sin a; ð2:19Þ

which can be transformed into

Ea ¼
1
ffiffiffi

2
p Aðeia þ e�iae�ikOPDÞeikx; ð2:20Þ

or equivalently into

Ea ¼
ffiffiffi

2
p

A cos aþ kOPD

2

� �

eikðx�ðOPD=2ÞÞ: ð2:21Þ

Hence, the interferogram irradiance can be shown to be

Ia ¼ EaE
	
a ¼ A2½1þ cosðk OPDþ 2aÞ�: ð2:22Þ

The conclusion is that the orientation a of the axis of the analyzer will change the

phase difference between the two interfering beams without modifying the contrast.

The phase difference between the two interfering beams changes linearly with the

angle. By turning the analyzer by an angle a, the phase difference will change by 2a.

This effect is frequently used in phase shifting interferometers.

2.2.4. Nonpolarizing Cube Beam Splitter

A simplified version of the previously described interferometer configuration where

the main beam splitter is nonpolarizing and only one phase plate is used is illustrated

in Figure 2.11. The light source is linearly polarized at 45�, which means that the x

and y components of the electric vector are in phase. The l/8 phase plate is traversed

twice, sending back to the beam splitter circularly polarized light, which is equivalent

to saying that the x and y components have a phase difference equal to 90�.

2.2. BEAM-SPLITTER 55



As in the previous interferometer, the exiting light beams cannot interfere, since

one of them is linearly polarized at 45� and the other is circularly polarized. If an

analyzer is rotated in front of the interfering light beams coming out of the beam

splitter, the interference pattern appears, since only the components along the axis of

the polarizer, forming an angle ywith the x axis will pass through it. It can be proved

that the interference patterns transmitted with the analyzer at an angle y and at an

angle yþ 90� are complementary. The phase depends on the angle of the analyzer,

but for this arrangement with a nonpolarizing beam splitter, the fringe contrast is

maximum only at the analyzer angles y ¼ 
45�.

2.3. COHERENCE REQUIREMENTS

The size (spatial coherence) and monochromaticity (temporal coherence) of the light

source must satisfy certain minimum requirements that depend on the geometry of

the system, as described by Hansen (1955, 1984) and by Birch (1979). It is interesting

to know that if the optical element under test has very steep reflections, the state of

polarization of the light may change in the reflection, introducing changes in the

contrast (Ferguson, 1982). However, in most of the cases, the important factor in the

contrast is the coherence of the light source.

2.3.1. Spatial Coherence

The light source for interferometry must satisfy some minimum requirements of

spatial as well as temporal coherence, depending on the interferometer configuration

and the specific application and needs. As described in Chapter 1, Section 1.1.2.,

some gas or vapor lamps can be used in conjunction with a small pinhole to

illuminate an interferometer. These lamps with the pinhole do not have perfect

Laser

Linearly
polarized
light at 45°

1/8 Phase plate
axis at 0°

Nonpolarizing
beam splitter

Analyzer

Imaging
lens

Observing
screen

FIGURE 2.11. Twyman Green interferometer with a nonpolarizing cube beam splitter.
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spatial and temporal coherence. A gas laser, however, has perfect spatial coherence

and can have almost perfect temporal coherence. We might think at first that this is

the ideal light source for interferometry, but this is not always the case. The

coherence length is, in general, so large that many unwanted reflections from other

surfaces in the optical system may produce a lot of spurious fringes in addition to the

speckle noise that make it difficult to analyze the interferogram. On the contrary, the

perfect spatial coherence produce scattering spherical waves frommany unavoidable

small pieces of dust or scratches on the optical elements, which in turn produce many

spurious rings of fringes. This problem has been studied in detail by Schwider (1999).

The conclusion is that, quite frequently, it is a better option to use a gas or vapor

light source instead of a laser. However, if the optical path difference is large, it is

unavoidable to use a gas laser. In this section we will study the coherence require-

ments for the light source.

There are two cases for which the collimated wavefront has ray lights spread over

a solid angle with diameter 2y, and hence the final accuracy of the interferometry or

the contrast will be reduced:

(1) The collimator has spherical aberration, in which

y ¼ TA

f
; ð2:23Þ

where TA is the maximum value of the transverse spherical aberration of the

collimator at its best focus position. This aberration might limit the accuracy of

the interferometer unless the OPD remains constant with changes in the angle y.

Otherwise, given the maximum value of y, the maximum change in the OPD should

be smaller than the desired accuracy.

(2) The light source is not a mathematical point but has a small diameter 2a; then

y ¼ a

f
; ð2:24Þ

where f is the focal length of the collimator.

Fringes with high contrast are obtained, using an extended thermal source, only if

the OPDs for the two paths from any point of the source with different value of y

differ by an amount smaller than l=4 according to the Rayleigh criterion. On the

contrary, radiometric considerations usually require as large a source as possible that

will not degrade the contrast of the fringes.

When the beam splitter is a glass plate and is not compensated by another identical

glass plate, we may show that the maximum light source size has an elliptical shape.

This is the reason why the fringes are elliptical in an uncompensated Michelson

interferometer. The shape and the size of the ellipse not only are functions of j0, y,

and c but also depend very critically on t0.

The simpler case of a glass plate with its normal along the optical axis can be

analyzed with more detail as will be shown. The OPD is given by Eq. (2.7). As shown
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in Figure 2.12, the value of the OPD changes with the value of y depending on the

value of t0. The maximum allowed value of the angular semidiameter y of the light

source as seen from the collimator is that which gives a variation of the OPD equal to

l/4. On the contrary, the maximum allowed value of the angle y due to spherical

aberration of the collimator is that which gives a variation of the OPD equal to the

accuracy desired from the interferometer.

When testing small optics using a nonmonochromatic light source, the optical

path difference can be adjusted to be zero. Then, it is convenient to choose

t0 ¼ tNð1� nÞ; ð2:25Þ

so that OPDð0�Þ ¼ 0, but this situation will require an even smaller light source. It

should be pointed out that when testing large optics, the value of t0 cannot be changed

at will, because in general it will be very large.

If an extended quasi-monochromatic light is used, a good condition in order to

make the optical path difference insensitive to the angle y is

dOPDðyÞ
d y

¼ 0; ð2:26Þ

yielding

t0 ¼ tN 1� 1

n

� �

: ð2:27Þ

It is interesting to see that this equation is equivalent to the condition that the

apparent distance of the image of the collimator (or the light source in a Michelson

l1

l2

58547 l

35315 l

l35314

t0 = tN (1–n)

t0 = 0

t0 = tN (1–1/n)

Angle q

OPD (q)

5¢ 10¢ 15¢ 20¢ 25¢ 30¢

FIGURE 2.12. Optical path difference introduced by a plane parallel plate normal to the optical axis

ðt ¼ 2 cm; n ¼ 1:52; 7l1 ¼ 589 nm:Þ.
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interferometer) to the observer is the same for both arms of the interferometer. This

condition seems reasonable if we consider that then the angular size of the two

images of the light source is the same as pointed out by Steel (1962) and Slevogt

(1954).

When the light source is extended and the interferometer is compensated in this

manner, the fringes are localized at a certain plane in space. To find this plane, the

system may be unfolded as studied by Hansen (1942, 1955). For an interferometer

with plane mirrors, this location for the fringes is near the plane mirrors because of

the way the image of the light source moves when one of the mirrors is tilted in order

to obtain the fringes as shown in Figure 2.5. Thus, the viewing system must be

focused near the mirrors to see the fringes.

As it will be described later in this chapter, to test an optical system, one of the

plane mirrors is replaced by the system to be tested, plus some auxiliary optics to

send back a collimated beam to the interferometer, just like one single mirror would

do. The returning collimated beam has to have the same diameter. Thus, it is easy to

conclude that this whole system, including the element under test has the following

general characteristics:

(1) It is afocal.

(2) Its magnification is either one or minus one. If it is minus one, the returning

wavefront will be rotated with respect to the incident wavefront.

(3) The system is symmetric and hence it is always free of coma.

(4) Entrance and the exit pupil are symmetrically placed with respect to the

system and have the same diameter.

With these properties we see that since the system is reflective (it is retroreflector

only if the magnification is minus one), the entrance and exit pupil are at the same

plane. An important conclusion is that the fringes should be observed at this entrance

and exit pupil plane. This problem has been studied with detail by Schwider and

Falkenstörfer (1995).

It should be noticed that the entrance pupil of the whole system is not necessarily

the same as the pupil of the lens under test. However, when testing a lens, the fringes

are to be observed at the pupil, which ideally should be the same. This does not

happen with a single mirror; therefore, the mirror should be as close as possible to the

lens. This the reason why a convex mirror with the longest possible radius of

curvature is desirable (Steel, 1966) when testing telescope objectives. On the con-

trary, the entrance pupil of a microscope objective is at infinity; hence, the exit pupil

is at the back focus. Dyson (1959) described an optical system such as the one to be

described in Chapter 12, which images the mirror surface on the back focus of the

microscope objective, where the fringes are desired.

The limitation on the size of a pinhole source was examined in a slightly different

manner by Guild (1920–1921) as explained below. Imagine that the small source is

greatly enlarged to form an extended source. Then fit an eyepiece in front of lens L2

(see Fig. 2.1) to form a telescope. Under these conditions, equal inclination fringes in
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the form of concentric rings (like the ones normally observed in the Michelson

interferometer) are observed. If the mirrors are exactly perpendicular to their optical

axes, the rings will be exactly centered. The ideal size of the source is that which

allows only the central spot on the fringe system to be observed. The size of

the central spot increases when the OPD (y) reduces its dependence on y by one

of the adjustments described above, making possible the use of a larger source,

although the effective size of the spot is then limited by the pupil of the observing eye

or the camera.

In all the foregoing considerations, the two interfering wavefronts are assumed to

have the same orientation, that is, without any rotations or reversals with respect to

each other. In other words, if one of the beams is rotated or reversed, the other should

also be rotated or reversed. A wavefront can be rotated 180� by means of a cube

corner prism or a cat’s-eye retroreflector formed by a convergent lens and a flat

mirror at its focus. The wavefront can be reversed upon reflection on a system of two

mutually perpendicular flat surfaces, e.g., in a Porro prism.Murty (1964) showed that

if one of the wavefronts is rotated or reversed with respect to the other, then, to have

fringes with good contrast and without phase shifts, the pinhole diameter 2a should

satisfy the condition

2a � 1:2lf

D
; ð2:28Þ

so that diametrically opposite points over the wavefront are coherent to each other.

Here, f and D are the collimator’s focal length and diameter, respectively. Then 2a

is extremely small and therefore an impractical size for some sources. However,

there is no problem if a gas laser is used, because its radiance and spatial

coherence are extremely high. This subject will be examined with more detail

in Chapter 5.

When testing an optical element as it will be described in the following section,

the wavefront is sometimes inverted (up-down) or reversed (left-right) or rotated

(both), which is equivalent to a rotation of one of the wavefronts by 180�. Then, the
spatial coherence requirements increase. If a laser is used, no problem arises. If a gas

or vapor source is used, the reference wavefront has also to be inversed, reversed, or

rotated, like the wavefront under test.

When there is no alternative but to use a gas laser source, due to a large optical

path difference, speckle noise and spurious fringes may be reduced by artificially

reducing the spatial coherence of the light a little. This is possible by placing a small

rotating ground glass disc on the plane of the pinhole as described by Murty and

Malacara (1965), Schwider and Falkenstörfer (1995), and Schwider (1999).

2.3.2. Temporal Coherence

The OPD (y) given by Eq. (2.5) also imposes some minimum requirements on the

monochromaticity of the light source. Considering first the case of an interferometer

that is uncompensated because of the lack of a compensating plate or the presence of
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an optical system with lenses or prisms in one of the arms, from Eq. (2.5) we can

write

�OPDð0�Þ ¼ 2tN
dn

dl

� �

�l ð2:29Þ

and, using again the Rayleigh criterion ð�OPD � l=4Þ,

�l � l

8tn
dn
dl

� � ð2:30Þ

Therefore, since the glass dispersion ðd n=dlÞ is never zero, and tn is also nonzero,
the bandwidth �l must not have a very large value if the interferometer is not

compensated. If the interferometer is exactly compensated, white light fringes can be

observed when OPD is nearly zero; otherwise, a highly monochromatic light source

such as a low vapor pressure lamp or (even better) a gas laser must be used.

If many different kinds of glasses are present in both arms of the interferometer,

we may take a more general approach by considering that the interferometer is

compensated for the bandwidth �l of the light, if the phase difference for the light

following the two paths in the interferometer is independent of the wavelength.

According to Steel (1962), we can say that, if each arm of the interferometer contains

a series of optical components of thickness t and refractive index n, the phase

difference for the two arms is

f ¼ 2p

l

X

1

nt �
X

2

nt

 !

ð2:31Þ

This relative phase is independent of the wavelength when df=dl ¼ 0, thus giving

X

1

~nt ¼
X

2

~nt ð2:32Þ

where ñ is the ‘‘group refractive index,’’ defined by

~n ¼ n� l
dn

dl
ð2:33Þ

Thus, the interferometer is compensated for the bandwidth �l when the ‘‘group

optical path’’ for both arms is the same. Steel (1962) pointed out that the compensa-

tion for the bandwidth of the light source can be examined by looking at the fringes

formed by a white light source through a spectroscope with its slit perpendicular to

the fringes. The spectrum is crossed by the fringes and their inclination shows the

change of fringe position with wavelength. The fringes will be straight along the

direction of dispersion if the bandwidth compensation is perfect. Otherwise, the glass

optical paths can be adjusted until the fringes show a maximum (zero slope) at the
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wavelength to be used. If the bandwidth of the light source is very large, a detailed

balancing of the glass paths has to be made by using the same types and thicknesses

of the glass on both arms.

If the OPD(0) is very large, as in the unequal-path interferometer (described in

Section 2.5), the last term in Eq. 2.5 dominates, and we can write

OPDð0�Þ ¼ 2t0 ¼ ml ð2:34Þ

but from the Rayleigh criterion, the order number m should not change from one end

of the wavelength bandwidth to that of the other by more than 1/4; thus

ml ¼ mþ 1

4

� �

ðl��lÞ ð2:35Þ

where�l is the maximum allowed bandwidth. Thus we can write the approximation

�l � l

8t0
ð2:36Þ

Since the length of a train of waves with bandwidth �l is equal to l2�l, this

condition is equivalent to saying that the OPD(0�) should be smaller than one fourth

of the length of the wavetrain (or wavelength of the modulation). In uncompensated

interferometers, this condition is incompatible with the condition for an extended

light source.

Avery interesting and practical case occurs when the light source is a gas laser, but

this discussion is left to Section 2.5 on the unequal-path interferometer.

2.4. USES OF A TWYMAN–GREEN INTEFEROMETER

Many different kinds of optical components can be tested with this instrument. The

simplest one to test is a plane parallel plate of glass, as shown in Figure 2.13. The

OPD introduced by the presence of the glass plate is given by

OPD ¼ 2ðn� 1Þt ð2:37Þ

where t is the plate thickness and n is the refractive index. If the interferometer is

adjusted so that no fringes are observed before introducing the plate into the light

beam, all the fringes that appear are due to the plate. If the field remains free of fringes,

we can say that the quantity ðn� 1Þt is constant over all the plate. If straight fringes
are observed, we can assume that the glass is perfectly homogeneous (nconstant) and

that the fringes are due to an angle E between the two flat faces, given by

e ¼ a

2ðn� 1Þ ð2:38Þ
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where a is a small angle between the two interfering wavefronts, which can be

determined from

a ¼ nl ð2:39Þ

Here m is the number of interference fringes per unit length being observed.

The fringes, however, may not be straight but quite distorted, as shown in

Figure 2.14, because of bad surfaces or inhomogeneities in the index, since the

only quantity we can determine is ðN � 1Þt. To measure the independent variations

of n and t, we must complement this test with another made in a Fizeau interferom-

eter, which measures the values of nt (Kowalik 1978). Many different kinds of

Glass plate
under test

Flat
mirror

FIGURE 2.13. Testing a glass plate.

FIGURE 2.14. Interferogram of a glass plate.
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material can be tested with this basic arrangement (Adachi et al., 1961, 1962;Masuda

et al., 1962; Twyman and Dalladay, 1921–1922).

In many instruments, when using a glass window, the important requirement is

that the optical path difference introduced by its presence is a constant for the whole

aperture as in Eq. (2.30). However, sometimes the plate may not be transparent in the

visible, only in the infrared, where it is used, and an infrared interferometer is not

available. If a constant index of refraction is assumed, the important parameter is a

constant thickness. But an independent measurement of the flatness of the faces does

not permit this evaluation because the plate is frequently so thin that it may bend,

which, on the contrary, is not important in its operation. For these cases, Williamson

(2004) has described a configuration as shown in Figure 2.15. The interesting

characteristic of this configuration is that if the plate bends or curves in any way,

the change in one of its two faces is canceled out by the corresponding change in the

other.

2.4.1. Testing of Prisms and Diffraction Rulings

The Twyman–Green interferometer is a very useful instrument for testing prisms. Its

application for testing the accuracy of the 90� angle between two of the faces of a

right angle (Porro) prism, a roof (Amici) prism, or a cube corner prism is especially

interesting. As explained before, the relative rotation or reversal of the wavefronts

should be corrected, as shown in Figure 2.16, if a gas laser is not used. The

arrangements in Figure 2.17 can be used when a gas laser source is employed.

Avery good cube corner prism will give rise to an interferogram like that shown in

Figure 2.18. The fringes are straight throughout the aperture. A cube comer prism

with angular errors produces an interferogram such as that shown in Figure 2.19, in

which the straight fringes abruptly change their direction. Thomas andWyant (1977)

made a complete study of the testing of cube corner prisms.

Beam
splitter

mirror
Flat

Plate
under
test

Two mirrors
with a
45° angle

FIGURE 2.15. Testing a thin and flexible opaque glass plate.
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Right-angle (Porro) prism
under test

mirror
Flat

Roof (amici) prism
under test

mirror
Flat

mirror
Flat

under test
Cube corner prism

FIGURE 2.16. Testing some prisms.

Right Angle (Porro) prism
Under test

Under test
Cube corner prism

FIGURE 2.17. Testing some prisms by retroreflection with laser illumination.
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Figures 2.20 and 2.21 show similar situations for a right-angle prism of no error

and of some angular error, respectively. If, in addition to angle errors, the surfaces are

not flat or the glass is not homogeneous, an interferogram with curved fringes is

obtained. When a right angle or porro prism is tested in the retroreflective config-

uration and the surface flatness as well as the 90� angle is correct, the fringes look

FIGURE 2.18. Interferogram of a good corner cube prism tested in the retroreflecting configuration and

with some tilt.

FIGURE 2.19. Interferogram of a corner cube prism with some errors in the angles of the faces tested in

the retroreflecting configuration and with an average tilt equal to zero.

66 TWYMAN–GREEN INTERFEROMETER



straight and parallel as in Figure 2.20. If the right angle has an error, the fringes look

like those shown in Figure 2.21 and can be manipulated to look like those in

Figure 2.22. We describe here a brief method for obtaining the angular error in a

right angle prism. If 2L is thewidth of the face of the prism, p=2
 E is the angle of the

prism, d is the distance between two successive fringes, k is the deviation of the fringe

from the straight fringe after bending, n is the refractive index of the prism, and l is

the wavelength used. As shown in Figure 2.23, the error is given by

e ¼ a

2N
¼ k

d

� �
l

4nL

� �

where a is the angle between the two exiting wavefronts. For example, for a prism of

100 mm face width and k=d ¼ 0:25, the error E of the 90� angle is about 1 s of arc. In
regard to the sign of the error, the hot rod or finger procedure described before can be

used.

FIGURE 2.20. Interferogram of a good porro prism tested in the retroreflecting configuration and with

some tilt.

FIGURE 2.21. Interferogram of a porro prism with a small error in the angle tested in the retroreflecting

configuration. It has some tilt about the x axis and an average tilt equal to zero about the y axis.
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Luneburg (1964) showed that the angular error E in a roof face of a prism is

e ¼ a

4mn sin y
ð2:40Þ

where n is the refractive index of the material, a is the angle between the two exiting

wavefronts in a single pass through the prism, y is the angle between de roof edge and

the incident beam, andm is the number of times the lights is reflected on the roof face.

For the arrangements shown in Figs. 2.15 and 2.16 we have the values in Table 2.1.

The angle a is determined from Eq. (2.32), but with the interferometer adjusted in

such a way that all the fringes in one of the faces are eliminated.

A dispersive prism can also be tested as shown in Figure 2.24(a). This arrange-

ment of smoothly changing inhomogeneities in the glass may be compensated for by

appropriately figuring the faces. An axicon may be tested in a Twyman–Green

interferometer using the method described by Fantone (1981) as well as reflaxicons

(Hayes et al., 1981).

FIGURE 2.22. Interferogram of a porro prism with a small error in the angle tested in the retroreflecting

configuration. It has some tilt about the x axis and a zero tilt about the y axis on the left side.

Right angle prism
under test

90°+ e  2 L= 2 n ea

FIGURE 2.23. Testing a porro prism with a small error in the angle in a retroreflective configuration.
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In 1935, Bisacre and Simeon suggested a method whereby a diffraction grating

could be tested by means of a Twyman–Green interferometer. Unfortunately, they

never published their work (Candler, 1951). They used the arrangement shown in

Figure 2.24(b). The interferometer is initially adjusted to obtain horizontal fringes in

the first order. Then the grating is rotated to pass to the third order, in which the

ghosts, if any, are stronger. If there are ghosts and a tilt about an axis along the grating

chromatic dispersion is introduced, the fringes have a sawtooth appearance. When

the spacing between the horizontal fringes is increased by removing the tilt, the teeth

become larger and larger until they form a system of vertical fringes due to the

inteference between the zero order and the ghost wavefront. Using this interferom-

eter, Jaroszewics (1986) has also tested the spacing error of a plane diffraction

grating.

2.4.2. Testing of Lenses

One of the early applications of the Twyman–Green interferometer was the testing of

lenses and camera objectives (Twyman, 1920), including the measurement of the

chromatic aberration (Martin and Kingslake, 1923–1924). Any of the arrangements

in Figure 2.25 can be used to test a convergent lens. A convex spherical mirror with

TABLE 2.1 Values of angle h and of K for prisms in Figures

2.16 and 2.17.

Prism Figure y sin y K

Porro 2.10 60� 0.8662 2

Amici 2.10 45� 1=
ffiffiffi
2

p
2

Cube Corner 2.10 54.7�
ffiffiffiffiffiffiffiffi

2=3
p

2

Porro 2.11 90� 1 1

Cube Corner 2.11 54.7�
ffiffiffiffiffiffiffiffi

2=3
p

1

FIGURE 2.24. Testing a dispersive prism and a diffraction grating.
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its center of curvature at the focus of the lens is used for lenses with long focal lengths

and a concave spherical mirror for lenses with short focal lengths. A small flat mirror

at the focus of the lens can also be employed to great advantage, since the portion of

the flat mirror being used is so small that its surface does not need to be very accurate.

However, because of the spatial coherence requirements described in Section 2.3.1,

the same arrangement or a cube corner prism must be employed on the other

interferometer arm, if a laser is not used. Another characteristic of this method is

that asymmetric aberrations like coma ere canceled out, leaving only symmetric

aberrations like spherical aberration and astigmatism.

When a lens is to be tested off axis, it is convenient to mount it in a nodal lens

bench as shown schematically in Figure 2.26. The lens L under test is mounted in a

rotating mount so that the lens can be rotated about the nodal point N. Since the focal

surface is usually designed to be a plane and not a sphere, mirror M is moved

(a) (b)

(c)

Plane
mirror

Lens
under test

Spherical
concave
mirror

Lens
under test

Spherical
convex
mirror

Lens
under test

FIGURE 2.25. Three possible arrangements to test a lens.

N

M

F

P

F ¢

FIGURE 2.26. Testing a lens with a nodal bench.

70 TWYMAN–GREEN INTERFEROMETER



backward a small distance F P by pushing the mirror support against a metallic bar

F P, fixed with respect to lens L. Interferograms obtained with lenses having third

order aberrations will be shown in Section 2.7.

Testing a large lens on the Twyman–Green interferometer requires the use of a

beam-splitter plate even larger than the lens. To avoid this difficulty, according to

Burch (1940), Williams suggested later by Hopkins (1962) for use with a gas laser in

an unequal path configuration.

Complete small telescopes can also de tested with good results as shown by

Ostrovskaya and Filimonova (1969).

2.4.3. Testing of Microscope Objectives

Twyman (1920, 1923) also used his instrument for the testing of microscope

objectives with good success. The arrangement is essentially the one used for a lens,

but a convex mirror, in general, cannot be employed because of the short focus of the

objective. Since themicroscope sometimesworks at a finite tube length, a negative lens

is added to change the collimated light and simulate a light source 16 cm away. This

lens must be corrected for spherical aberration, but it is not necessary to correct it

quasi-monochromatic. As shown in Figure 2.27, several arrangements can be used to

test an objective, the most common being a spherical concave mirror with its center of

curvature at the focus of the objective. A solid spherical reflector slightly thicker than a

hemisphere can serve to simulate the presence of a cover glass.

A plane mirror at the focus of the objective can also be used, but in this case the

wavefront is rotated 180�. Therefore, we should either use a laser light source or

rotate the wavefront on the other arm. This can be done by means of a cube corner

prism or with another microscope objective with the same flat mirror arrangement. It

should be pointed out that the interferogram in this case represents the difference

between the aberrations of the two objectives.

A fourth arrangement is formed by two oppositely placed microscope objectives.

In this case, the interferogram represents the sum of the aberrations of the two

objectives. However, when the aberrations to be measured are not small or the

pinhole is not small, the best arrangement is the one with the Dyson’s system

described in Chapter 12.

FIGURE 2.27. Testing microscope objectives.
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2.5. COMPENSATION OF INTRINSIC ABERRATIONS IN THE

INTERFEROMETER

A Twyman–Green interferometer may easily have aberrations of its own due to

defective optical components, so that the interferometric pattern is the result of the

addition of the aberrations of the optical system under test and the intrinsic inter-

ferometer aberrations. Basically, the final aberration may be the superposition of

three sources, the reference path Wref , the testing path Wtest, and the element or

optical surface under test Wsurf . A method to isolate the optical surface aberration

from the instrument aberration has been proposed by Jensen (1973). His procedure

takes three different measurements with different positions and orientations of the

surface under test. To describe it let us assume that these three measurements are as

follows.

(a) A the normal testing position, as in Figure 2.28(a). Then, the inteferogram

aberration can be written as

W0� ¼ Wsurf þWref þWtest ð2:41Þ

(b) At the normal testing position, but rotating the surface under test 180�, as
shown in Figure 2.28(b), the interferogam aberration now is

W180� ¼ W surf þWref þWtest ð2:42Þ

where the bar on top of Wsurf means that this wavefront aberration has been rotated

by 180�.

(b)

(c)

Spherical
mirror
at 180°

Focusing
lens

Focusing
lens

Spherical
mirror
at 0°

(a)

Focusing
lens

Spherical
mirror
at the focus

FIGURE 2.28. Calibration of a Twyman-Green Interferometer by absolute testing a concave sphere.
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(c) The vertex of the optical surface under test is placed at the focus of the

focusing lens, as illustrated in Figure 2.28(c). Then, the surface aberrations do

not appear on the interferogram. However, The reflected wavefront is rotated.

Now we have

Wfocus ¼ Wref þ
1

2
ðWtest þW testÞ ð2:43Þ

In any of these three equations, we can rotate all wavefronts in the same expres-

sion and it will remain valid. This is done either by placing the bar on top of theW that

does not have it or by removing it if it is already there. By using this property, it is

possible to obtain

Wsurf ¼
1

2
ðW0� þW180� �Wfocus �W focusÞ ð2:44Þ

With this expression the intrinsic interferometer aberrations are subtracted, making

the instrument as if it did not have any aberration of its own. If a large number of

similar spherical surfaces are to be tested, the intrinsic instrumental aberration can be

expressed as

Wref þWtest ¼
1

2
ðW0� �W180� þWfocus þW focusÞ ð2:45Þ

Once the interferometer is calibrated, this intrinsic aberration can be subtracted if the

surface under test has a radius of curvature close to the one of the mirror used to make

the calibration.

Unfortunately, as shown by Creath and Wyant (1992), this method is quite

sensitive to experimental errors due to misalignments, such as decentrations and

tilts in the rotation and shifting of the surface under test. In view of this, they

proposed a simpler method where both the intrinsic interferometer aberration and

the aberration of the spherical surface are almost rotationally symmetric. Then, Eq.

(2.37) reduces to

Wsurf ¼ W0� �Wfocus ð2:46Þ

and the intrinsic aberration is justWfocus. It is important to point out that this method

works for Twyman–Green well as for Fizeau interferometers.

2.6. UNEQUAL-PATH INTERFEROMETER

In Section 2.3, we discussed the coherence requirements of a Twyman–Green

interferometer and pointed out that, when a laser light source is used, extremely

large OPDs can be introduced (Morokuma et al., 1963). In explaining this, let us first

consider the spectrum of the light emitted by a laser. As shown in Figure 2.29(a), the
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light emitted by a gas laser usually consists of several spectral lines (longitudinal

modes) (Sinclair and Bell, 1969) spaced equally at a frequency interval�n given by

�n ¼ e

2L
ð2:47Þ

If the cavity length L of a laser changes for some reason (thermal expansion or

contractions, mechanical vibrations, etc.), the lines move in concert along the

frequency scale, preserving their relative distances �n, but always with intensities

inside the dotted envelope (power gain curve) as shown in Figure 2.29(a).

Lasers that have only one spectral line are called single-mode or single-frequency

lasers. They produce a perfect unmodulated wavetrain, but because of instabilities in

a cavity length L the frequency is also unstable. By the use of servomechanisms,

however, single-frequency lasers with extremely stable frequencies are commer-

cially produced. They are the ideal source for interferometry since an OPD as long as

desired can be introduced without any loss in contrast. Unfortunately, these lasers are

very expensive and have very low power outputs (less than 1 mW). Even so, a 1-mW

laser has a higher radiance than any other type of interferometric source.

It can be shown (Collier et al., 1971) that the theoretical visibility in an inter-

ferometer, when a laser source with several longitudinal modes is used, is as

illustrated in Figure 2.29(b). Therefore, to have good contrast, the OPD (0) has to

be near an integral multiple of 2L; thus

OPDð00Þ ¼ 2t0 ¼ 2ML ð2:48Þ

Hence lasers are very convenient for Twyman–Green interferometry provided that

the mirrors in the interferometer can be adjusted to satisfy this condition. Because of

mechanical instability, the laser cavity normally vibrates, producing a continuous

1

.5

2LL 3L 4L

4 Modes

3 Modes

2 Modes

Optical path difference.

V
is

ib
ili

ty

L = 20 cm.

2 Modes 3 Modes 4 Modes

L = 30 cm.  L = 40 cm.

(a)

(b)

FIGURE 2.29. Visibility in the interferometer using a mutimode gas laser.
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instability in the frequency of the lines. This does not represented any serious

problem for small OPDs of the order of 1 m. If, however, the OPD is very large,

of the order of 10 or more meters, an almost periodic variation of the contrast is

introduced as shown by Batishko and Shannon (1972). To overcome the inconve-

nience of this effect, they recommend taking photographs with exposures of the order

of 1/250 ms. This exposure is fast enough to stop the vibration of the fringes but slow

enough so that the contrast variation is integrated out.

A laser with two longitudinal modes can be stabilized to avoid contrast changes by

a method recommended by Balhorn et al. (1972), Bennett et al. (1973), and Gordon

and Jacobs (1974).

Some suggestions for aligning and adjusting the unequal path interferometer had

been given by Zielinski (1978,1979).

2.6.1. Some Special Designs

With the advent of the laser, it became practical to use Twyman–Green interferom-

eters with large optical path differences. Probably the first one to suggest this was

Hopkins (1962). An instrument of this type following a Williams arrangement was

made by Grigull and Rottenkolder (1967) for wind-tunnel observations and the

testing of spherical mirrors.

Avery versatile unequal-path interferometer for optical shop testing was designed

by Houston et al. (1967). A schematic diagram of this interferometer is shown in

Figure 2.30. The beam-splitter plate, which is at the Brewster angle, has a wedge

angle of 2–3 min of arc between the surfaces. The reflecting surface of this plate is

located to receive the rays returning from the test specimen in order to preclude

astigmatism and other undesirable effects. A two-lens beam diverger can be placed in

one arm of the interferometer. It is made of high index glass, all the surfaces being

spherical, and has the capability for testing a surface as fast as f=1:7. A null lens can

be used to test an aspheric element, with the combination beam diverger and null lens

spaced and aligned as depicted in Figure 2.31 (see Chapter 12)

Another unequal-path interferometer was designed by Kocher (1972). This instru-

ment, shown in Figure 2.32, is quite similar to the Twyman–Green interferometer in

Collimator

Laser
beam

Beam
splitter

Beam
diverger

Mirror
under test

Observing
screen

Beam
expander

Adjustable
mirror

FIGURE 2.30. Houston’s unequal path interferometer.
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Figure 2.2. A significant feature is the use of an optically thick beam-splitter substrate

in the diverging beam. Such a plate introduces aberrations, but they are intentionally

made equal on both arms. To a first approximation there is no effect on the fringe

pattern, mainly if the total thickness is kept small. Buin et al. (1969) reported a

successful industrial use of unequal-path interferometers.

2.6.2. Improving the Fringe Stability

The unequal-path interferometer frequently has the problem that the fringes are

very unstable due to vibrations of the surface under test. Most mirror vibrations

have mainly tip and tilt components more than a piston component. Bending is not

usually important mainly if the optical elements are thick enough. Thus, one obvious

approach is to configure the optical system so that the antisymmetric components of

the wavefront from the vibrating system under test are canceled out. The disadvantage

of this is that the antisymmetric aberrations, such as coma, are not detected.

One possible implementation of this concept is the arrangement in Figure 2.33.

The diverging beam of light going out from the interferometer illuminates the

concave surface under test and then the reflected convergent beam gets reflected in

a small flat mirror near the center of curvature. Then, the light returns to the mirror,

but the returning wavefront has been rotated 180� with respect to the incident

Null
lens

Focusing
lens

Aspheric mirror
under test

FIGURE 2.31. Null lens and lens diverger for unequal path interferometer.

Laser
beam

Beam
expander

Beam
splitter

Observing
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Surface
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FIGURE 2.32. Kocher’s unequal path interferometer.
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wavefront. This rotation of the wavefront eliminates all antisymmetric components

of the wavefront error, remaining only the symmetric components.

The mirror vibrations may also be eliminated from the interferogram by introdu-

cing exactly the same vibrations in the reference wavefront. This is done with an

arrangement described by Hardesty (1979), where the reference arm of the inter-

ferometer is made as long as the test arm and the reference mirror is placed as close as

possible to the tested element, so that they vibrate together.

A third method to dampen the vibrations is by sensing this vibrations with a light

detector and with this signal move the reference mirror in the opposite sense (Cole

et al., 1997). This is a closed loop servo system that uses a phase smaple frequency of

several kilo Hertz.

A fourth method is to capture the interferogram image as fast as possible, so that

vibrations do not affect the image. This can be done, but the limitation might come if

several images with different phase are required, as in phase shifting interferometry.

Some interferometers had been designed that allow the simultaneous measurement

of four interferograms with different phase.

2.7. OPEN PATH INTERFEROMETERS

An optical element under test in a Twyman–Green interferometer is traversed twice.

However, sometimes it is necessary that the sample is traversed by the light beam

only once. This can be done if the interferometer configuration is modified by

unfolding the light paths. Several possible configurations including the well-known

Mach-Zehnder will be described.

2.7.1. Mach-Zehnder Interferometers

As pointed out before, the Mach-Zehnder configuration shown in Figure 2.34 has

some advantages with respect to the Twyman–Green configuration. For example, if

the sample under test has a large aberration, it is better to pass the beam of light only

once through it. Another advantage some times is that this interferometer is auto-

matically compensated because it has two beam splitters.

Mirror under test
Center of curvature

Small flat mirror

FIGURE 2.33. Stabilization of interference fringes by eliminating antisymetric errors in the wavefront,

by means of a reflection in a small flat mirror.
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A commercial version of this interferometer configuration, manufactured by

Wyko Corp., uses a pinhole in one of the branches to generate a perfect wavefront,

in order to test the wavefront quality of the light source, as shown in Figure 2.35.

(Leung and Lange, 1983; Creath, 1987). A Mach–Zehnder has also been used to test

off-axis paraboloids (Gerth et al., 1978). Cuadrado et al. (1987) have described a

method to align a Mach–Zehnder interferometer using equilateral hyperbolic zone

plates and Flack (1978) has analyzed the errors that result from a test section

misalignment.

Sometimes, to save one mirror, a triangular configuration as illustrated in

Figure 2.36 is used.

2.7.2. Oblique Incidence Interferometers

Another kind of two beam interferometers have triangular paths, so that one of the

beams is obliquely reflected on the flat surface under test. It may easily be proved that

under those conditions a small error with height h on the surface under test introduces

an error equal to 2 h cos y, where y is the incidence angle. Thus, the interferometer is

desensitized by a factor cos y. Another consequence of the oblique incidence is that

the reflectivity of the surface under test is greatly increased. Thus, an interferometer

with oblique incidence is ideally suited for testing ground or mate flat surfaces,

Light
source Collimator

Observing
eye

Sample
under test

FIGURE 2.34. Basic Mach-Zehnder interferometer configuration.

Laser diode
under test

Filtering
pinhole

FIGURE 2.35. Mach-Zehnder interferometer used to test the wavefront quality of a laser diode.
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whose flatness and reflectivity are not good enough to be tested by conventional

interferometry.

Oblique incidence interferometers have been described by Linnik (1942),

Saunders and Gross (1959), by Birch (1973,1979), by Hariharan (1975), and by

MacBean (1984). Some of these interferometers use diffraction gratings as beam

splitters, as the one designed by Hariharan, as shown in Figure 2.37. Small ground

and almost flat aspherical surfaces may be tested with oblique incidence interferom-

eters as shown by Jones (1979).

Collimator

Point light
source

Beam
splitter

Observing
plane

FIGURE 2.36. Triangular path interferometer.

Light source Observing eye

plane surface under test

Diffraction
grating

Diffraction
grating

FIGURE 2.37. Grazing incidence Interferometer using a diffraction grating beam splitter.
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2.8. VARIATIONS FROM THE TWYMAN–GREEN CONFIGURATION

Many variations of the Twyman–Green interferometer have been invented; interest-

ing among them are some small, compact interferometers designed by Van Heel and

Simons (1967) and by Basile (1979).

A carbon dioxide laser has been used as a light source of long wavelengths

(10.67m 1m) in a Twyman–Green interferometer (Munnerlyn et al., 1969, Kwon

et al., 1979, and Lewandowski et al., 1986) in order to measure unpolished or rough

surfaces.

Another interesting development is the invention of a cheap interferometer whose

defects are corrected by means of a hologram (Rogers, 1970). First, a photograph is

taken in a very imperfect and inexpensive interferometer, introducing a large tilt.

This gives rise to an exceedingly fine set of fringes invisible to the naked eye but

capable of being photographed. Then a second exposure is taken on the same

photographic plate, after introducing into the interferometer the plate to be tested.

A moiré pattern appears on the developed plate, giving the contours of the surface

quality of the plate under test.

Another interesting holographic Twyman–Green interferometer has been

described by Chen and Breckinridge (1982). In this design, a single holographic

optical element combines the functions of a beam splitter, beam diverger, and null

compensating lens. McDonell and DeYoung (1979) designed a large aperture inter-

ferometer using a holographic compensator.

2.8.1. Multiple Image Interferometers

An application of the systems using polarized light in the interferometer is to obtain

Twyman–Green multiple simultaneous fringe patterns with different values of the

constant phase difference by selecting the phase with the orientation of the analyzer.

The interferometers described in Section 2.2.4 can produce two complementary

interferograms as illustrated in Figure 2.38. If the two light beams returning to the

light source are observed with another polarizing beam splitter, we will have four

different fringe patterns with four different phases. Inteferometers like this had been

made with four independent cameras, but they are difficult to align. Another system

that does not have this problem, described by Millerd, Brock, Hayes, Kimbrough,

Novak, and North-Morris (2005), uses a CCD detector with a specially designed

screen in front of it as illustrated in Figure 2.39, where the pixels in the CCD camera

have analyzers oriented in four different directions to capture the four phase shifted

interferogram simultaneously, with a holographic element that projects the same

image region to a set of every four pixels.

2.8.2. Interferometers with Diffractive Beam Splitters

Some two beam interferometers may be thought as modifications from the basic

Twyman–Green interferometer. Some of them use diffraction gratings as beam

splitters, as the one shown in Figure 2.40, described by Molesini et al. (1984). The
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advantage of this particular configuration is that relatively large errors in the grating

flatness may be tolerated. In the following section we will see some other inter-

ferometers using diffraction gratings as beam splitters.

2.8.3. Phase Conjugating Interferometer

Phase conjugating mirrors are very useful tools in interferometry. They eliminate the

need for a perfect reference wavefront. ATwyman–Green interferometer as shown in

Laser

Linearly
polarized
light at 45°

1/8 Phase plate
axis at 0°

Interference
patterns
90° out of phase

FIGURE 2.38. Twyman–Green interferometer with a cube nonpolarizing beam splitter.

detector

element
Holographic

CCD

Polarizers
with four
different
orientations

FIGURE 2.39. Arrangement to simultaneously produce for interferograms with different phase differ-

ences using a pixelated CCD detector with polarizing element in front of it.
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Figure 2.41, using a phase conjugating mirror has been described by Feinberg (1983)

and Howes (1986a, 1986b). The phase conjugating mirror is formed by a BaTiO3

crystal, with the C axis parallel to one of its edges and inclined 20� with respect to a
plane perpendicular to the optical axis. The phase conjugation is obtained by four

wave mixing. These pumping beams are automatically self-generated from a 30-mW

argon laser ðl ¼ 514:5 nmÞ incident beam by internal reflection at the crystal faces.

Thus, it is a self-pumped phase conjugating mirror.

The property of this self-conjugating mirror is that the wavefront incident to the

mirror is reflected back along the same ray directions that the incident wavefront has.

Thus, the wavefront deformations change sign. Since the returning rays have the

same directions as the incident rays, the quality of the focusing lens is not important.

Mirror under test

Light source
Interferogram

Diffraction grating

FIGURE 2.40. Oblique incidence interferometer using reflecting diffraction gratings as beam splitters.

Lens
under test Focusing

lens

BaTiO3
Crystal

+CLight
source

FIGURE 2.41. Twyman-Green Interferometer with a phase conjugating mirror.
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However, the quality of the light source collimator is important. Any wavefront

distortions produced by this collimator will appear in the final interferogram, but

duplicated. In other words, the wavefront is not tested against a flat reference but

against another wavefront with deformations opposite in sign.

Then the lens under test is the collimator and the sensitivity is the same as that in

the common Twyman–Green interferometer, but with only a single pass through the

lens. The advantage is that no perfect lenses are necessary. The disadvantage is that

an argon laser is required.

2.9. TWYMAN–GREEN INTERFEROGRAMS AND THEIR ANALYSIS

The interferograms due to the primary aberrations can be described by using the

wavefront function by Kingslake (1925–1926), which is given by

OPD ¼ Aþ Bxþ Cyþ Dðx2 þ y2Þ þ Eðx2 þ 3y2Þ þ Fyðx2 þ y2Þ þ Gðx2 þ y2Þ2;
ð2:49Þ

where these coefficients represent:

In polar coordinates (r, y), Eq. 2.36 can also be written ðx ¼ r cos y; y ¼ r sin yÞ
as

OPD ¼ Aþ Br cos yþ Cr sin yþ Dr2 þ Er2ð1þ 2 sin2 yÞ þ Fr3 sin yþ Gr4;

ð2:56Þ

This expression is designed to represent the wavefronts produced in the presence

of the primary aberrations of a centered lens whose point source and image are

displaced in the y direction. Thus, thewavefront is always symmetric about the y axis.

Also, the coma and astigmatism terms are referred to the Petzval surface, which is not

of a great relevance in most interferograms. When testing an optical surface or a

descentered system no symmetry can, in general, be assumed and a more general

wavefront representation has to be considered.

Additionally, it is convenient for the mathematical analysis that the average tilt of

all aberrations is zero with the exception of the two tilts. This is equivalent to

selecting the optimum tilts of the reference wavefront for each aberration. Also,

the average curvature of all aberrations must be zero for all aberrations, with the

A Constant (piston) term

B Tilt about the y axis

C Tilt about the x axis

D Reference sphere change, also called defocus

E Sagittal astigmatism along the y axis

F Sagittal coma along the y axis

G Primary spherical aberration
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exception of the spherical curvature, also called defocus. This is equivalent to

selecting the optimum value of the focus setting for each aberration. These

aberrations are the Zernike polynomials to be described with detail in Chapter 13.

In terms of these aberrations, the wavefront shape up to the fourth order terms can be

written as

OPD ¼ A1 þ A2xþ A3yþ A4ðx2 þ y2 � 0:5Þ þ A5xyþ A6ðx2 � y2Þ
þ A7yð3x2 þ 3y2 � 2Þ þ A8xð3x2 þ 3y2 � 2Þ þ A9yð3x2 � y2Þ
þ A10xðx2 � 3y2Þ þ A11½6ðx2 þ y2Þ2 þ 6ðx2 þ y2Þ þ 1�
þ A12ðx2 � y2Þð4x2 þ 4y2 � 3Þ þ A13xyð4x2 þ 4y2 � 3Þ
þ A14½ðx2 � y2Þ2 � 8x2y2� þ A15xyðx2 � y2Þ;

ð2:49Þ

or in polar coordinates

OPD ¼ A1 þ A2r cos yþ A3r sin yþ A4ðr2 � 1Þ þ A5r
2 sin 2y

þ A6r
2 cos 2yþ A7rð3r2 � 2Þ sin yþ A8rð3r2 � 2Þ cos y

þ A9r
3 sin 3yþ A10r

3 cos 3yþ A11ð6r4 � 6r2 þ 1Þ
þ A12r

2ð4r2 � 3Þ cos 2yþ A13r
2ð4r2 � 3Þ sin 2y

þ A14r
4 cos 4yþ A15r

4 sin 4y;

ð2:50Þ

where

In computing interferograms, a normalized entrance pupil with unit semidiameter

r can be assumed. The great advantage of this normalization is that a value of all the

aberration coefficients will represent the same maximum wavefront deformation at

the edge of the pupil.

A1 Constant (Piston) term

A2 Tilt about the y axis

A3 Tilt about the x axis

A4 Spherical term, also called defocus

A5 Astigmatism with axis at 
 45�

A6 Astigmatism with axis a at 0� or 90�

A7 Third order coma along y axis

A8 Third order coma along x axis

A9 Triangular astigmatism with base parallel to x axis

A10 Triangular astigmatism with base parallel to y axis

A11 Primary spherical aberration

A12 High order astigmatism at 0� or 90�

A13 High order astigmatism at 
 45�

A14 Quadrangular (ashtray) astigmatism 0� or 90�

A15 Quadrangular (ashtray) astigmatism at 
 45�.
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The relative simplicity of the Kingslake expression allows us an easy and intuitive

analysis of the interferograms, as we will see with some examples. The inter-

ferograms for some aberrations were simulated by calculating the irradiance at a

two-dimensional array of points. Awavelength equal to 632.8 nm was used in these

interferograms, the pupil diameter is 20.0 mm but the values of the coefficients are

defined for a normalized pupil ðr ¼ 1Þ.

1. Perfect lens. The patterns for a perfect lens without tilts ðB ¼ C ¼ 0Þ and with

tilt ðB ¼ 5:0� 10�3Þ are shown in Figures 2.42(a,b). A perfect lens with defocusing

ðD ¼ 3:0� 10�3Þ and with defocusing and tilt ðD ¼ 3:0� 10�3; B ¼ 5:0� 10�3Þ is
illustrated in Figures 2.42(c,d).

2. Spherical aberration. The patterns for pure spherical aberration were computed

assuming that G ¼ 5:0� 10�3. They are shown at the paraxial focus ðD ¼ 0Þ,
without tilts ðB ¼ C ¼ 0Þ and with tilt ðB ¼ 5:0� 10�3Þ in Figures 2.43(a,d). The

patterns at the marginal focus are obtained by setting in Eq. (2.43), only A and D

different from zero,

dOPD

dr
¼ 4Gr3 þ 2Br ¼ 0: ð2:57Þ

FIGURE 2.42. Interferograms for a perfect lens. (a) With no tilt or defocusing. (b) With tilt. (c) With

defocusing. (d) With tilt and defocusing.
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Therefore, we set the defocusing coefficient B ¼ �5:0� 10�3 and the spherical

aberration coefficient G ¼ 5:0� 10�3. These interferograms without ðB ¼ C ¼ 0Þ
and with ðB ¼ 5:0� 10�3Þ tilt are shown in Figures 2.43(c,f). The fringe patterns at
the medium focus with B ¼ �10:0� 10�3 are in Figures 2.43(b,e).

3. Coma. All the patterns for coma were obtained using F ¼ 5:0� 10�3.

Figure 2.44 shows them for the paraxial focus ðD ¼ 0Þ and Figure 2.45 with a small

defocusing ðD ¼ 5:0� 10�3Þ. In both figures the central pattern has no tilt

ðE ¼ F ¼ 0Þ and the surrounding pictures are for different tilt combinations

ðB ¼ 
5:0� 10�3;C ¼ 
5:0� 10�3Þ.
4. Astigmatism. All the patterns for astigmatism were computed for

C ¼ 3:0� 10�3. If ¼ 0, we obtain the Petzval focus. The OPD for astigmatism

can be written from Eq. (2.36) as

OPD ¼ ðDþ EÞx2 þ ðDþ 3EÞy2: ð2:58Þ

Therefore, the sagittal focus is obtained for Dþ E ¼ 0 end the tangential focus for

Dþ 3E ¼ 0. The medium focus is obtained for Dþ E ¼ �ðDþ 3EÞ; hence

D ¼ �2E.

Figure 2.46 shows the patterns at the Petzval focus with tilts in all directions

ðB ¼ 
5:0� 10�3;C ¼ 
5:0� 10�3Þ. Figures 2.47–2.49 show the patterns at the

sagittal, medium, and tangential foci, respectively, also with tilts in all directions.

FIGURE 2.43. Interferograms for a lens with spherical aberration at the paraxial, medium, and marginal

foci.
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FIGURE 2.44. Interferograms for a lens with coma at the paraxial focus.

FIGURE 2.45. Interferograms for a lens with coma and a small defocusing.
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FIGURE 2.46. Interferograms for a lens with astigmatism at the Petzval focus.

FIGURE 2.47. Interferograms for a lens with astigmatism at the sagittal focus.
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FIGURE 2.48. Interferograms for a lens with astigmatism at the best focus.

FIGURE 2.49. Interferograms for a lens with astigmatism at the tangential focus.
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5. Combined Aberrations. Figure 2.50 shows the patterns for combined aberra-

tions: spherical aberration plus coma ðG ¼ 2:0� 10�3 and F ¼ 3:0� 10�3Þ in

Figure 2.50(a), spherical aberration plus astigmatism ðG ¼ 4:0� 10�3 and

E ¼ �2:0� 10�3Þ in Figure 2.50(b), coma plus astigmatism ðF ¼
�2:0� 10�3;E ¼ 4:0� 10�3Þ in Figure 2.50(c), and, finally, spherical aberration

plus coma plus astigmatism ðG ¼ 5:0� 10�3;F ¼ �2:0� 10�3; E ¼ 4:0� 10�3Þ
in Figure 2.50(d).

Pictures of typical interferograms are shown in a paper by Marechal and Dejonc

(1950). These interferograms can be simulated by beams of fringes of equal inclina-

tion on a Michelson interferometer (Murty, 1960) using the OPDs introduced by a

plane parallel plate and cube corner prisms instead of mirrors or by electronic circuits

on a CRT (Geary et al., 1978 and Geary, 1979).

This type of interferogram was first analyzed by Kingslake (1926–1927). He

measured the OPD at several points on the x and y axes just by fringe counting.

Then, solving a system of linear equations, he computed the OPD coefficients B, C,

D, E, F, G. Another method for analyzing a Twyman–Green, interferogram was

proposed by Saunders (1965). He found that the measurement of four appropriately

chosen points is sufficient to determine any of the three primary aberrations. The

FIGURE 2.50. Interferograms for a lens with combined aberrations. (a) Spherical aberration with coma.

(b) Spherical aberration with astigmatism. (c) Coma with astigmatism. (d) Spherical aberration with coma

and astigmatism.
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points were selected as in Figure 2.51 and then the aberration coefficients were

computed as

A ¼ 128

81r3
½P1 � P9 þ 2ðP8 � P7Þ�; ð2:59Þ

B ¼ 2

3r3
½P2 � P4 þ 2P6 � 2P5�; ð2:60Þ

C ¼ 1

4r2
½P2 þ P4 � P1 � P3�; ð2:61Þ

where P1is the interference order at point i.

If a picture of the interferogram is not taken, the aberration coefficients can be

determined by direct reading on the interferogram setting, looking for interference

patterns with different foci and tilts (Perry, 1923-1924). To make these readings

easier, some optical arrangements may be used to separate symmetrical and asym-

metrical wavefront aberrations as shown by Hariharan and Sen (1961).

2.9.1. Analysis of Interferograms of Arbitrary Wavefronts

The problem of determining the shape of a wavefront with arbitrary shape from a

single Twyman–Green interferogram has been considered very generally and briefly

by many authors, for example, by Berggren (1970) and more completely by Rimmer

et al. (1972). The procedure consists in measuring the positions of the fringes at many

points over the interferograms and taking readings of the position (x, y) and the order

of interferencem. Since the measurements are taken at a limited number of points, an

interpolation procedure must be adopted. The interpolation may be performed by the

use of splines or a least squares procedure with polynomial fitting as described in

detail in Chapter 16.
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FIGURE 2.51. Distribution of reference points for evaluation of primary aberrations.
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If the wavefront is smooth enough, it is very convenient to express the final

wavefront W(x, y) in terms of a linear combination of Zernike polynomials. Then

the process of removing or adding defocussing or tilts becomes much simpler.

With the final results, it is an extremely simple matter to plot level maps of the

wavefront. Further details can be found in the book by Malacara, Servı́n and

Malacara (2005).
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Cuadrado Javier M., M. Va. Pérez, C. Gómez-Reino, ‘‘Equilateral Hiperbolic Zone Plates:

Their use in the Alignment of a Mach-Zehnder Interferometer,’’ Appl. Opt., 26, 1527

(1987).

De Vany, A. S., ‘‘On Using aWilliams Interferometer for Making a Divider Plate,’’ Appl. Opt.,

4, 365 (1965).

Dorband B. and H. J. Tiziani, ‘‘Auslegun von Kompensationsystemen zur Interferometrischen
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3

Common-Path Interferometers

S. Mallick and D. Malacara

3.1. INTRODUCTION

In the general type of interferometer, such as the Twyman–Green or Mach–

Zehnder, the reference and test beams follow widely separated paths and are,

therefore, differently affected by mechanical shocks and temperature fluctuations.

Thus, if suitable precautions are not taken, the fringe pattern in the observation

plane is unstable and measurements are not possible. The problems are particularly

acute when optical systems of large aperture are being tested. Most of the difficulty

can be avoided by using the so-called common-path interferometers, in which the

reference and test beams traverse the same general path. These interferometers

have the additional advantage that they do not require perfect optical components

(the master) of dimensions equal to those of the system under test for producing the

reference beam. Furthermore, the path difference between the two beams in the

center of the field of view is, in general, zero, making the use of white light

possible.

In certain common-path interferometers, the reference beam is made to traverse a

small area of the optical system under test and is, therefore, unaffected by system

aberrations. When this beam interferes with the test beam, which has traversed the

full aperture of the optical system, explicit information about the system defects is

obtained. However, in most common-path interferometers both the reference and

test beams are affected by the aberrations, and interference is produced by shearing

one beam with respect to the other. The information obtained in this case is imp-

licit and some computations are needed to determine the shape of the aberrated

wavefront.

The beam splitting is brought about by amplitude division with the help of a

partially scattering surface, a doubly refracting crystal, or a semireflecting surface.

We consider a few examples of these instruments in this chapter.

Optical Shop Testing, Second Edition, Edited by Daniel Malacara.

Copyright # 2007 John Wiley & Sons, Inc.

*This chapter has been updated and a few sections have been included by the second author.
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3.2. BURCH’S INTERFEROMETER EMPLOYING TWO MATCHED

SCATTER PLATES

This interferometer was first described by Burch (Burch 1953, 1962, 1969) and later

reviewed by several authors, for example, by Rubin (1980). An arrangement to test a

convergent lens working with unit magnification is illustrated in Figure 3.1. A lens

forms an image of a small source S at S0 on the lens. The magnification of the lens

under test has to be extremely close to one. A partially scattering plate R1 is located in

front of a lens to be measured at twice its focal length. The lens under test forms an

image of the scattering plate R1 at another identical scatter plate R2, which is rotated

180� with respect to the first plate, so that there is a point to point coincidence

between R2 and the image of R1. A part of the light incident on the scatter plate R1

passes through it without scattering and arrives at S0. Since this beam touches the lens

only at a small region around S0, it is not affected by the errors of the lens surface.

This beam acts as the reference beam. Some of the incident light is, however,

scattered by R1 and fills all of the aperture of the lens. This beam picks up the errors

of the mirror and is the measured light beam.

Let us consider a ray incident at a point A on the scatter plate R1. The directly

transmitted ray (solid line in Fig. 3.1) follows the path AS0A0 and encounters a

scattering center at A0 that is identical to the one at A. This ray is scattered at A0 and
gives rise to a cone of rays, one of which will follow the same path as the ray scattered

on the first plate but not on the second. The rays scattered at A (dotted lines) that fill

the aperture of the lens under test, arrive at the image A0 and pass through R2without

scattering. We thus have two mutually coherent beams emerging from R2. One beam

is directly transmitted by R1 and scattered by R2, and the second is scattered by R1

Mirror under test
Scatter plate

C

A

A′

S′

P

FIGURE3.2. Burch interferometer testing a concave sphericalmirrorwith a double pass through a scatter

plate.

Lens
under test

Small lamp

R2R1

S′
A

A′S

FIGURE 3.1. Burch interferometer testing a lens with magnification one, using two identical scatter

plates.
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and transmitted by R2. An observer looking at the mirror surface through R2 will see

an interferogram between these two beams. Many rays arrive at the first scatter plate,

not only one, so the observed interferogram is the superposition of many identical

fringe patterns. If the mirror is free of any error in the region of S0, the interferogram
will provide explicit information about the mirror aberrations, as in any separate-

beam interferometer.

The light that is directly transmitted by both R1 and R2 gives rise to a bright spot

located at S0 and is quite troublesome for visual observations. The light that is

scattered by R1 and again by R2 gives a weak background and slightly diminishes

the contrast of fringes. The dimensions of the source S should be such that its image

S0 remains localized within a fringe. If the fringes are quite broad in a certain region

of the mirror (this is equivalent to saying that the mirror is almost free of aberrations

in this region), the source image S0 should be made to lie there. Summarizing, the

observer receives the four beams in Table 3.1.

To obtain a permanent record of the interference pattern, a camera lens, placed

after the second scatter plate R2, is used to form an image of the mirror surface on a

photographic film. Each point of the film receives light from a conjugate point on the

mirror surface. The interference effect (the light intensity) on the film will, thus, give

information about the mirror aberration at the conjugate point.

Figure 3.2 is a schematic simplified diagram of Burch’s interferometer as applied

to the testing of a concave mirror M. The first scatter plate is assumed to have

rotational symmetry, so that the scattering point A is identical to the scattering point

A0. This scatter plate has to be at the center of curvature of the mirror, so that the

magnification is one. As shown by Su et al. (1984), the optical path difference (OPD)

for the two interfering rays is

OPD ¼ ðAPþ PA0Þ � 2AS0 ð3:1Þ

If the surface under test is spherical, it is possible to see that this optical path

difference is zero only for rays passing very close to the center of the scatter plate.

However, assuming that the scatter plate size is small enough, if the surface is not

spherical and its shape with respect to the sphere is W, the optical path difference is

2W. Su et al. (1984) showed that if the scatter plate is too large, the contrast decreases,

so that its maximum size should be

�OPD ¼ D2s2r3

4
<

l

2
ð3:2Þ

TABLE 3.1. Beams in Burch’s scattering interferometer.

After first scatter plate After second scatter plate Exiting light beam

Unscattered Unscattered Central bright spot

Unscattered Scattered Reference beam

Scattered Unscattered Beam under test

Scattered Scattered Too dim to observe
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where D is the mirror diameter, r is its radius of curvature, and s is the semidiameter

of the scatter plate.

Two practical Burch interferometers for testing concave surfaces with a ratio of

the radius of curvature to the diameter larger than about six, in order to be able to test

them off-axis, are shown in Figures 3.3 and 3.4. The light source is a small tungsten

lamp. If the mirror has a hole at the center as in some telescope mirrors, the image S0

has to be off-center. In the interferometer in Figure 3.3, the two scatter plates have to

be identical, but one has to be rotated to 180� with respect to the other. The scatter

plate for the double pass interferometer in Figure 3.4 is made by fine grinding and

then by half polishing the front face of a cube beam splitter. Symmetrically placed

with respect to the center of the curvature is a small flat mirror. In order to prevent an

Mirror under test

Small lamp

Scatter plate

Scatter plate

C

FIGURE 3.3. Burch interferometer testing a concave spherical mirror with two identical scatter plates.

Mirror under test

Small lamp

Flat mirror

Black ground surface

with scatter surface
Cube beam splitter

C

FIGURE 3.4. Burch interferometer testing a concave spherical mirror with a double pass through the

scatter plate and symmetrically located with respect to the scatter plate.
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unwanted reflection from going to the eye of the observer, a small triangular prism

with a ground and black-painted surface is cemented to the cube.

A slight displacement of one of the scatter plates in its own plane, with respect to

the image of the other, gives rise to a set of parallel straight-line fringes (tilt), and the

mirror defects appear as distortions in the straightness of the fringes. This displace-

ment is produced if the whole interferometer with the two scatter plates is moved

perpendicularly to the optical axis. The tilt fringe disappears only when the two

scatter plates are symmetrically placed with respect to the optical axis. A slight

displacement in the axial direction, toward or away from the surface under test

produces the effect of a defocusing term, introducing circular fringes. Since the

optical paths for the two interfering light beams are identical, it is impossible to

introduce a piston term. In this system, like in any symmetrical system, testing the

coma aberration at the center of curvature is canceled out. Only the astigmatism

remains. In this case, the fringes will have an elliptical shape. Scott (1969) used this

interferometer to test a 91.5-cm, f=4 paraboloid, and a 35-cm Gregorian secondary.

The details of testing and modifications made in Burch’s original design are dis-

cussed in the article cited.

Burch’s interferometer is quite sensitive to vibrations taking the form of tilts about

an axis normal to the line of sight or translations across the line of sight. To make the

system insensitive to these vibrations, Shoemaker and Murty (1966) modified the

setup by replacing the second scatter plate with a plane mirror, and thus reimaging

the first scatter plate point-by-point back on itself. This setup gives double sensitivity

for even-order aberrations but cannot detect odd aberrations. An obvious great

advantage is that only one scatter plate has to be made. Vibrations in the form of

fast variations in the distance between themirror and the scatter plates would produce

vibrations in the focusing term, but they do not represent an important problem. An

important problem, however, appears with this arrangement. Since the light is

reflected twice on the mirror under test, the surface has to be highly reflective.

Uncoated surfaces produce quite dim interferograms if a bright light source is not

used.

Since the two interfering beams in the interferometer have the same optical paths,

the interferometer is compensated for white light. Thus, the light source can be a

small white tungsten lamp. If a high light intensity is desired, mainly when measur-

ing uncoated surfaces in a double pass configuration, a laser is more intense, but

spurious fringes or speckle may appear.

Two identical scatter plates R1 and R2 or one with rotational symmetry can be

made by several possible methods, for example,

(a) by photographing a speckle pattern. A symmetrical scatter plate can be made

with a double exposure of the same speckle pattern, with a 180� rotation of the
plate before taking the second exposure, as described by Su et al. (1984a),

Smartt and Steel (1985), and North-Morris et al. (2002);

(b) by taking two replicas from a lightly ground surface (Houston, 1970);

(c) with microphotography of a rotationally symmetric pattern (Murty, 1963).
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3.2.1. Fresnel Zone Plate Interferometer

A similar interferometer using Fresnel zone plates instead of scatter plates has been

proposed by Murty (1963) and later by Smartt (1974), Lohmann (1985), Stevens

(1988), and Huang et al. (1989). Instead of diffracting the light in a randommanner in

all directions, like scatter plate, a Fresnel zone plate produces many convergent as

well as divergent spherical wavefronts. The advantage is that the Fresnel zone plate

has rotational symmetry and thus the configurations in Figures both 3.2 and 3.3 are

possible. The Fresnel zone plate can be made by photography of a large drawing and

then reducing it to the desired size, or by photography of the interference between a

divergent and a plane wavefront (Smartt, 1974).

3.2.2. Burch and Fresnel Zone Plate Interferometers for Aspheric Surfaces

We have seen that the optical path difference for spherical surfaces is not zero if the

scattering point in the scatter plate is far from the optical axis. Then, when the scatter

plate is large, different radial positions of the scattering point will produce different

fringe patterns, reducing the contrast of the observed interferogram. If we could

associate different radial positions of the scatter point to different radial positions on

the surface under test, we could use with optical path difference variation to our

advantage to design a null test for aspherical surfaces. This has been described by

Su et al. (1986) and by Huang et al. (1989). They used a diaphragm with a small

aperture, placed after the observing scatter plate, as illustrated in Figure 3.5. It can be

proved that the optical path difference expressed by Eq. (3.1) remains valid in this

case. The presence of the diaphragm associates different scattering points A to

different points P on the surface under test. By proper choice of the diaphragm

position L, the desired mirror asphericity can be compensated to produce a null test.

3.2.3. Burch and Fresnel Zone Plate Interferometers for Phase Shifting

Patorski and Salbut (2004) have described a scattering interferometer where the

phase difference between the wavefront under test and the reference wavefront can

be changed as desired. The light source for this instrument, illustrated in Figure 3.6 is

a laser. If this laser is unpolarized, a polarizer has to be inserted before the first

scattering plate, otherwise, if it is linearly polarized, it is not necessary. Then, a

quarter wave phase plate with its slow or fast axis at 45� with respect to the plane of
polarization is placed in the light beam to produce an illuminating circularly

Mirror under test

Scatter plate

A

A′

P

Diaphragm

Imaging
lens

Observation
plane

D

L

S′

FIGURE 3.5. Burch and Fresnel zone plate interferometer to test an aspheric surface.
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polarized light beam. Close to the mirror under test, in the path of the reference beam,

a small quarter wave plate with an orientation is inserted. This phase plate is

traversed twice by the reference beam, so that the sense of the circularly polarized

beam is reversed. As a result of this arrangement, the beam under test and the

reference beam are both circularly polarized, but with opposite senses. The light

beams exiting the analyzer just before the observer are linearly polarized, with a

phase difference given by the orientation of this analyzer.

Another phase shifting scattering interferometer (North-Morris and Wyant 2002)

is shown in Figure 3.7. The main element in this instrument is a specially made

scatter plate. It is made with an etched calcite plate with its optical axis parallel to the

Mirror under test

Laser light

Scatter plate

Scatter plate

C

Polarizer (45 °)

Axis at 0°
1/4 Phase plate

1/4 Phase plate

Analyzer

FIGURE 3.6. Burch and Fresnel zone plate interferometer for phase shifting using polarized light.
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FIGURE 3.7. Burch interferometer for phase shifting using polarized light.

3.2. BURCH’S INTERFEROMETER EMPLOYING TWO MATCHED SCATTER PLATES 103



two faces of the plate. A speckle pattern is engraved on one of the two faces with a

procedure described in the cited publication. Then, a thin glass cover is placed on top

on the engraved calcite plate, with an oil layer between them. The oil has a refractive

index matched to the ordinary refractive index of the calcite. In a uniaxial crystal as

calcite, the extraordinary ray is polarized in a plane containing the optical axis of the

crystal. The result is a scatter plate that scatters the light with its polarizing plane

along the optical axis of the calcite but does not produce any scattering for the light

linearly polarized in the perpendicular direction to the optical axis of the calcite.

Another important optical element is a liquid crystal phase plate (LQR) whose phase

delay difference between two perpendicular axes is variable and can be set at any

value as desired.

As in the previously described interferometer, the light source from the laser is

either linearly polarized or polarized with a polarizer in front of it at an angle of 45�.
Then the phase difference between the horizontal and vertical components of the

linear polarization is changed to any desired amount by means of the liquid crystal

plate (changing it to elliptically polarized light). Next, the scatter plate scatters the

polarization components that are along the optical axis of the calcite but not

the polarization components that are perpendicular to this axis. The result is that

the beam to be measured and the reference beam are polarized in orthogonal planes

and with a phase difference given by the LQR. Both light beams pass twice through a

quarter wave phase plate oriented at 45�. After this, the two interfering beams will be

circularly polarized but in opposite senses. At the end, there is an analyzer just before

the observer, which produces two linearly polarized beams with a phase difference

given by the orientation of this analyzer.

3.3. BIREFRINGENT BEAM SPLITTERS

An important class of interferometers uses birefringent crystal elements as beam

splitters. These interferometers are known as polarization interferometers (Françon

and Mallick, 1971). We discuss in this section, three principal types of these beam

splitters.

3.3.1. Savart Polariscope

A Savart polariscope consists of two identical uniaxial crystal plates with the optic

axis cut at 45� to the plate normal (Fig. 3.8). The principal sections (plane containing

the optic axis and the plate normal) of the two plates are crossed with each other. The

optic axis of the first plate lies in the plane of the page and that of the second plate

makes an angle of 45� with it; the dotted double arrow in the figure represents the

projection of the optic axis on this plane. An incident ray is split by the first plate into

two rays, the ordinary ray O and the extraordinary ray E. Since the second plate is

turned through 90� with respect to the first one, the ordinary ray in the first plate

becomes extraordinary in the second and vice versa. The ray OE does not lie in the

plane of the page, though it emerges parallel to its sister ray EO, the dotted line
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represents the projection of the ray path on this plane. The lateral displacements

between the two rays, each produced by one of the two component plates, are equal

and are in perpendicular directions. The total displacement between the emerging EO

and OE rays produced by a Savart polariscope of thickness 2t is given by

d ¼
ffiffiffi

2
p n2e � n2o

n2e þ n2o
t ð3:3Þ

where no and ne are the ordinary and extraordinary indices of refraction, respectively.

A 1-cm-thick polariscopewill produce a lateral displacement of 80 mm if it is made of

quartz and a 1.5-mm displacement if made of calcite. In Figure 3.8 if the incident ray

is inclined to the plate normal, the two emerging rays are still parallel to the original

ray, and their relative displacement remains practically unaltered.

The parallel emerging rays interfere in the far field (or in the back focal plane of a

positive lens), and the interference pattern is similar to that produced in Young’s

experiment with the two mutually coherent sources separated by a distance equal to

d. For small angles of incidence, the fringes are equidistant straight lines normal to

the direction of displacement. The angular spacing of these fringes is as follows:

Angular spacing ¼ l

d
: ð3:4Þ

The zero-order fringe corresponds to normal incidence and lies in the center of the

field of view. With a Savart polariscope of 1 cm thickness and a lens of 10 cm focal

length, the fringe spacing in yellow light is 2 mm for quartz and 0.1 mm for calcite.

The OE and EO rays emerging from the Savart polariscope vibrate in mutually

orthogonal directions. To make them interfere, the vibration directions are set

FIGURE 3.8. Beam splitting produced by a Savart polariscope. The figure is drawn for a polariscope

made of a positive crystal (e.g., quartz).
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parallel to each other by means of a linear polarizer, the transmission axis of which is

oriented at 45� to the orthogonal vibrations. This polarizer is, however, not sufficient
for interference to take place. We know that a natural (unpolarized) ray of light is

equivalent to two mutually incoherent components of equal amplitude vibrating in

perpendicular directions. Thus, the ordinary and the extraordinary rays produced by a

crystal have no permanent phase difference between them. To make these rays

mutually coherent, a polarizer is placed across the incident beam so that only a

single component of the natural light is transmitted onto the crystal. The transmission

axis of this polarizer is at 45� to the principal axes of the crystal.

3.3.2. Wollaston Prism

AWollaston prism (Fig. 3.9) consists of two similar wedges cemented together in

such a way that the combination forms a plane parallel plate. The optic axes in the

two component wedges are parallel to the external faces and are mutually perpendi-

cular. A Wollaston prism splits an incident ray into two rays traveling in different

directions; the lateral displacement between the rays is thus different at different

distances from the Wollaston. The angular splitting a is given by the relation

a ¼ 2ðne � noÞtan y ð3:5Þ

where y is the wedge angle. For most practical purposes, a can be considered to be

independent of the angle of incidence. For an angle y ¼ 5�, the angular splitting is

6 min of arc for a Wollaston prism made of quartz and 2� for one made of calcite.

The path difference between the OE and the EO rays (Fig. 3.10) emerging at a

distance x from the axis y� y0 of the Wollaston prism is given by

� ¼ 2ðne � noÞx tan y ¼ ax ð3:6Þ

FIGURE 3.9. Beam splitting by a Wollaston prism made of a positive crystal.
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The path difference is zero along the axis, where the thicknesses of the two

component wedges are equal, and increases linearly with x. When a Wollaston prism

is placed between two suitably oriented polarizers, one observes a system of straight-

line fringes parallel to the edges of the component wedges and localized in the

interior of the prism. (The fringes are perpendicular to the plane of Figure 3.10). The

path difference along the axis being zero, fringes are visible in white light. The fringe

spacing is equal to

x0 ¼
l

2ðne � noÞ tan y
ð3:7Þ

where y ¼ 5�, l ¼ 0:55 mm, and ðne � noÞ ¼ 9� 10�3 (quartz), there are approxi-

mately three fringes per millimeter. When the angle y is very small (a few minutes of

arc), the fringes arewide apart and theWollaston prism can be used as a compensator.

In this form, the Wollaston prism is known as a Babinet compensator.

Relation (3.6) for the path difference between OE and EO rays is true for normal

incidence (the angular splitting, being small, is neglected for the calculation of �).

For nonnormal incidence, a term proportional to the square of the angle of incidence

is added to the right-hand side of Eq. (3.6). However, this term is negligible, for

example, for a quartz prism of 10 mm thickness and for a case in which the angles of

incidence remain less than 10�. Some modified Wollaston prisms have been devised

that can accept much larger angles of incidence.

3.3.3. Double-Focus Systems

A lens made of a birefringent crystal acts as a beam splitter. A parallel beam of light

incident on such a lens will be split into an ordinary beam and an extraordinary beam,

which come to focus at two different points (Fig. 3.11). The O and E images are

FIGURE 3.10. Path difference produced by a Wollaston prism between the two split-up rays is linearly

related to x.
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displaced along the axis of the beam, in contrast to the case of a Savart polariscope or

of a Wollaston prism, where the displacement is normal to the direction of the

incident beam. Various types of compound lenses suitable for specific applications

have been designed.

3.4. LATERAL SHEARING INTERFEROMETERS

3.4.1. Use of a Savart Polariscope

Lateral shearing interferometers using birefringent beam splitters have been widely

used to study the aberrations of an optical system. We describe here an arrangement

by Françon and Jordery (1953) in which a Savart polariscope is used to produce a

lateral shear of the aberrated wavefront (Fig. 3.12). The lens L (or the mirror) under

FIGURE3.11. Abirefringent lens splits up an incident beam into an ordinary and an extraordinary beam,

which are brought to focus at two different points along the lens axis. The figure is drawn for a lensmade of a

positive crystal.

FIGURE3.12. Interference arrangement employingaSavart polariscopeQfor testing theoptical systemL.
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test forms an image S0 of a small source S. The distance of L from the source is fixed

by the conditions under which the lens is to be tested. The lens L1 collimates the light

coming from S0 so that the Savart polariscope Q is traversed by a parallel beam of

light. Two linear polarizers (not shown in the figure) are placed before and after the

Savart Q. The combination of lenses L1 and L2 constitutes a low-power microscope

that is focused on the test lens L. If the lens L is perfect, thewavefront� is plane, then

the ordinary and the extraordinary wavefronts produced by the Savart will have a

uniform path difference between them. The eye placed in the focal plane of L2 will

observe a uniform color (or a uniform intensity in the case of monochromatic light) in

the entire field of view. In the presence of aberrations, � will be deformed and the

field of view will appear nonuniform. If the aberrations are large, a system of fringes

will be observed. The nature and the magnitude of aberrations can be determined

from the observed variations of color (or of intensity).

The far-field fringes of the Savart polariscope Q are located virtually in the plane

of source image S0. The source size should be such that S0 occupies a small fraction

(say one fifth) of a fringe width.

The background color (or intensity) can be chosen by inclining the Savart Q about

an axis parallel to the fringes. When the Savart is normal to the optical axis, that is,

normal to the incident light, the zero-order fringe coincides with source image S0 and
the background will be dark (crossed polarizers). By inclining the Savart, S0 can be

made to coincide with a fringe of any desired color, which will then appear in the

background. Instead of producing a uniform ground color in the field of view, wemay

produce a regular system of rectilinear fringes that are deformed in the region where

the wavefront departs from the ideal form. Such fringes can be produced in a plane

conjugate to the test lens by placing an additional Savart to the right of L2.

To illustrate the principle of the method, we study the aspect of the field of view in

the presence of primary spherical aberration. The ground is chosen to be of uniform

intensity. The distance parallel to the optical axis between the aberrated wavefront �

and the ideal wavefront (corresponding to the Gaussian image point) at a height h

from the axis is given by

z ¼ ah4 ð3:8Þ

where a is a constant depending on the magnitude of the aberration. To determine the

aspect of the field of view, we have to calculate the path difference between the two

sheared wavefronts �1 and �2 produced by the Savart polariscope. Figure 3.13

represents �1 and �2 as projected on a plane perpendicular to the optical axis of the

system (this is the plane of the ideal wavefront); O1 and O2 are the centers of �1 and

�2, respectively. The coordinate system is chosen such that the x-axis passes through

O1 and O2 and the y-axis is the right bisector of O1 � O2. Now consider a point

mðx; yÞ lying on the ideal plane wavefront; its distance from the aberrated wavefront

�1 is given by

z1 ¼ ar41: ð3:9Þ
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Similarly, the distance of point m from �2 is given by

z2 ¼ ar42 : ð3:10Þ

The separation between �1 and �2 is, therefore,

z1 � z2 ¼ aðr41 � r42Þ ¼ 4a� d x2 þ y2 þ d2

4

� �

ð3:11Þ

where d is the shear between �1 and �2. The lines of equal path difference, z1 � z2,

are represented in Figure 3.14. The form of fringes for other aberrations can be

FIGURE3.13. Representing the projection of the two shearedwavefronts on a plane normal to the optical

axis of the system.

FIGURE 3.14. Lateral shearing interferogram of a wavefront distorted by spherical aberration of third

order.
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determined similarly. Evidently, when the aberrations are small, no fringes will be

seen; there will simply be small variations of intensity in the field of view.

A complete analysis of the lateral shearing interferogram can be carried out by a

mathematical operation described by Saunders (1961, 1962) (see Chapter 4). The

method yields values of the deviations of the wavefront under test from a close fitting

sphere. The reference sphere may be chosen statistically so that the results are the

deviations from the best fitting surface.

3.4.2. Use of a Wollaston Prism

In the arrangement represented in Figure 3.12, it is possible to use a Wollaston prism

instead of the Savart polariscope. This prism is placed at the source image S0. The
background intensity can be changed by translating the Wollaston prism laterally

perpendicular to the optical axis. A system of rectilinear fringes can be produced in

the background by shifting the Wollaston prism along the optical axis.

The size of the source in the setup of Figure 3.12 is quite limited. It can be

increased considerably, however, if the setup is modified so that the light passes twice

through the Wollaston prism. Figure 3.15 illustrates such an arrangement. An image

of the source S is formed on the Wollaston prism at the point S0, which is near the

center of curvature of the mirror M under test. A lens L forms an image of M on the

observation screen M0. As usual, two polarizers are needed to complete the system;

one may be placed between m and W and the second between W and L. If observa-

tions are to be made between parallel polarizers, a single polarizer placed betweenW

and L and covering all of the aperture of W, will suffice. If S0 and S00 are symme-

trically situated with respect to the central fringe of the Wollaston prism, the path

difference between the interfering beams is zero and the background appears uni-

formly dark/bright with crossed/parallel polarizers. The ground intensity can be

varied by displacing W in a direction perpendicular to its fringes. A system of

straight fringes will appear on the screen if W is displaced along the axis of the

interferometer so that it is no longer located at the center of curvature of M.

Philbert (1958) and Philbert and Garyson (1961) employed this interferometer to

control the homogeneity of optical glass (the glass plate is placed close to M and to

FIGURE 3.15. A double-pass compensated interferometer for testing the mirrorM.
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test spherical, paraboloidal, and plane mirrors during the process of figuring. To test a

paraboloidal surface, the Wollaston prism is placed at the focus and an auxiliary

plane mirror is used to send back the parallel beam of light emerging from the

paraboloid. A plane surface is tested by the arrangement represented in Figure 3.16.

During the final stages of figuring, the deviations from the perfect surface are quite

small and, therefore, the interferogram shows only slight variations in intensity.

Under these conditions the aspect of the field of view is similar to that observed in

Foucault’s knife-edge test.

Tomake the system insensitive to vibrations, Dyson (1963) used a small planemirror

near theWollaston prism in order to form an image of it back on itself. Then, instead of a

large prism, a small one is used since half of it is replaced by the small mirror.

3.5. DOUBLE-FOCUS INTERFEROMETER

Dyson (1957a, 1957b, 1970) devised an interferometer for the testing of optical

components in which he employed a birefringent lens as a beam splitter (Fig. 3.17).

FIGURE 3.16. Setup for testing a flat surface.

FIGURE 3.17. Dyson’s double-focus interferometer.
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The birefringent, double-focus lens L1 is a symmetrical triplet, consisting of a central

bio-concave calcite lens and two biconvex glass lenses. The optic axis of calcite lies in

the plane of the lens. The triplet is so designed as to have zero power for the ordinary

ray and a focal length of a few centimeters for the extraordinary ray. As in the case of

Burch’s interferometer (Section 3.2), this arrangement gives explicit information

about wavefront deformations since a part of the incident light is focused on a small

region in the aperture of the system under test and acts as the reference beam.

The system under test in Figure 3.17 is the concave mirror. The center of the triplet

lens is located at the center of curvature of the mirror. A lens L2 with its focus F1 on

the mirror surface is placed just to the right of the triplet. A quarter-wave plate with

its principal axes at 45� to the optic axis of the calcite lens is also placed to the right of
L1. A collimated beam of linearly polarized light is incident from the left. The lens L1

splits it up into an ordinary beam and an extraordinary beam. The O beam, unde-

viated by L1, is brought to focus at F1 by the lens L2. An image of the source is thus

formed at F1. On its return journey, the O beam is collimated by the lens L2, and since

its vibration direction has been rotated through 90� because of the double passage

through the quarter-wave plate, it is refracted to F01 by the lens L1.

At its first passage the extraordinary beam is refracted by both the lenses L1 and L2

and converges to F2, the focus of the combination L1L2. The beam then expands to fill

the whole aperture of the mirror M. Because of the symmetry of the arrangement this

beam, too, is brought to focus at F01. A semireflecting surface is placed to the left of

the triplet so that the source (or the system of observation) can be placed outside the

axis of the interferometer.

An observer receiving the light at F01 will see (a) a uniform disk of light, determined

according to size by the angular aperture of the lens L1 (reference field) and (b) the

illuminated aperture of the mirror M (test field). These two fields will interfere (there

is evidently an analyzer that sets the O and E vibrations parallel to each other), and in

the absence of aberrations, the resultant field will be of uniform intensity. If the triplet

is slightly displaced laterally, so that its center no longer coincides with the center of

curvature of the mirror, the field of viewwill be crossed with rectilinear fringes.When

the triplet is displaced axially, circular fringes are observed. When the mirror has

aberrations, these fringes are distorted. The aberrations can be deduced from these

distortions in the same way as in any separate-path interferometer.

Dyson’s interferometer is applicable to autostigmatic systems, that is, systems in

which light diverging from a point in a particular plane is refocused to a point in the

same plane to form an inverted image. Systems that are not autostigmatic can be

converted to this form by the addition of one or more auxiliary components. To test a

lens, for example, the scheme of Figure 3.18 is employed. In Figure 3.18(a), the lens

is tested at infinite conjugates and in Figure 3.15b, it is tested at finite conjugates. The

focus C coincides with the center of the triplet. It may be noted that the system under

test is not operating exactly under its correct conditions as the test beam does not

return along its original path. The arrangement gives the sum of the aberrations for

two focal positions, one on each side of the desired position. The resultant error is

often very small. Because of the aberrations of the triplet lens, optical systems of only

moderate aperture —f/5, for example—can be tested with this interferometer.
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3.6. SAUNDERS’S PRISM INTERFEROMETER

Saunders (1967, 1970) described a lateral shearing interferometer in which the beam

divider is made by cementing together the hypotenuse faces of two right-angle

prisms, one of which is half silvered (Fig. 3.19). The faces B and B0 are made highly

reflecting. To obtain the zero-order fringe in the center of the field of view, the

distances from the center of the beam-dividing surface to the two reflecting surfaces

are made equal. If the two component prisms are identical, the two beams emerging

from the face A0 are mutually parallel. An angular shear between the beams can be

introduced by rotating one prism relative to the other about an axis normal to the

semireflecting surface. The direction of shear is approximately parallel to the vertex

edges of the prisms. The shear can also be produced by making the angles a and a0 of
the two component prisms slightly different. This is usually the case when the prisms

FIGURE 3.18. The lens L under test can be made autostigmatic by the addition of an auxiliary mirrorM.

FIGURE 3.19. A beam splitter devised by Saunders.
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are not cut from a single large prism but are made separately. The angular shear is

then equal to 2ða� a0Þ, and the direction of shear is perpendicular to the vertex edges.
Figure 3.20 shows an arrangement for testing a lens at finite conjugates. The prism

is adjusted so that its back surface is approximately parallel to the image plane and is

near it, with the principal ray of light passing near the center of the prism. This

adjustment should produce visible fringes. The fringe width is very large when the

source image lies on the back surface of the prism. The fringe width can be decreased

by moving the prism along the principal ray away from the source image. By

translating the prism laterally parallel both to the image plane and to the direction

of shear, any chosen fringe can be made to pass through any chosen point of the

interferogram. The adjustments of Saunders’s prism are similar to those of a

Wollaston prism. To obtain high contrast fringes, the source size in the shear

direction is kept small. The recommended size of the cube is 10–15 mm.

Saunders (1957) also studied a wavefront-reversing interferometer that employed

a modified Kösters double-image prism. Figure 3.21 is a sketch of the arrangement

for testing a lens with one conjugate at infinity. The base of the dividing prism is

spherical, and its center of curvature S0 coincides with the image point at which the

lens is to be tested. The observer’s eye is located at S0 and the image of the source is S.

In this arrangement, the part of the wavefront lying below the dividing plane of the

prism appears to be folded onto the upper half after the second passage through the

prism. When the dividing plane cuts through the center of the lens, the even-order

aberrations are eliminated. However, when the dividing plane is adjusted to form an

angle with the axis of the lens, the even-order terms are retained. Saunders gave

different variations of this arrangement for determining different aberrations.

FIGURE 3.20. A lateral shearing interferometer using the beam splitter shown in Figure 3.19.

FIGURE 3.21. Saunders’s wavefront-reversing interferometer.
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3.7. POINT DIFFRACTION INTERFEROMETER

Another interesting common path interferometer is the so-called point diffraction

interferometer, first described by Linnik in 1933, rediscovered by Smartt and Strong

(1972), and more fully developed by Smartt and Steel (1975). The principle of this

interferometer is shown in Figure 3.22. Thewave to be examined is brought to a focus

to produce an image, usually aberrated, of a point source. At the plane of that image,

an absorbing film is placed. This film contains a small pinhole or opaque disk in order

to diffract the light and produce a spherical referencewavefront. Figure 3.23(a) shows

the amplitudemagnitude at the image plane, where the diffracting plate is located and

Figure 3.23(b) shows the total amplitude after passing the diffracting plate, which can

be considered as the superposition of two images as in Figure 3.23(c).

To produce an interferogram with good contrast, the wave passing through the

film and the diffracted spherical wave should have the same amplitude at the
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FIGURE 3.22. Point diffraction interferometer.
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FIGURE 3.23. Modulus of the amplitudes in the image plane, where the diffraction plate is located. (a)

Before the diffraction plate, (b) after the diffraction plate, and (c) the two separated components for the

reference beam and the beam under test.
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observing plane. This is controlled by means of the filter transmittance and the

pinhole or disk size. Also, the amplitude of the spherical wave depends on howmuch

of the light in the image falls on the pinhole or disk, and this, in turn, depends on the

aberrations of the wave and on the pinhole or disk position. Smartt and Steel (1975)

advised using filter transmittances between 0.005 and 0.05, with a most common

value of 0.01. The optimum size for the pinhole or disk is about the size of the Airy

disk that the original wave would produce if it had no aberrations. To match the

amplitudes of the two beams, Wu et al. (1984) used a clear pinhole in a polarizing

sheet of vectograph film; rotation of a polarizer behind this sheet changes the

amplitude of the beam transmitted by the film but not that of the diffracted beam.

The usual tilt and focus shift of the reference wavefront can be produced by

displacing the diffracting point laterally and longitudinally, respectively.

A phase shifting point diffraction interferometer has been reported by Millerd

et al. (2004). The most important component of this interferometer is a polarization

point diffraction plate, as illustrated in Figure 3.24. The central zone and the annular

part in this plate are both polarizers in orthogonal directions. They are made with a

wire grid structure whose construction details are in the cited publication. After the

diffraction plate the reference wavefront and the wavefront under measurement have

linear polarizations in orthogonal directions. A quarter wave phase plate at 45� with
the two orthogonal polarization planes will make the two interfering beams circu-

larly polarized in orthogonal directions. Then, as usual, a rotating analyzer will make

the phase difference of the desired value. Another phase shifting point diffraction

interferometer has been recently reported by Neal and Wyant (2006) using a

birefringent pinhole plate.

The point diffraction interferometer has been used with success to test astronom-

ical telescopes (Speer et al., 1979) and toric surfaces (Marioge et al., 1984). Smartt

and Steel (1985) have developed a white-light interference microscope based on

point diffraction interference principle.

FIGURE3.24. Mainelements forpolarizationdiffraction interferometer forphase shifting interferometer.
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3.8. ZERNIKE TESTS WITH COMMON-PATH INTERFEROMETERS

In any two-beam interferometer, the irradiance in the interference pattern is a

function of the phase difference between the two beams, as shown in Figure 3.25.

If the interferogram has many fringes, the irradiance goes through many maxima and

minima of this function. However, if the wavefront is almost perfect and its deforma-

tions are smaller than half the wavelength of the light, the phase changes will not

produce any variations in the irradiance since the slope at the point A in this figure is

zero.

These small wavefront errors may be easily detected if a bias in the phase

difference is introduced by any means, so that it has a value equal to p/2 when the

wavefront is perfect (point B). Then, the interferometer sensitivity to small errors is

very large. Figure 3.26(a) shows an interferogram with a piston term equal to zero

and, Figure 3.26(b) is formed with the samewavefront but a piston term equal to p/2.
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FIGURE 3.25. Irradiance as a function of the phase difference in an interferometer.
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FIGURE 3.26. Schematics of a Zernike diffraction plate.
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To make a Zernike Point diffraction interferometer a diffracting plate as illu-

strated in Figure 3.27 is used. The annular region is coated with an amplitude

transmission Text, while the central disc is made with an amplitude transmission

Tdisc, typically equal to one. The central disc is thicker, so that the phase optical

path through the center is greater than the phase optical path through the annular

region. Let us assume that the optical phase difference is equal to f. Thus, the phase

difference between the wavefront under test and the reference wavefront is g, as

given by the expression

Tdisc expðifÞ � Text ¼ jT1j expðigÞ ð3:10Þ

where

jT1j2 ¼ T2
disc þ T2

ext � 2TdiscText cosf ð3:11Þ

Thus, we may see that the phase difference between the reference wavefront and the

wavefront under test is given by g, as

tan g ¼ Tdisc sinðfÞ
Tdisc cosf� Text

ð3:12Þ

Since we need g ¼ p=2, we require that

cosf ¼ Text

Tdisc
ð3:13Þ

We see thatf and g approach the same value if Text becomes quite small. The Zernike

test in the point diffraction interferometer from a physical optics point of view is

studied in Chapter 8.

FIGURE 3.27. Two interferograms producedwith the samewavefront, with a deformationmuch smaller

than the wavelength of light. (a) Without a piston term and (b) with a piston term equal to l=4.
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4

Lateral Shear Interferometers

M. Strojnik, G. Paez, and M. Mantravadi

4.1. INTRODUCTION

Lateral shearing interferometry is an important field of interferometry and has been

used extensively in diverse applications such as the testing of optical components and

systems and the study of flow and diffusion phenomena in gases and liquids.

Basically, the method of lateral shearing interferometry consists of duplicating

wavefront under study, displacing it laterally by a small amount, and obtaining the

interference pattern between the original and the displaced wavefronts.

Figure 4.1 schematically illustrates the principle of shearing interferometry for (a)

an approximately planar wavefront and (b) spherical wavefront. When the wavefront

is nearly planar, the lateral shear is obtained by displacing the wavefront in its own

plane. If the wavefront is nearly spherical, the lateral shear is obtained by sliding the

wavefront along itself by rotation about an axis passing through the center of

curvature of the spherical wavefront.

There are many physical arrangements that produce lateral shear. The famous

Italian optical scientist Ronchi is the first to have introduced laterally sheared

wavefronts to test optical components in the first half of the 20th century. He

employed diffraction at a set of suitably separated lines to produce zeroth- and

first-order beams. Prior to the discovery of lasers in the 1960s, this became a popular

technique in optical testing, still bearing the inventor name, Ronchi test.

In this chapter, we discuss arrangements that can be obtained by the use of beam

dividers, which divide the amplitude of the incident wavefront but do not change the

shape of the wavefront. This means that plane surfaces coated with semireflecting

material are used as beam dividers. Several arrangements to obtain lateral shear will

be described in this chapter mainly to show that with available components, one can

easily fashion a workable lateral shearing interferometer in one’s laboratory or

optical workshop. Lateral shearing interferometry is basically a one-dimensional

action. When it is performed in two orthogonal directions, it becomes twice a one-

dimensional function. We will also discuss a more general case of a vectorial

Optical Shop Testing, Third Edition Edited by Daniel Malacara
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shearing interferometry, where a two-dimensional action is obtained with a single

shear.

Another important consideration in the design of lateral shearing interferometers

is the nature of the light source. From the point of view of lateral shearing inter-

ferometry, the sources can be classified into two categories: (a) laser sources, such as

the helium-neon gas laser giving a 632.8-nm light beam of very high spatial and

temporal coherence, and (b) all other sources, such as gas discharge lamps, which are

temporally coherent to some extent but not spatially coherent.

4.2. COHERENCE PROPERTIES OF THE LIGHT SOURCE

Figure 4.2 illustrates the arrangement of a lateral shearing interferometer in which a

shear takes place for a nearly planewavefront obtained from the collimating lens. Let

the full beam width of the wavefront under test be denoted as d, the amount of lateral

shear S, and the focal length of the collimating lens be f. The wavefront will be

spatially coherent across its beam diameter when the size of the source is equal to the

width of the central diffraction maximum (Airy disk) corresponding to the f-number

of the particular collimating lens.

The f-number is the ratio of focal length of the optical system f, divided by the

diameter of its aperture d. The diameter of the diffraction disk is 1:22 lf=d for a

circular aperture. Here, l is the wavelength of a particular spectral line of the source

that is to be used. Thus, the order of magnitude of the size of the pinhole to be

FIGURE 4.1. Schematic diagram illustrating lateral shearing interferometry in (a) collimated light and

(b) convergent light.
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used over the source to achieve spatial coherence is given by ðlf=dÞ. Fortunately in

the lateral shearing interferometry, the spatial coherence should be sufficient

so that the interference can be observed between parts of the wavefront separated

by the distance S (which is less than d). Hence the source (pinhole) size can

be ðlf=dÞðd=SÞ ¼ ðl=SÞ. Thus the pinhole size chosen is some multiple of the

diffraction-limited pinhole size.

As an example, let us assume that we are using a mercury discharge lamp as the

source of light and that the green line (546.1 nm) is isolated by means of a filter. If we

are using a collimating lens of f-number ¼ 5, then, assuming a shear ratio S=d of 0.1,
the pinhole must be of the order of 25 mm. This is an extremely small pinhole, and

generally very little intensity can be obtained in the fringe pattern. Hence, an intense

source such as a high-pressure mercury arc has to be used. It has poor temporal

coherence, even after a spectral line suitable for the purpose has been isolated by

means of a filter. Use of such sources results in the requirement to compensate the

two optical paths in an interferometer to be used as a lateral shearing instrument.

This condition (and its implementation) is sometimes referred to as white-light

compensation. When white light is used, a lateral shearing interferogram is obtained

where the central fringe is achromatic (white) and the other fringes are colored.

Until the gas laser came into general use, all lateral shearing interferometers were

designed with white-light compensation. Now it is possible to devise lateral shearing

interferometers in which the light paths of the two interfering beams are of unequal

length (uncompensated). A laser source having a high degree of spatial and temporal

coherence is, however, necessary for this purpose. A helium–neon (He–Ne) laser

emitting at 632.8 nm is often used as a source of light for many of these applications.

A lateral shearing interferometer designed for white-light compensation can always

be used with a laser light source. However, the inverse is not true. A lateral shearing

interferometer designed for laser use, and hence probably having unequal optical

paths, cannot produce a visible or recordable interference fringe pattern with sources

of light of lesser coherence.

4.3. BRIEF THEORY OF LATERAL SHEARING INTERFEROMETRY

The wavefront error Wðx; yÞ is the difference between the actual wavefront and the

desirable one or the one required to accomplish the design objectives. Wavefront is a

FIGURE 4.2. Schematic diagram indicating the various parameters for the consideration of the size of

pinhole to be used in a lateral shearing interferometer.
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locus of all points with the same phase in the three-dimensional space. Therefore, its

unit in the MKS system is meter. In interferometry and optical engineering, it

is expressed in terms of l (number of wavelengths of the illuminating source).

When the illuminating source is a He–Ne laser emitting at 632.8 nm, the conversion

between these two systems is l ¼ 632:8 nm ¼ 632:8� 10�9 m.

Figure 4.3 shows the original and the laterally sheared wavefronts. For now, we

assume that the wavefront is nearly planar so that the wavefront errors may be

considered as small deviations from this plane. The wavefront error may be denoted

as Wðx; yÞ, where ðx; yÞ are the coordinates of an arbitrary point Pðx; yÞ. When this

wavefront is sheared in the x direction by an amount S, the error at every point on the

sheared wavefront is Wðx� S; yÞ. The resulting wavefront difference �Wðx; yÞ at
Pðx; yÞ between the original and the sheared wavefronts is Wðx; yÞ �Wðx� S; yÞ.
Thus, in later shearing interferometry, �Wðx; yÞ is the quantity that is found.

When the displacement S is zero, there is no wavefront difference anywhere in the

interferometer. Consequently, wavefront difference cannot be seen and error cannot

be measured independently of its magnitude. Now, the path wavefront difference

�Wðx; yÞ may be expressed in terms of number of wavelengths according to the

usual relationship

�Wðx; yÞ ¼ nl ð4:1Þ

where n is the order of the interference fringe and l is the wavelength used. The left-

hand side of Eq. (4.1) may be multiplied by 1, in a specific form of ðS=@xÞ. When the

displacement S is made increasingly smaller, and is theoretically approaching zero,

the change in wavefront difference over change in displacement �x becomes a

partial derivative. Equation (4.1) may be written as

@Wðx; yÞ
@x

S ¼ nl ð4:2Þ

FIGURE 4.3. Schematic diagram (in plane and elevation) illustrating the original and the sheared

wavefronts for a circular aperture. The fringes arising due to the lateral shear may only be seen in the

area of overlap of the two wavefronts.
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Thus the information obtained in the lateral shearing interferometer is ray

aberration ð@W=@xÞ in angular units. The accuracy of Eq. (4.2) increases as shear

S approaches to 0. It is believed that sensitivity decreases as shear S approaches to 0.

Therefore, the experimentalist strives to arrive at a suitable compromise for the

optimal value of shear S if Eq. (4.2) is to be used.

Let us now consider some specific situations, employing the simpler form in the

case of nonrotationally symmetric aberrations.

4.3.1. Interferograms of Spherical and Flat Wavefronts

Defocusing. The wavefront error for defocusing may be represented as

Wðx; yÞ ¼ Dðx2 þ y2Þ: ð4:3Þ

The coefficient D represents the magnitude of the aberration, usually given as a

number of wavelengths. A slight defocusing of the optical system, designed to

produce a perfectly plane wave, will result in the emergence of a wavefront that is

either slightly concave or convex spherical wavefront with a very long radius of

curvature. Hence in this case,

�Wðx; yÞ ¼ 2DxS ¼ nl: ð4:4Þ

Equation (4.4) represents a system of straight fringes that are equally spaced and

perpendicular to the x direction (direction of shear). This situation is illustrated in

Figure 4.4(a). The straight fringes appear in the common area of the overlapping

wavefronts. If there is no defocusing ðD ¼ 0Þ, there are no fringes. The area of

wavefront overlap appears to be of uniform intensity, corresponding to the same

optical path for both beams.

Tilt. When the wavefront is laterally sheared, normally we assume that the new

wavefront is not tilted with respect to the original wavefront. In certain arrangements,

however, it is possible to obtain a known amount of tilt between the two wavefronts.

In such cases, it is a usual practice to obtain the tilt in the direction orthogonal to that

of the lateral shear. The optical path difference associated with this tilt may be

represented as a linear function of the y coordinate. Thus, in the case of only tilt, we

find

�Wðx; yÞ ¼ Ey ¼ nl: ð4:5Þ

Here E is the angle of tilt between the original and the sheared wavefronts. Their line

of intersection is parallel to the x axis. If defocusing and tilt are simultaneously

present, the optical path difference is given by

�Wðx; yÞ ¼ 2DxSþ Ey ¼ nl: ð4:6Þ
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This equation represents a system of straight fringes that are parallel to neither the

x axis nor the y axis. Only when either the coefficient D or E is zero, they are parallel

to either the x axis or the y axis, respectively.

We note the difference between the two situations represented by Eqs. (4.4)

and (4.6). When there is no defocusing ðD ¼ 0Þ, Eq. (4.4.) describes a uniform

or fringe-free field, while Eq. (4.6) gives a system of straight fringes parallel to

the x axis. When an optical system is being collimated with respect to the point

source of light, we go through the region of the focus. Figure 4.4 illustrates the

representative lateral shearing interferograms inside the focus (a), at the focus

(b), and outside the focus (c), in a lateral shearing interferometer without tilt.

When we use a lateral shearing interferometer that can also introduce tilt for the

same purpose, the corresponding sequence of interferograms will be as shown in

Figure 4.5. In this case, it is possible to detect slight defocusing. It is much

easier to detect a change in the direction of fringes than to indentify the plane

with total absence of fringes.

Therefore, the ability to introduce tilt in addition to lateral shear might be a

distinct advantage in certain situations. Later we talk about the use of this feature to

accomplish different tasks in optical arrangements.

FIGURE 4.4. Lateral shearing interferograms for an aberrationless wavefront (a) inside the focus,

(b) at the focus, and (c) outside the focus. In part (b), fringeless pattern is obtained when there is no

defocusing. The patterns (a) and (c) are due to slight defocusing in positive and negative direction by the

same amount.
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4.3.2. Interferograms of Primary Aberrations upon Lateral Shear

Primary Spherical Aberration. The wavefront error for primary spherical aberra-

tion may be expressed as

Wðx; yÞ ¼ Aðx2 þ y2Þ2: ð4:7Þ

Thus, the shearing interferogrammay be obtained from the following equation, in the

absence of defocusing term:

�Wðx; yÞ ¼ 4Aðx2 þ y2ÞxS ¼ nl: ð4:8Þ

The fringe distribution can be determined from the following equation when defo-

cusing is also present:

�Wðx; yÞ ¼ ½4Aðx2 þ y2Þxþ 2Dx�S ¼ nl: ð4:9Þ

Both Eqs. (4.8) and (4.9) have exponents that add to 3. Consequently, the fringes

indicating the presence of the spherical aberration are cubic curves. Figure 4.6 shows

FIGURE 4.5. Lateral shearing interferograms for an aberrationless wavefront (a) inside the focus, (b) at

the focus, and (c) outside the focus. In this case, however, a certain amount of tilt orthogonal to the direction

of shear is introduced. At the focus, part (b), the fringes are parallel to the direction of shear. Inside and

outside the focus they are inclined with respect to the shear direction.
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the representative interferograms in the presence of primary spherical aberration in

the original wavefront, inside the focus (a), at the focus (b), and outside the focus (c)

and (d). In addition to the spherical aberration and defocus, tilt is also present.

The equation for the fringes is given by

�Wðx; yÞ ¼ ½4Aðx2 þ y2Þxþ 2Dx�Sþ 2Ey ¼ nl: ð4:10Þ

If there are only spherical aberration and tilt present, the equation for the shape of the

fringes may be predicted from the following equation:

�Wðx; yÞ ¼ 4Aðx2 þ y2ÞxSþ 2Ey ¼ nl:

When the primary spherical aberration is very small and there is no defocusing, Eq.

(4.10) may be approximated for the central fringe close to the x axis:

�Wðx; eÞ ¼ 4Ax3Sþ 2Ee ¼ 0: ð4:11Þ

This equation for the central fringe gives the characteristic horizontal S-shaped curve

by which very small amounts of spherical aberration may be visually identified.

Typical fringe pattern is displayed in Figure 4.7.

FIGURE 4.6. Typical lateral shearing interferograms of primary spherical aberration due to various

amounts of defocusing: (a) inside the focus, (b) at the focus, and (c), (d) outside the focus. The fringe pattern

in part (b) occurs when there is no defocusing.
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Primary Coma. The wavefront error for primary coma may be expressed as

Wðx; yÞ ¼ Byðx2 þ y2Þ: ð4:12Þ

In view of the unsymmetrical nature of this aberration, the shape of the lateral shear

fringes is different, depending on whether the shear is in the x direction, y direction,

or in some other direction.

Let us first consider the case in which the shear is in the x direction. Then the

fringe shape may be found from the following equation:

�Wðx; yÞ ¼ 2BxyS ¼ nl: ð4:13Þ

The curves represented by Eq. (4.13) are rectangular hyperbolas with the asymptotes

in the x and y directions. The effect of defocusing is the addition of another term

ð2DxSÞ, see Eqs. (4.4)–(4.13):

�Wðx; yÞ ¼ 2BxySþ 2DxS ¼ nl:

The introduction of defocusing term results in the displacement of the center of

the system of rectangular hyperbolas along the y direction. Figure 4.8 shows the

representative fringe patterns for these two cases. In part (a), centered fringes are

indicative of coma only. In part (b), tilt in the direction orthogonal to shear is added to

coma.When tilt is added to coma in some other direction, the center of the hyperbolic

fringes will be moved along a line inclined to both the x and y axes.

Next, let us consider the situation in which the shear is in the y direction. Then, if

the shear magnitude along the y direction is denoted as T, the shape of the fringes can

be found from the following equation:

�Wðx; yÞ ¼ Bðx2 þ 3y2ÞT ¼ nl: ð4:14Þ

FIGURE 4.7. Typical lateral shearing interferogram of primary spherical aberration when there is a

small amount of tilt in the orthogonal direction. Note the characteristic S-shape of the fringes.
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In this case, the fringes form a system of ellipses with a ratio of major to minor axis

of 31/2. Also, the major axis is parallel to the x axis. The effects of defocusing and

tilt are similar to those discussed earlier. Representative fringe patterns characteristic

of coma, generated in the lateral shearing interferometer with the shear parallel to

the x axis, are shown in Figures 4.9(a) and 4.9(b) with and without defocus,

respectively.

Primary Astigmatism. The wavefront error for primary astigmatism may be

expressed as

Wðx; yÞ ¼ Cðx2 þ y2Þ: ð4:15Þ

FIGURE 4.8. Representative lateral shearing interferograms of a wavefront with primary coma when

the shear direction is chosenalong the sagittal (horizontal, or x axis). (a)Centered rectangular hyperbolas are

obtained when there is no defocusing. (b) Small defocusing causes displacement of the center of the

rectangular hyperbolas (actually, the intersection of the asymptotes) in a direction perpendicular to the

direction of shear (y axis).

FIGURE 4.9. Representative lateral shearing interferograms of awavefrontwith primary comawhen the

direction of shear is in the sagital (horizontal, x) direction. (a) Centered elliptical fringes are observed when

there is no defocusing. (b) When defocusing is introduced, the center of the fringe pattern moves along the

direction (horizontal, x) of shear (x axis).
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In the analysis of an astigmatic wavefront, the lateral shearing interferograms

provide little useful information. Independently whether the lateral shear is in the

x or the y direction, the straight fringes are orthogonal to the direction of shear. Thus,

one could easily mistake an astigmatic wavefront for a spherical one. Fortunately, the

introduction of defocusing reveals the presence of astigmatism. Then, the fringe

pattern produced by lateral shear in the x direction is given by the following

expression:

�Wðx; yÞ ¼ 2ðDþ CÞxS ¼ nl: ð4:16Þ

Similarly, the difference in wavefronts for lateral shear in the y direction becomes

�Wðx; yÞ ¼ 2ðD� CÞyT ¼ nl: ð4:17Þ

If the sagittal shear S and the tangential shear T have the same magnitude, there exist

two values of D, namely, D ¼ 
C, for which the lateral shearing interferogram fails

to exhibit fringes. These two defocus conditions correspond to the positions of the

tangential and sagittal foci of the astigmatic wavefront. Another way of detecting

astigmatism is by counting the number of fringes for two perpendicular shear

directions. Their different numbers indicate the presence of astigmatism, as illu-

strated in Figure 4.10. In part (a), with shear along the horizontal direction, we count

7 dark vertical fringes. In part (b), 10 dark horizontal fringes, upon application of

equal shear in the vertical direction, indicate the presence of an astigmatic wavefront.

Another method of detecting astigmatism involves the use of lateral shear in a

general direction. In this case, the system of fringes may be obtained from the

following equation:

�Wðx; yÞ ¼ 2ðDþ CÞxSþ 2ðD� CÞyT ¼ nl: ð4:18Þ

FIGURE 4.10. Representative lateral shearing interferograms arising due to the presence of primary

astigmatism. Its existence is confirmed visually by counting different number of straight fringes, at a given

focal setting, when the shear direction is (a) sagital, and (b) tangential.
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Equation (4.18) represents a system of equally spaced straight fringes. Their slope

may be found by setting n to zero and solving for y=x.

dy

dx
¼ ðC þ DÞ

ðC � DÞ
S

T

In the absence of astigmatism C ¼ 0, the equidistant straight fringes are normal to

the shear direction, dy=dx ¼ �ðS=TÞ, according to Eq. (4.4). By changing the

direction of shear ðT=SÞ, we observe that the slope of the fringes, dy=dx, remains

normal to the shear direction in the absence of astigmatism.

When there is astigmatism present in the wavefront, the slope of the equidistant

straight fringes differs from the direction orthogonal to the shear direction.

Figure 4.11 illustrates this aspect of astigmatism in relation to lateral shearing

interferometry.

Curvature of Field and Distortion. Curvature of field is a displacement of focus

longitudinally, and hence it can be treated as a defocusing situation. Distortion is a

linear function of the pupil height. It is, in general, not detected in the lateral shearing

interferometers.

Chromatic Aberration. Longitudinal chromatic aberration is a change of focus for

different wavelengths. By changing the light source or using different wavelengths

from the same source, one can count the number of fringes introduced by spectral

FIGURE 4.11. A representative lateral shearing interferogram due to primary astigmatism and defocus.

The direction of shear is along the y ¼ x line (principal diagonal), or halfway between the sagittal and

tangential directions. The inclination of straight fringeswith respect to the normal to the shear direction (the

other diagonal, y ¼ �x) confirms the presence of the astigmatism in the wavefront.
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defocusing. This way, we may quantify the amount of longitudinal chromatic

aberration. Similar to distortion, the lateral chromatic aberration is a linear function

of the pupil height and is not detectable in a lateral shearing interferometer.

The foregoing brief account will help in evaluating the performance of an optical

system by simple and quick inspection utilizing lateral shearing interferometry. We

discussed the presence of pure aberrations with defocus and tilt to give us an idea of

their fringe patterns. A general wavefront will have a mixture of aberrations whose

presence is quantified, employing formal mathematical reconstruction techniques.

4.4. EVALUATION OF AN UNKNOWN WAVEFRONT

We shall now see how it is possible to determine the shape of a wavefront from a

lateral shearing interferogram of the wavefront under study. One method, proposed

by Saunders (1961, 1970), estimates the order of interference at equally spaced

points along a diameter as indicated in Figure 4.12. He evaluates the wavefront by

settingW1 ¼ 0,W2 ¼ �W1,W3 ¼ �W1 þ�W2, and so on, obtaining the wavefront

by summation of the lateral shear measurements�Wi. This procedure was extended

to two dimensions by Saunders and Bruning (1968), and later by Rimmer (1972), and

Nyssonen and Jerke (1973).

A more formal procedure assumes that the unknown wavefront Wðx; yÞ is a

smooth function that may be represented by a so-called aberration polynomial, as

we did in the preceding section. The wavefront difference function�Wðx; yÞ is then
formulated in terms of its coefficients. Values of �Wiðxi;yiÞ are found from mea-

surements of the fringe positions. From those, the coefficients of the wavefront

(aberration polynomial) are computed upon fitting. Malacara (1965a), Murty and

Malacara (1965), and Dutton et al. (1968) developed this method in one dimension to

find the wavefront shape along a diameter parallel to the shear. Malacara and Mende

(1968) applied the method for the evaluation of aberrations produced by surfaces
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FIGURE 4.12. Original and displaced wavefront and their difference to illustrate the Saunders’ pro-

cedure to find a wavefront from its lateral shearing interferogram.
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with rotational symmetry. In general, the polynomial method is very good, especially

after being extended to two dimensions by Rimmer and Wyant (1975) in the

following manner.

The wavefront, denoted by Wðx; yÞ, may be represented by a two-dimensional

polynomial of degree k, of the form

Wðx; yÞ ¼
Xk

n¼0

Xn

m¼0

Bnmx
myn�m: ð4:19Þ

It contains N ¼ ðk þ 1Þðk þ 2Þ=2 terms. If we wish to reconstruct the whole

wavefront, we perform two shears, represented by S and T, along two mutually

perpendicular directions, generating two sheared interferograms. For shear along the

x direction, we obtain

Wðxþ S; yÞ ¼
Xk

n¼0

Xn

m¼0

Bnmðxþ SÞmyn�m: ð4:20Þ

Similarly, for shear along the y direction, we find

Wðx; yþ TÞ ¼
Xk

n¼0

Xn

m¼0

Bnmx
mðyþ TÞn�m: ð4:21Þ

We may use the binomial theorem,

ðxþ SÞ ¼
Xm

j¼0

m

j

� �

xm�jS j: ð4:22Þ

The binomial factor represents a quotient of factorials (here denoted by the exclama-

tion mark !).

m

j

� �

¼ m!

ðm� jÞ!j! ð4:23Þ

Using expression (4.22), Eq. (4.20) may be expanded into a polynomial

Wðxþ S; yÞ ¼
Xk

n¼0

Xn

m¼0

Xm

j¼0

Bnm
m

j

� �

xm�jyn�mS j: ð4:24Þ

With expression (4.22), Eq. (4.23) may be expanded into a polynomial

Wðx; yþ TÞ ¼
Xk

n¼0

Xn

m¼0

Xn�m

j¼0

Bnm
n� m

j

� �

xmyn�m�jT j: ð4:25Þ
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These functions become equal to Wðx; yÞ when j ¼ 0. We rearrange the sums to

obtain the following two shearing interferogram equations:

�WS ¼ Wðxþ S; yÞ �Wðx; yÞ ¼
Xk�1

n¼0

Xn

m¼0

Cnmx
myn�m: ð4:26Þ

Similarly, we find

�WT ¼ Wðx; yþ TÞ �Wðx; yÞ ¼
Xk�1

n¼0

Xn

m¼0

Dnmx
myn�m: ð4:27Þ

Then we get

Cnm ¼
Xk�n

j¼1

jþ m

j

� �

SjBjþn;jþm: ð4:28Þ

Likewise, we find

Dnm ¼
Xk�n

j¼1

jþ n� m

j

� �

T jBjþn;m: ð4:29Þ

Rimmer andWyant developed this result in 1975. The values of Cnm andDnm may be

obtained from the interferograms by means of a least-square fitting of the measured

values of �WS and �WT to functions (4.26) and (4.27), respectively. There are

M ¼ kðk þ 1Þ=2 coefficients Cnm and Dnm. From them we have to determine the

N wavefront coefficients Bnm. Expression (4.28) represents a system of M equations

with M unknowns, where the unknowns are all Bnm coefficients with the exception

of Bn0. Likewise, expression (4.29) represents a system of M equations with

M unknowns, where these unknowns are all Bnm coefficients with the exception of

Bnn. If the wavefront has rotational symmetry, Bn0 ¼ Bnm ¼ 0 for all values of n, it

becomes sufficient to use either expression (4.28) or (4.29) and, hence, only one

interferogram is necessary. If m is different from n and also different from zero, the

value of Bnm is found from each expression. An average of these values is appro-

priately taken because their difference may be explained by rounding errors in

computations.

Many alternative approaches to computing the wavefront from the interferogram,

generated by a lateral shearing interferometer, have been devised. This includes, for

example, Gorshkov and Lysenko (1980) and others. A most interesting one is based

on the wavefront expansion in terms of Zernike polynomials, first described by

Rimmer and Wyant (1975) and later revised by Korwan (1983). The wavefront

difference function �Wðx; yÞ as well as the wavefront Wðx; yÞ is expressed as a

linear combination of Zernike polynomials. Shen et al. (1997) analytically updated

this work. The Zernike polynomial coefficients of the wavefront under test are
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expressed in terms of the Zernike polynomial coefficients of the shearing

interferograms.

Leibbrandt et al. (1996) designed a double-grating lateral shearing interferometer

based on theMichelson configuration, where Zernike polynomials are used for a high

accuracy wavefront reconstruction.

A number of research groups adapted the Fourier techniques after they were

demonstrated as a viable tool of phase reconstruction in the early eighties. Malacara

and Servin (1995) and Malacara et al. (1999) outlined the steps for the wavefront

reconstruction. Liang et al. (2006a, 2006b) worked out the details and provided

specific examples that are applicable to reconstruction of a wavefront even when

shears are large. The wavelet transforms also proved useful for wavefront retrieval in

lateral shearing interferometry (Xu et al., 2002).

4.5. LATERAL SHEARING INTERFEROMETERS IN COLLIMATED

LIGHT (WHITE LIGHT COMPENSATED)

We first consider interferometric arrangements with incoherent light sources, requir-

ing white-light compensation. Here again, we have two shear geometries, namely,

lateral shear in a collimated beam and lateral shear in a convergent beam. We note,

however, that it is possible to convert one into the other by the use of a well-corrected

lens.

4.5.1. Arrangements Based on the Jamin Interferometer

Figures 4.13–4.15 illustrate three modifications to the Jamin interferometer to serve

as lateral shearing interferometers (Murty, 1964b). The extended light source is

replaced by a pinhole. The lens to be tested acts as the collimator and imprints its

aberrations on the nearly collimated beam, entering the interferometer. Each glass

plate on either side has the dual function of splitting the beams and reflecting it. They

have to be of high quality and identical. If they are parallel to each other, the

FIGURE 4.13. The layout of the principal components employed to modify the Jamin interferometer

into a lateral shearing interferometer. The lateral shear may be introduced by rotating the glass plate on the

right about the optical axis of the incident beam. With the zero angle of rotation of the plate, the

interferometer becomes the traditional Jamin interferometer.
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superimposed light beams emerge resulting in the traditional Jamin interferometer.

In the Jamin interferometer, two glass blocks are positioned parallel to each other.

Their alignment may be accomplished by observing the zero-order fringe with a

broad source of light. The Jamin plates should be large enough to accommodate the

beams displaced by lateral shear.

Two methods are available to introduce lateral shear into Jamin interferometer. In

the first one, the glass parallel plate on the right is rotated about the optical axis of the

incident beam, as indicated in Figure 4.13. With this arrangement, the shear is

generated in the direction perpendicular to the plane of the paper.

The second method of producing shear in the Jamin interferometer is illustrated in

Figure 4.14. Two identical parallel plates of glass are placed in each interferometer

arm so that they may be rotated about the same axis, normal to the beam, by the same

angle, and in opposite directions. This may be accomplished by the use of a simple

gear arrangement. In an alternate setup, a fixed tilt is introduced in the orthogonal

direction by making the end Jamin plates slightly wedge shaped (by a few seconds

of arc).

A modification of a cyclical form of the Jamin interferometer into the lateral

shearing interferometer is indicated in Figure 4.15. In this layout, only one plane

parallel plate is employed. The right-angle prism or a set of two plane mirrors at an

angle of 90� to each other are used to fold the light path. A transparent block is placed

into one interferometer arm. It is rotated about an axis that passes through and is

normal to both beams in order to introduce lateral shear. Two beams pass through the

block from either side: one beam is lifted up and the other pushed down in the plane

of the paper so that lateral shear is obtained as a sum of two beam displacements. This

lateral shearing interferometer seems to be very convenient for testing lenses of small

aperture. It is also possible to introduce tilt; it may be introduced in the orthogonal

direction by incorporating slightly imperfect right-angle prism or slightly misaligned

two-mirror assembly. The tilt depends on the error in the 90� angle of deviation in

both cases. This arrangement may be used for measuring the accuracy of the apex-

angle of the right-angle prism, the mirror alignment in the 90� mirror assembly, and

FIGURE 4.14. In anothermodification of the Jamin interferometer into a lateral shearing interferometer,

two identical glass blocks are introduced into each beam. Lateral shear is achieved by rotating each block

about an axis passing through both blocks by the same angle, but in opposite directions.
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most importantly, detecting errors in the right angles in a corner cube prism (see also

Scholl, 1995).

4.5.2. Arrangements Based on the Michelson Interferometer

The Michelson interferometer is compensated for white light, especially when

adjusted for the zero-order interference position. If we place right-angle prisms or

cube-corner prisms, it is possible to obtain lateral shear (Kelsal, 1959). TheMichelson

interferometer with the right-angle mirrors (or prisms) in each arm is presented in

Figure 4.16. For simplicity, we assume that the right-angle prisms are identical in size

and material. When their virtual images, as viewed in the beam splitter, are exactly

superimposed on each other, no shear is generated between beams. If one prism is

displaced laterally by some amount, the wavefront is sheared by twice this amount.

FIGURE 4.16. A modification of an equal-path Michelson interferometer into the lateral shearing

interferometer. The end reflectors are either right-angle prisms (mirror assembly) or cube-corner prisms,

one of them displaced in a direction transverse to the beam.

FIGURE 4.15. A modification of a cyclical form of the Jamin interferometer into the lateral shearing

interferometer. A transparent block is rotated about an axis that passes through and is normal to both beams

to introduce lateral shear. Two beams pass through the block from either side: one beam is lifted up and the

other pushed down in the plane of the paper so that lateral shear is obtained as a sum of two beam

displacements.
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The beam divider plate must be large enough to accommodate the displacement of

one beam. Similarly, at least one of the right-angle prisms must be oversized. Tilt may

be implemented by tilting the right-angle prism (mirror assembly) perpendicularly to

the direction of the shear. With a corner cube, only pure lateral shear is obtained

because tilt may not be implemented by their nature. Tilt only may be introduced in

the traditional Michelson interferometer by tilting one of the plane mirrors.

Lee et al. (1997) use the Michelson configuration in a two-dimensional shearing

interferometer to measure a long radius of curvature. Pfeil et al. (1998) use a beam

divider cube with a tilted end-mirror to test fast cylindrical gradient-index lenses.

Albertazzi and Fantin (2002) use the Michelson configuration with the on-the-pixel

processing to evaluate small incidence differences on the charged couple device

(CCD). Instead of moving or tilting a reflecting component sideways, the camera is

displaced sideways by one or more pixels. This may be done physically or electro-

nically. Schreiber (2005) invented a variation of the Michelson shearing interferom-

eter by replacing the retro reflector with a return sphere to measure tilt.

4.5.3. Arrangements Based on a Cyclic Interferometer

A cyclic interferometer is referred to as the layout where two beams travel in

opposite directions, encountering exactly the same components until they emerge

to form interference pattern. The Jamin interferometer presented in Figure 4.15 is

one familiar example of a cyclic interferometer. We note that beams pass through the

same path but they travel in the opposite directions.

A representative cyclic interferometer is a triangular-path interferometer

(Hariharan and Sen, 1960). Figure 4.17 depicts a typical layout to obtain lateral

shear in collimated light in this compact instrument, with minimal systematic

errors. Again, we have two ways of generating lateral shear. Employing the first

one, a transparent block is introduced into the path and rotated as in folded Jamin

interferometer (see also Fig. 4.15). In the second method, illustrated in Figure 4.18,

FIGURE 4.17. A representative cyclic triangular-path interferometer may be modified to obtain lateral

shear in collimated light.A transparent slab is introduced into thebeams.When it is rotatedbyan angle about

the axis normal to the plane of paper and beams, they are displaced laterally in opposite directions.
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beams will be displaced laterally when one of the planemirrors is translated along the

beam direction, in the plane of the paper.

In a symmetrical implementation of a cyclic interferometer, we may introduce a

plane parallel plate of glass, as presented in Figures 4.15 and 4.17. In either case, the

rotation of the glass block or plate produces lateral shear. This is also a relatively easy

instrument to construct. It is insensitive to vibration and other environmental effects,

including those in a controlled laboratory conditions. The simple elegance of the

plane parallel plate was exposed by Waddell et al. (1994) to assess the symmetry of

concave mirrors whose surface was formed with a stretchable plastic membrane.

Another compact arrangement of generating shear in a cyclic interferometer is

laid-out in Figure 4.19. A 112.5�, 90�, 112.5� angle pentaprism may be used as a

beam splitter mirrors assembly by placing suitable coatings on the key surfaces. A

90� pentaprism is cut along its axis of symmetry. One of the cut surfaces is covered

with a semireflecting coating to act as a beam splitter. They are maintained in optical

contact, using index-matching liquid or oil. Translation of one half-pentaprism along

FIGURE 4.18. Amodification of a representative cyclic triangular-path interferometer to obtain lateral

shear in collimated light. The beam is displaced laterally when one of the plane mirrors is translated in the

plane of the paper, along the beam direction.

FIGURE 4.19. A modification of a pentaprism-based triangular-path interferometer into a lateral

shearing interferometer. One half-pentaprism is moved along the beam-splitting surface to produce lateral

shear.
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the beam-dividing surface generates variable shear of the output wavefronts. Suc-

cessful engineering of this device results in the heart of interferometer immune to

vibrations. It is most suitable for testing small aperture optical systems due to its

weight and size limitations.

Kanjilal et al. (1984) and Kanjilal and Puntambekar (1984) described another

cyclic shearing interferometer that may be used with convergent light.

4.5.4. Arrangements Based on the Mach–Zehnder Interferometer

A schematic diagram of the principal optical components in the Mach–Zehnder

interferometer is displayed for reference in Figure 4.20. It includes two beam

dividers and two plane reflectors (mirrors). Two glass plane parallel plates of the

same thickness and material are inserted in each interferometer arm to generate

lateral shear in collimated light, as schematically indicated in Figure 4.21.

FIGURE 4.20. Simplified diagram of the principal components in the Mach–Zehnder interferometer

using thin beam splitters.

FIGURE 4.21. A basic Mach–Zehnder interferometer may be modified to obtain lateral shear in

collimated light. Two identical glass plane parallel plates are inserted with an angle of inclination into

each interferometer arm to generate lateral shear in collimated light. To control the amount of shear, the

angle of inclination of the plates with respect to the incident beam is changed.
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Each plate displaces the wavefront by the same amount and in opposite direction.

The Mach-Zehnder interferometer may easily be modified for use as a lateral

shearing interferometer in collimated light (Paez et al. 2000). Some researchers

find it a cumbersome device to adjust, especially when all the optical elements

are separately mounted and each has its own tilting screws. The Mach-Zehnder

interferometer is often considered very useful for obtaining lateral shear in a

convergent beam.

4.6. LATERAL SHEARING INTERFEROMETERS IN CONVERGENT

LIGHT (WHITE LIGHT COMPENSATED)

4.6.1. Arrangements Based on the Michelson Interferometer

The basic block diagram relating the input-output relationship in a lateral shearing

interferometer in convergent light is presented again in Figure 4.22. The nearly

spherical wavefront is converging to its center of curvature where the lateral shearing

interferometer is placed. Due to the space constraints, the size of the lateral shearing

interferometer used in convergent light is rather small.

The output of the laterally shearing interferometer includes two beams with

the amplitude decreased (by at least factor of 4) and the same size of the radius

of curvature as the input beam (but opposite in sign). The diverging beams are tilted

with respect to each other. There is an angle between the radius of curvature to

the central point on one wavefront and the radius of curvature connecting the

center of the ‘‘displaced’’ wavefront. If we think of the wavefront as forming a

part of a spherical surface, then the sheared wavefront slides over this spherical

surface. The quantity of interest is the difference between the sphere and the

actual wavefront, which we are accustomed to call the wavefront aberration func-

tion, Wðx; yÞ.
A converging beam of light from the optical system under test enters a simple

Michelson interferometer, having a thin beam splitter, as sketched in Figure 4.23.

When two plane mirrors are positioned symmetrically with respect to the beam

splitter (equal path condition) and perfect optical components are used, a broad

zero-order fringe presents itself in the interference plane. When the plane mirrors are

used, the split incident beams converge on a point on the mirror surface. This is the

FIGURE 4.22. The basic block diagram relating the input-output relationship in a lateral shearing

interferometer in convergent light. The nearly spherical wavefront is converging to its center of curvature

where the lateral shearing interferometer is placed.
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layout of the basic Michelson interferometer: the emerging wavefronts are super-

imposed without any lateral shear.

The lateral shear may be introduced by rotating one of the mirrors by a small angle

about an axis that coincides with the wavefront center of curvature. This is illustrated

in Figure 4.24. The wavefront aberration is made visible in the interferometric

pattern. There are no fringes in the absence of aberration. If the centers of curvature

fall ever so slightly outside the plane reflectors, defocusing is introduced. Even in the

absence of aberrations, straight fringes indicative of defocus condition in the shear-

ing interferometer are displayed. It is not possible to obtain tilt in the orthogonal

direction.

A sturdy and compact version of this interferometer is made with two nearly

identical right-angle prisms and cementing them together along partially transmitting

FIGURE 4.23. A converging beam of light from the optical system under test entering a simple

Michelson interferometer with a thin beam splitter. When two plane mirrors are positioned symmetrically

with respect to the beam splitter, a broad zero-order fringe presents itself in the interference plane.When the

plane mirrors are used, the split incident beams converge on a point on the mirror surface.

FIGURE 4.24. A modification of a Michelson interferometer into a lateral shearing interferometer.

Tilting one of the plane mirrors about an axis passing through the point of convergence of the wavefront on

the mirror surface introduces lateral shear.
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diagonal. A fixed amount of shear may be implemented with one slightly tilted totally

reflecting surface, depicted in Figure 4.25. Lenouvel and Lenouvel (1938) were

probably the first to devise the practical solid version of this interferometer.

Later, Murty (1969), Saunders (1970), and several others found simplicity in this

interferometer very useful in the testing of optical systems. One can vary the amount

of shear using similar right-angle prisms in a cube arrangement (Murty, 1970). An

index matching liquid or suitable oil inserted between the faces of the hypotenuse,

permits rotation of one prism. The axis of rotation passes through both centers of

curvature of split wavefronts, as illustrated in Figure 4.26. The entrance and exit

faces may be made spherical so that the rays enter and exit almost without deviation.

This implementation of the lateral shearing interferometer has been used to char-

acterize cryogenic laser fusion targets (Tarvin et al., 1979).

FIGURE 4.25. Amodification of aMichelson interferometer into a lateral shearing interferometerwith a

cemented cube. The plane surfaces are deformed to introduce a fixed amount of shear. The entrance and the

exit faces may be given convex spherical shapes so that the rays enter and exit normally.

FIGURE 4.26. A layout of a lateral shearing interferometer based on theMichelson interferometer. The

lateral shear may be varied by rotating one or both prisms about an axis passing through the centers of

curvature of the incident beams.
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4.6.2. Arrangements Based on the Mach–Zehnder Interferometer

Let us consider a simplified Mach–Zehnder interferometer with idealized thin beam

dividers as indicated in Figure 4.27. A converging wavefront is focused on the plane

mirrors, placed symmetrically with respect to infinitely thin beam splitter. If one of

these mirrors is rotated about an axis, passing through the geometrical focal point,

normal to the plane of the paper, a lateral shear is established between the beams

emerging from the interferometer. Tilt, orthogonal to the direction of shear, may be

introduced upon rotation of the second beam divider about an axis normal to the

plane of paper (also illustrated in Fig. 4.27). The introduction of this tilt has been

offered as an important feature of this interferometer. It might be advantageous to

bring both beams to focus on the second beam splitter. In this case, the roles of the

plane mirror and the beam divider are interchanged: rotation of one mirror introduces

tilt, and the rotation of the second beam splitter results in introduction of shear. When

one is using actual components with finite thicknesses, compensation plates need to

be inserted judiciously.

We found it relatively simple to align a shearing interferometer incorporating tilt,

based on the Mach–Zehnder interferometer (Paez and Strojnik, 2000; Paez and

Strojnik, 2001). Many researchers, however, believe that it is difficult to adjust

quickly an equal path interferometer, incorporating as a minimum two beam dividers

and two plane mirrors, each separately mounted on a suitable base and capable of all

possible adjustments. Some examples of pre-aligned and pre-adjusted devices based

on the Mach–Zehnder configuration are presented next. Most of them use solid

glass polygon prisms to generate a fixed amount of lateral shear. Saunders (1965)

devised almost a literal solidification of the layout in Figure 4.27. The space between

the beam dividers and the plane mirrors is filled with glass, as seen in Figure 4.28.

The convergent beam focuses on surfaces parallel to each other but not parallel to the

beam divider. The fabrication of this compact component could start with the

FIGURE 4.27. A modification of a simplified Mach–Zehnder interferometer into a lateral shearing

interferometer, in convergent light. The converging wavefront comes to a geometrical focus on the surface

of plane mirrors. Either mirror is rotated by a small angle to generate shear. Tilt may be introduced by

rotating the second beam splitter by a small amount.
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formation of hexagonal a prism, cut in two prisms halving 90� angles. The cut

surfaces are coated to act as beam splitters and then cemented together. Top and

bottom surfaces, slightly inclined with respect to the beam splitter surfaces to

produce fixed shear, are coated to function as mirrors. A fixed amount of tilt about

the direction orthogonal to shear is possible with slightly wedged cement.

A shearing interferometer inMach–Zehnder configuration with mirrors tilted may

be used for flame visualization. Philipp et al. (1993) developed a technique to assess

flame dynamics using cube beam splitters and collimated light.

A possible improvement to the lateral shearing interferometer featuring variable

shear and based on the Mach–Zehnder layout is indicated in Figure 4.29. Here two

rhomboidal prisms are cemented in a symmetrical fashion along the semireflecting

beam-dividing surface. The top and bottom surfaces are mirrored. The incident

converging beams are focused on the second beam divider, implemented as a cube

beam splitter. By rotating it about the axis through the center of curvature, a limited

amount of shear may be introduced. The angle-of-incidence effects limit the amount

of acceptable rotation. The angle of rotation and size of the cube determine the

FIGURE 4.28. A solidification of the lateral shearing interferometer sketched in Figure 4.27. The space

between the beam dividers and the plane mirrors is filled with glass. The convergent beam focuses on

surfaces parallel to each other but not parallel to the beamdivider. Top and bottom surfaces, slightly inclined

with respect to the beam splitter surfaces to produce fixed shear, are coated to function as mirrors. A fixed

amount of tilt about the direction orthogonal to shear is possible with slightly wedged cement.

FIGURE 4.29. A possible improvement to the lateral shearing interferometer featuring variable shear

and based on theMach–Zehnder layout. Beams converge on the cemented half-transmitting diagonal of the

cube beam splitter. By rotating it about the axis through the center of curvature, a limited amount of shear

may be introduced. A fixed amount of tilt may be incorporated into thewavefront by inclining the reflecting

surfaces.
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amount of displacement. A fixed amount of tilt may be incorporated into the

wavefront by inclining the reflecting surfaces.

This configuration may also be seen as a version of the shearing interferometer

sketched in Figure 4.28, with the cube beam splitter cut off from the hexagonal prism

assembly and slightly displaced to the right. By converging the beam on the second

beam splitter, the function of shear and the perpendicular tilt corresponds to the

second case, discussed with respect to Figure 4.27.

Another improvement to the octagon in Figure 4.28, with planar surfaces replaced

by sections of a sphere, is indicated in Figure 4.30. It employs two identical plano-

convex spherical lenses whose center thickness is equal to half its radius of curvature.

A small on-axis section of each lens is flattened, polished, and coated with a

reflecting material. Each mirrored surface is slightly inclined with respect to

the planar half-transmitting surface to introduce a fixed shear. The planar half-

transmitting surfaces are cemented together to function as a beam divider. A beam

of large numerical aperture may be tested without introducing its own errors because

entrance and exit faces are spherical in form.

Saunders (1964a) proposed another modification of the Mach–Zehnder interfe-

rometer into a lateral shearing interferometer. The principal components, depicted in

Figure 4.31, include two identical prisms, possibly cut along the principal diagonal

from a single four-sided (kite-like) prism with angles a ¼ 120�, b ¼ 100�, g ¼ 40�.
The main diagonal surface is coated to divide the beam into two, functioning as a

beam splitter. The wavefront converges on the inclined mirrored faces. The lateral

shear may be implemented by rotating (one of) the prisms about the line joining the

two centers of curvature of the two prisms in opposite directions. This layout may be

simplified to perform fixed shear by cementing prisms at an appropriate angle.

The systematic aberrations inherent to this device may be completely eliminated

by cementing plano-convex lenses of suitable radii of curvature on the entrance and

exit faces. (See discussion about Fig. 4.30.) Tilt may be implemented by suitable

FIGURE 4.30. An improvement to the octagon in Figure 4.28, with planar surfaces replaced by sections

of a sphere. Two identical plano-convex spherical lenses whose center thickness is equal to half its radius of

curvature are coated along the planar part and cemented to function as a beam divider. A small on-axis

section of each lens is flattened, polished, and coated with a reflecting material. Each mirrored surface is

slightly inclined with respect to the planar half-transmitting surface to introduce a fixed shear.
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wedging of the cement and by coating only partially the beam divider, covering only

half of each prism-base surface.

4.7. LATERAL SHEARING INTERFEROMETERS USING LASERS

As we pointed out earlier, any white-light compensated lateral shearing interferom-

eter works with a laser source. It is possible to devise interferometers that are simpler

in constructions and use when requirement for use with white light is eliminated. The

most convenient (and cost-effective) laser is the helium–neon (He–Ne) laser emitting

a few milliwatts of power at the 632.8 nm line.

A plane parallel plate, devised by Murty (1964a), is undoubtedly one of the most

elegant and simplest lateral shearing interferometers for qualitative work in a labora-

tory. Figure 4.32 shows that the coherent laser radiation is focused by a microscope

objective on a pinhole to clean up the beam. The lens (group) under test, having the

same f-number as the microscope objective, collimates the divergent light beam. It is

incident on an inclined plane parallel plate, normally used without any coating on

either surface. The light is reflected from the front and the back of the plate due to

Fresnel reflections. The plate thickness introduces the beam displacement, that is, a

lateral shear. The lateral displacement S for a plate of thickness t, refractive index N,

and for the beam angle of incidence i is given by Malacara (1965a).

S

t
¼ sin 2iðN2 � sin2 iÞ½ ð4:30Þ

Figure 4.33 presents the graph of S/t versus angle of incidence i, for glass with the

index of refraction N ¼ 1:515 at 632:8 nm. The angle of incidence is measured from

FIGURE 4.31. Another modification of the Mach–Zehnder interferometer, into a lateral shearing inter-

ferometer, using two obtuse-angle prisms. The main diagonal surface is coated to divide the incident

wavefront into two, functioning as a beam splitter. Thewavefront converges on the inclinedmirrored faces.

The lateral shear may be implemented by rotating prisms relative to each other. This layout may be

simplified to provide fixed shear by cementing prisms at an appropriate angle.

4.7. LATERAL SHEARING INTERFEROMETERS USING LASERS 149



the normal to the glass surface, as in the Snell law. The maximum value of the ratio

S/t of approximately 0.8 corresponds to an angle of incidence of 50�. Therefore, a 45�

angle of incidence is quite convenient to use in a practical setup. A slight wedge is

often introduced into a plate to guide ghost reflections from the main beams.

The intensity of the peak of the fringe pattern increases by coating the front and

back surfaces without changing the fringe visibility. Then the internal reflection has

enough intensity to exhibit faint secondary sheared beams and interference patterns.

Therefore, many practitioners find it advantageous to use an uncoated plate.

Figure 4.34 shows the layout with a plane parallel plate to test a large-diameter

concave mirror. A suitable null correcting system may be inserted when the mirror is

not spherical. A fixed amount of tilt orthogonal to the shear direction is produced by

introducing a small wedge into the shearing plate. The imaginary line, where the two

planar surfaces of the wedge intersect, is parallel to the plane of the paper.

1.0
s = shear
t = thickness
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FIGURE 4.33. A graph of the ratio of displacement over plate thickness ðS=tÞ as a function of angle of
incidence, for a typical borosilicate crownglass. Examining the plotwenote that anyangleof incidenceup to

a maximum of about 50� is convenient.

FIGURE 4.32. Schematic diagram of a lateral shearing interferometer incorporating a laser source and a

plane parallel plate of glass.
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Another variation (Hariharan, 1975) of the basic parallel plate interferometer uses

two plates whose separation may be adjusted to expand the range of the possible

shear. In Figure 4.35, one of the plates is mounted on a movable platform so that

the air gap is variable and, hence, variable shear is obtained without plate rotation.

The inside surfaces of these plates are uncoated so that about 4% reflection occurs

there. The outer surfaces are treated with high quality antireflection coatings to

minimize reflections. The plate mounting may be equipped with additional degree of

freedom so that it can be rotated orthogonally to introduce tilt. The physical

separation of two plates makes this system sensitive to disturbances and fragile in

handling. The stability of the fringe system depends on the quality of mechanical

mounts, their design, fabrication, and environmental conditions.

The lateral shearing interferograms displayed in Figures 4.4–4.11 were generated

employing a laser shearing interferometer laid out in Figure 4.32. An uncoated glass

plate with a laser source results in a sufficiently intense fringe pattern, projected on a

ground glass in a dimly illuminated room. An exposure time of only a fraction of a

second is sufficient to photograph the fringes. With the currently available CCD

detector arrays, the experimental work is even simpler.

FIGURE 4.34. Optical layout of a plane parallel plate (interferometer) for testing large concavemirrors.

In addition to a coherent source, two excellent lenses and a good one are needed for performing this test.

FIGURE 4.35. Modification of the plane parallel plate interferometer by incorporating two separate

glass plates. The reflections from the inner surface are utilized to generate the expanded amount of lateral

shear. The lateral shear is variable by moving the back plate to change the width of the air gap.
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4.7.1. Other Applications of the Plane Parallel Plate Interferometer

One of the most popular uses of the plane parallel plate interferometer is in checking

beam collimation. Returning to Figure 4.32, we note that the wavefront is either

slightly divergent or convergent if the pinhole is not located at the focus of the lens

under test. Then, the interference pattern of a high-quality collimating lens exhibits

straight fringes, which is indicated in Figures 4.4(a) and 4.4(c), rather than uniform

field of Figure 4.4(b).

The common area of two sheared apertures will be free of fringes, as noted in

Figure 4.4(b), when the pinhole center coincides with the focal point of the collimat-

ing lens. The best collimation is found when the interference pattern changes from

that shown in part (a) to (b) and, finally to (c), upon slight displacement of the lens

along the optical axis.

The configuration of exact collimation may be even more accurately determined

when a wedged plate is used for alignment. The plate is first used normal to the beam

emerging from the collimating lens. The reflected pattern displays the Fizeau fringes

indicating the direction of the wedge. In this position the shear is zero, so slight

decollimation is not of significance. The plane parallel plate is then rotated in its own

plane. The Fizeau fringes rotate along, always indicating the direction of the wedge.

In the last step, the plate is tilted at an angle with respect to the incident beam so that

the angle of incidence is about 45�. If the pinhole center is slightly outside the focus,
inclined fringes will be observed. By moving the high-quality lens longitudinally

along the optical axis, the pinhole will be centered on the focal point when horizontal

fringes are displayed. Parts (a), (b), and (c) of Figure 4.5 display the sequence of

fringe patterns as the pinhole passes through the focus. The addition of tilt introduced

by the wedged plate allows the experimenter to follow the fringe rotation rather than

to identify fringe free field, which may be difficult to identify with precision.

Determination of inhomogeneity of solid transparent samples is an additional

application of the plane parallel plate or wedge plate interferometer. The sample has

to be prepared in the form of a parallel piece (of glass) and sandwiched between two

very good plane parallel plates using optical contact. This optical assembly, indicated

as a solid block in Figure 4.36, is placed between the collimating lens and the

FIGURE 4.36. An optical layout for evaluating the degree of inhomogeneity of a transparent (glass)

sample using a plane parallel plate interferometer.
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shearing plate. This layout is reminiscent of the shearing modification of the Jamin

interferometer (see Figs. 4.14 and 4.15). When a high-quality plane wave passes

through the inhomogeneous sample, the distortion is imprinted on it. The laterally

sheared wavefronts produce fringe patterns corresponding to the change in the index

of refraction. The variation of the refractive index across the beam (along the shear

direction) inside the block is determined upon integration. The changes of the index

of refraction along the optical axis are averaged. The block needs to be reoriented to

find changes along all three dimensions.

The same region between the high-quality collimating lens and the shear plate

may be used for flow studies, diffusion studies, and other research into position and

time-varying phenomena.

A number of researchers studied the applications of the plane parallel plate to

alignment and collimation, starting with Dickey and Harder (1978), Grindel (1986),

and Sirohi and Kothiyal (1987a, 1987b). Lens parameters, such as the focal length or

the refractive index, may also be measured in this setup (Kasana and Rosenbruch,

1983a, 1983b; Murty and Shukla, 1983).

The evaluation of infrared materials has been done with this kind of interferom-

eter. Venkata and Juyal (1987) adapted the plane parallel interferometer to the testing

in infrared by using a CO2 laser, a plane parallel plate made out of zinc sulfide (ZnS),

and a phosphor screen to observe the fringes. The fabrication of ZnS plate to the high

flatness requirements is a formidable achievement in itself.

The surface imperfections of a large concave mirror may be tested using a plane

parallel plate, with or without a wedge, in a layout indicated in Figure 4.37

(Malacara, 1965a). The first of the two well-corrected lenses collimates the laser

beam. The shearing plate is inclined at about 45� inside the collimated light.

This layout may also be used to measure the radius of curvature of a spherical

surface. In the second position, the right well-corrected lens brings the collimated

beam to focus on the vertex of the concave mirror. Then the lens is moved left along

the optical axis to its first position so that its focus coincides with the center of

curvature of the concave mirror. In both settings, the wavefront incident on the

(wedged) plane parallel plate is planar. In the interference plane, one sees either a

blank field or a field containing horizontal fringes depending on the absence or

presence of tilt in the shearing device (i.e., whether a plane parallel plate or a wedged

plate is used). The lens displacement along the optical axis between these two

positions (first and second), equal to radius of curvature of the concave mirror R,

FIGURE 4.37. Optical layout of a (wedged) plane parallel plate interferometer to measure the radius of

curvature of a concave spherical surface.
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must be accurately measured by some other method to avoid fringes that arise from

defocusing.

Figure 4.38 presents the necessary changes for the measurement of the radius of

curvature of a convex surface. In this case, the longest radius of curvature that can be

measured is slightly smaller than the focal length of the second lens. All components

in the interferometric arrangements have to be of high quality so/as not to introduce

their aberrations into test results. Likewise, two collimating lenses in these applica-

tions have to be very good. Nowadays with the use of computers, their designs are

analyzed and optimized as classroom examples. Malacara (1965b), among others,

proposed several early designs.

Another application of the interferometer is for the determination of the refractive

index of nearly parallel plates of glass or liquids contained in a parallel-sided glass

cell. The basic arrangement is similar to the one shown in Figure 4.34, where we use

two well-corrected lenses to obtain the sharp and well-corrected focal point. The

second lens is adjusted for the positions corresponding to the two retroreflecting

situations from the two faces of the parallel plate as shown in Figure 4.39. The

difference between the two positions is t=N, where t is the thickness of the plate and
N is the refractive index. If the thickness of the plate is independently measured, the

FIGURE 4.38. Optical layout of a (wedged) plane parallel plate interferometer for measuring the radius

of curvature of a convex spherical surface.

FIGURE 4.39. Schematic for the determination of the refractive index of a parallel plate.
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refractive index is determined easily. It is possible to determine the refractive index to

five significant digits. Some inaccuracies may arise from the aberrations of the

parallel plate and also from the temperature dependence of the index of refraction.

Avery small, thin parallel plate (Tanner, 1965) may be used at the focal spot of the

system as illustrated in Figure 4.40. Laser light is collimated by the first lens, and

after leaving sufficient space in the collimated region, the light is again focused by

the second lens. At a position very close to the focus, a thin glass plate is inserted at

about 45� angle of incidence. As can be easily seen from Figure 4.41, it is not

possible to obtain pure lateral shear because of the longitudinal separation between

the two images, reflected from the two surfaces of the plate. Even for a well-corrected

optical system, the lateral shear fringes are slightly curved as shown in Figure 4.42.

Ideally, this system requires an extremely thin plate of glass with a wedge between

the surfaces. Alternatively, the systemmay bemade in the form of an air wedge. Even

then only a very limited amount of lateral shear is generated. It is often the system of

choice in large aperture wind tunnel applications, homogeneity measurements, and

so forth, shown in Figure 4.43.

Griffin (2001) proposed the use of liquid crystal to fill the gap between two glass

plates in a plane parallel configuration. This introduces a region of phase-shifted

FIGURE 4.40. Lateral shearing interferometer utilizing a thin parallel plate at the point of convergence.

FIGURE 4.41. Ray diagram indicating that pure lateral shear cannot be obtained when the thin glass

plate is located at the focus.
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shear that may be easily controlled. Chang et al. (2002) raised concern that the

amount of phase shift is actually not completely repeatable. It possibly offers the

source of error upon introduction of unknown phase shift.

Suhara (2002) used a wedge with gap to measure the distribution of the index of

refraction in plastic lenses, by additionally performing computational tomography.

One very important application of the lateral shearing interferometer incorporating a

wedge is in vivo measurement of tears and artificial tears in human eye. Lechna-

Marczynska et al. (1999) were the first to use a simple wedge to perform such

measurements. Dubra et al. (2004, 2005) recently took up this work. They used

double lateral shearing interferometer, also referred to as a three-dimensional shear-

ing interferometer to profile tear surface.

When the wedge moves in the direction along one of its prismatic surfaces, the

optical path of the incident beam changes, that is, the wedge thickness as seen by

the ray changes. This feature may be used to introduce the phase change into the

wavefront by moving the wedge. The controlled introduction of the phase change

FIGURE 4.42. Typical appearance of the lateral shear fringes in interferometer shown in Figure 4.40.

FIGURE 4.43. Schematic arrangement of the parallel plate interferometer for large aperturewind-tunnel

applications.
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facilitates the phase reconstruction without the need for an expensive piezoelectric-

mounted mirror. Lee et al. (2003) added an additional degree of freedom to the

prisms in the vectorial-shearing interferometer by moving one prism with respect to

the other along their common hypotenuse. Song et al. (2004a, 2004b) simplified this

interferometer to introduce a controlled amount of phase bymoving awedgedmirror.

More recently, Mehta et al. (2005a) proposed a lateral shearing interferometer

incorporating a slightly wedged plate to design a versatile system tomeasure distance

with an extended range of measurements and improved resolution. Mehta et al.

(2005b) used the same wedge plate setup with two-wavelength fringe projection to

develop a three-dimensional profilometer.

The plane parallel plate interferometer may be modified to obtain lateral shear in

the divergent or convergent beam (Malacara et al., 1975). As sketched in Figure 4.44,

an off-axis divergent lens section replaces the plane parallel plate. These modifica-

tions introduce a certain amount of radial shear in addition to the desired lateral shear,

limiting its applications.

Schwider (1980) modified the plane parallel plate interferometer to make possible

the fringe generation with white light. His method, called superposition fringe, is

based on the chromatic compensation by means of a Fabry-Perot interferometer,

placed in the collimated beam entering the shearing plate. This shearing plate is

really formed by two plates, like in Figure 4.35.

4.8. OTHER TYPES OF LATERAL SHEARING INTERFEROMETERS

The shearing interferometers considered so far employed the beam-dividing surfaces

to divide amplitude. This was accomplished by covering the surface with a semire-

flecting coating or by relying on reflection at the air-glass boundary.

There exist other types of interferometers to generate lateral displacement where

additional optical principles are employed. Interestingly, the first type of shearing

FIGURE 4.44. In a modification of the parallel plate interferometer for convergent or divergent

wavefronts, an off-axis section of plano-concave divergent lens is used instead of the plate.
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interferometer was based on this alternate technology. We treat these briefly here

because some of them are discussed in more detail in other chapters.

4.8.1. Lateral Shearing Interferometers Based on Diffraction

We consider a convergent beam incident normally to the transmission-type diffrac-

tion grating with a periodicity d. The beam converges on the point on the grating

plane. Let the cone half-apex angle of the converging beam be a. Using the formula

for the diffraction grating, we may give the direction of the central ray in the first-

order beam, y, also known as the angle of diffraction, by

sin y ¼ l

d
: ð4:31Þ

With proper choice of grating period d, related to the other experimental parameters,

the zeroth- and the first-order beams overlap, as sketched in Figure 4.45. For

diffraction gratings with zero-one transmission profile, higher order beams are also

present. Their peak beam irradiance decreases with the increasing diffraction order,

diminishing visibility of their fringe patterns.

By tailoring their transmission profile, it is possible to manufacture gratings that

transmit only the zeroth- and the first-order beams. The aberrations of the original

wavefront are preserved in the zero-order and first-order beams for moderate

diffraction angles. It is considered convenient that both order beams remain sepa-

rated so that only two-beam interference pattern is generated (rather than three or

more). To satisfy these requirements, the following condition needs to be met:

y � a: ð4:32Þ

FIGURE 4.45. Typical appearance of a Ronchi interferogram when a grating with proper spacing is

chosen for the Ronchi ‘‘grating’’. Two first order beams just touch each other and pass through the center of

the zeroth order beam.
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This expression may be rewritten in terms of grating distance d as

d � 2l f -numberð Þ: ð4:33Þ
Under optimal conditions, the beam circumferences barely come in contact, as

illustrated in Figure 4.45. These interferograms are named after their inventor,

Ronchi, who also lent his name to the optimized interferometric configuration.

Then the equality is applicable in expression (4.33). The choice of grating period

depends on the f-number of the optical system. For example, by choosing a system

with f-number¼ 5 and the wavelength l ¼ 0:5 mm, the value of 5 mm results for the

grating period d. Hence a grating having 200 rulings per millimeter must be used in

this application.

The grating interferometer is also white-light compensated. In principle, ordinary

light sources may be employed provided that a pinhole of proper diameter is used to

limit the source size. It is quite convenient to use the grating interferometer with a

laser source.

The existence of laser source makes it possible to fabricate gratings with several

periodicities. This is easily accomplished by recording interference fringes between

plane waves incident from different directions. The angle between the plane wave-

fronts is changed to obtain several periodicities. This type of interferometer is due to

Ronchi (1923). Among his many publications, an extensive review of the subject

(Ronchi, 1964) provides an excellent summary of his work.

A lateral shearing interferometer incorporating two gratings may be used to

optically address the spatial light modulator, which in turn shapes the output beam

of the Nd:YAG continuous laser beam (Scholl, 1980). Wattellier et al. (2002)

describe the setup to measure and shape the laser beam in the spatial frequency plane.

In order to avoid multiple beam interference, a convenient amount of lateral shear

is equal to about half the diameter of the beam. In all other shearing applications, this

is actually considered a relatively large amount of shear. However, with a single

grating, it is not possible to obtain a lesser amount of lateral shear without confusion

of three-beam overlap and interference in the spatial domain.

This could be perceived as a restriction only when working in the spatial domain.

With the wide-spread employment of the Fourier techniques in optics, especially for

the spatial filtering, overlapping beams in the space are easily separated in the Fourier

domain. While noise in multiple beam interference adds somewhat to the computa-

tional load, Velghe et al. (2005a, 2005b, 2005c) demonstrated that multiple beams

may be allowed to overlap in shearing configurations.

Wyant (1973) devised a double-frequency grating to implement a small amount of

shear. This is accomplished by using a grating with two distinct frequencies recorded

on it. The lower frequency is chosen so that the zeroth- and first-order beams are

physically separated. The higher frequency part of the grating gives rise to two first-

order beams that are sheared with respect to the other first-order beams. The multiple

beam geometry and their overlap are indicated in Figure 4.46.

Shear in tangential and sagittal direction are generated simultaneously by insert-

ing two gratings: the original one and the second one that is identical and orthogonal

to the first one. Figure 4.47 presents the geometrical layout of the central
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zeroth-order, flanked by eight first-order beams, two of each in shearing configura-

tion. Figure 4.48 is a photo of a typical lateral shearing pattern of a converging

wavefront when two identical double-frequency gratings are orthogonal to each other

and in contact. It includes a uniform zero-order beam and four sheared interfero-

grams. The horizontal first-order beams are sheared in horizontal direction, the

vertical ones along the vertical direction. The two orthogonal double-frequency

gratings may be recorded on the same photographic plate.

Rimmer and Wyant (1975) developed a technique to obtain variable shear with

two crossed gratings of the same frequency. A small rotation of one grating gives rise

to shear that changes with the magnitude of rotation angle and rotation arm. It is a

first-order approximation to the rotationally shearing interferometer (see also Scholl,

1996; Strojnik and Paez, 2003). Figure 4.49 shows the distribution of beam apertures

FIGURE 4.46. Typical geometry of the original and the diffracted apertures when a double frequency

grating is used.

0-ORDER

FIGURE 4.47. Multiple-beam geometry and beam overlap obtained with two double-frequency grat-

ings. Lateral shear of the first-order beams is obtained simultaneously in the sagittal and tangential

directions. The zero-order beam does not participate in the formation of the interferometric pattern.
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FIGURE 4.48. A photo of the typical set of interferograms obtained with a double-frequency grating.

The zero-order beam presents a uniform field and two interferograms are repeated (fromWyant, 1973).

FIGURE 4.49. Beam distribution and beam overlap in the interference plane produced by two crossed

gratings of the same frequency. They are in contact with each other to produce simultaneous lateral shear in

tangential and sagittal directions. One gratingmay be rotated with respect to the other to vary the amount of

shear (fromWyant, 1973).
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that may be compared to those of Figure 4.47. This system is helpful for implement-

ing variable shear. This method could be applied this method in a null test of an

aspheric surface.

Joenathan et al. (1984) developed a variation of the double-frequency grating

interferometer using two slightly displaced off-axis zone plates.

Schwider (1984) described another lateral shearing interferometer with a con-

tinuously varying amount of lateral shear. The shear is obtained with two diffraction

gratings in a collimated beam, one after the other, forming an angle between them.

The interference takes place between the beamwith zero-order in the first grating and

first-order in the second grating and the beam with first-order in the first grating and

zero-order in the second grating.

Since 1990s, the dimensions of the lithographic masks and the intensity distribu-

tions over them have been pushed to the limit due to their increasingly small size and

the absence of adequate testing equipment in the deep ultraviolet (UV) region at 193

nm. Lateral shearing interferometers with Ronchi gratings have been demonstrated

to perform well even in this spectral region. Hegeman et al. (2001) describe an

improved Ronchi setup with gratings modified to higher order beams. Fütterer et al.

(2002) implemented the double grating interferometer working at 197 nm for phase

shift mask measurement. A few years later, Fütterer and Schwider (2005) developed

detailed error analysis to confirm the performance of this instrument.

At about the same time, a group in Japan applied this technology to evaluate the

quality of the projection lens in extreme ultraviolet spectral region (EUV). Zhu et al.

(2004) estimated the measurement precision of 0.1 nm RMS at 13.5 nm wavelength.

These authors estimated a year later (Zhu et al., 2005) that equally high performance

may be achieved using the lateral shearing interferometer with a grating as for the

point diffraction interferometer. Liu et al. (2005) develop a novel technique to calibrate

a double grating lateral shearing interferometer for EUVoptics.

4.8.2. Lateral Shearing Interferometers Based on Polarization

A birefringent material gives rise to two orthogonally polarized beams when a beam

of unpolarized light is incident on it. These orthogonally polarized beams do not form

an interference pattern because they are mutually incoherent. The situation changes

for the polarized light when the resulting orthogonally polarized beams are mutually

coherent. They produce observable fringes upon interfering.

There exist many types of polarizing prisms that generate two orthogonally

polarized beams from a plane polarized incident beam. The Wollaston prism is

among the popular ones for use in the lateral shearing interferometers. (Interferom-

eters incorporating such double-image prisms are treated in detail in Chapter 3 of the

present volume). Murty and Shukla (1980), and Komissaruk and Mende (1981)

described examples of this kind of interferometer using a liquid crystal wedge as a

polarizing element.

Saxena (1979) described an interesting interferometer employing a Babinet

compensator as indicated in Figure 4.50. This interferometer is similar to the one

described in Chapter 3 on common-path interferometers, incorporating a Wollaston
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compensator in double pass. Here, a Babinet compensator introduces the amount of

lateral shear S, given by

S ¼ 2RðNe � NoÞ tan a: ð4:34Þ

Here R is the radius of curvature of the concave surface under test, Ne and No are the

extraordinary and ordinary refractive indices, respectively, and a is the compensator

wedge angle. A typical Babinet compensator may be made from quartz

ðNe ¼ 1:553305 and No ¼ 1:544195) and with wedge angle a ¼ 7:5�.
If the Babinet compensator between two Polaroids is observed with a microscope,

a pattern of straight, parallel, and equidistant fringes is observed, resembling a

Ronchi ruling. The two important differences are that (a) the profile of the pattern

is sinusoidal and (b) any two contiguous bright lines have relative phase difference of

180�. A slit separation in the Ronchi ruling, producing the same interference pattern,

is equal to the separation of two lines with the same phase. For the compensator

parameters listed above, the slit separation is equal to 110 lines per inch.

Saxena and Jayarajan (1981) and Saxena and Lancelot (1982) further improved

this interferometer by incorporating two crossed Babinet compensators, doubling its

sensitivity. The sensitivity of the interferometer to azimuthal variations in the

compensator orientation is reduced, at the same time.

The layout of two crossed Babinet compensators is illustrated in Figure 4.51. Two

compensators produce mutually orthogonal lateral shears. Thus, the condition for the

fringe maximum (white fringe) is described by the following relations:

@W

@x
Sþ @W

@y
T ¼ nl ð4:35Þ

HereW is the wavefront deformation, including defocusing and tilts, and S and T are

two orthogonal shears.

Two compensators may be placed in close contact to each other, but they may

also be separated by a small distance d. In this case, the defocusing term will be

Light

source

C

Babinet

compensator

Polarizer Polarizer

FIGURE 4.50. Interferometer incorporating a Babinet compensator to produce sheared beams.
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different for each one of two orthogonal lateral shears. Then, if the defocusing is

referred to the point in the middle between the compensators, the expression for the

fringe pattern becomes

@W

@x
þ d

2R2
x

� �

Sþ @W

@y
� d

2R2
y

� �

T ¼ nl: ð4:36Þ

In this case, the fringes for spherical aberration become S-shaped, similar to those

displayed in Figure 4.7.

A polarization phase shifter incorporating a birefringent plane parallel plate may

be used to measure an aspherical surface. Weijers et al. (1998) present a simple

calculation for ray propagation through uniaxial, birefringent element. Its inherent

aberrations are derived. The method is used to record directly phase-shifted inter-

ferograms as needed for the interferogram evaluation and phase reconstruction.

Begbie et al. (2001) performed a rigorous analysis using Mueller matrices to

evaluate the state of polarization necessary to eliminate fringe ambiguity.

4.9. VECTORIAL SHEARING INTERFEROMETER

The vectorial shearing interferometer is a lateral shearing interferometer where a

displacement may be chosen along the most favorable direction. It generates a direct

derivative of the wavefront, easily integrable with the method of line integration,

developed and optimized by Paez and Strojnik (1997, 1998). It is applicable to testing

and reconstruction of decentered wavefronts with very high fringe densities. See

Paez and Strojnik (1999) and Paez and Scholl (2000).

Its implementation for the testing applications may be based on the Mach–

Zehnder configuration by incorporating the displacement shearing system. In the

original implementation of this device, it is composed of a pair of wedge prisms that

modify the optical path difference and the tilt of the sheared wavefront with respect

to that of the reference wavefront. The variable shear and tilt may be implemented

along any direction, by choosing appropriate displacements�x and�y. The number

of fringes and their orientation may be controlled with the shear direction and its

magnitude. A gradient of the phase function is obtained in any direction with the

knowledge of the displacements in the x and y directions.

Polarizer Polarizer

Crossed babinet

compensator

FIGURE 4.51. The layout of two crossed Babinet compensators. Two compensators produce mutually

orthogonal lateral shears.
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4.9.1. Shearing Interferometry

The interest in detecting fainter sources and smaller details has, in the recent years,

fostered the development of large diameter optical systems, including those with

segmented and diluted primaries. These configurations usually require the fabrica-

tion and figuring of the relatively large diameter off-axis optical elements. Testing is

very difficult because the common established interferometric techniques, in general,

require the existence of a well-formed reference component. Thus, the optical

designs that are to be fabricated require the availability of appropriate test compo-

nents and supplies.

In the shearing interferometers, the amplitude of the wavefront under test is split

into two parts: one half is left unchanged, while a key parameter is modified in the

other half. The most significant feature of the shearing interferometers is that they do

not require a reference wavefront, because the wavefront under test is compared with

itself. Those portions of the wavefronts that maintain the same polarization are

recombined in the detection plane, where they form an interference pattern. There

exist three basic types of shearing interferometers: the lateral, the radial, and the

rotational. The wavefront inversion interferometer has been shown to be a special

case of the rotational-shearing one, with a shearing angle of 180�.
We have recently developed an interferogram interpretation method that allows

phase reconstruction even from very high-density fringe patterns. The input to the

algorithm is the vectorial derivative of the phase function. Therefore, the shearing

interferometry is a particularly useful way of recording the input intensity data,

avoiding the noise increase, exhibited when taking derivative of noisy data. In a

(displacement) shearing interferometer, the phase derivative along the shear direc-

tion is the measured quantity. One of its salient characteristics is that the derivative is

taken along a single direction. We developed a new type of interferometer, where a

derivative is taken along an arbitrary direction, under the operator’s control. The

known incremental displacements in the two perpendicular directions, �x and �y,

allow the determination of a two-dimensional derivative of the phase function along

the direction. The wavefront its replica displaced along vector�r, and a representa-

tive interferogram, are illustrated in Figure 4.52, for the coma.

The possibility of taking a derivative along a specific direction is most beneficial

when testing asymmetrical components, where the fringe density in one direction is

extremely high, forming themoiré patterns where no phase has been recorded. This is

particularly useful when employing the method of phase reconstruction upon the

line-integration of its gradient.

With the possibility of choosing the path of the line integral, this may always be

selected along a favorable direction. In fact, upon employing a line integral, a two-

dimensional problem has been changed into that of a single dimension. As will be

shown later on, one of the outstanding features of the vectorial shearing interferom-

eter is that the fringe density is controllable with the amount of shear.

A general wavefront may be expressed in coordinate system erected in the exit

pupil. Upon applying the symmetry considerations relevant to the testing of symme-

trical optical systems, the aberration polynomial in polar form may be written as a

4.9. VECTORIAL SHEARING INTERFEROMETER 165



simple polynomial, expanded up to the fourth power in the radial coordinate. On the

right side, we identify the terms in thewavefront aberration function with the primary

aberrations.

Wðr;fÞ ¼ F Piston term

þ Erðsinfþ cosfÞ Tilts ðx; yÞ
þ Dr2 Defocus

þ Cr2ð1þ 2 cos2 fÞ Astigmatism

þ Br3 cosf Coma

þ Ar4 Spherical aberration

ð4:37Þ

The vectorial shearing interferometer is a generalized displacement (position) or

linear shearing interferometer along an arbitrary direction, with respect to the

coordinates defined by the detector pixel arrangement. The magnitude and direction

of shear is kept under the operator control. The tilt introduced in one arm of the

interferometer upon the prism rotation is similarly maintained under the operator

control. However, the two are mutually dependent in the initial embodiment.

4.9.2. Directional Shearing Interferometer

In a lateral shearing interferometer, thewavefront displacement or shear is performed

along a single direction, referred to as x or y. The region of the wavefront overlap is

reduced upon increasing the shearing distance. We modified a Mach–Zehnder

arrangement to implement our vectorial shearing interferometer. We cannot affirm

FIGURE 4.52. The original, the modified wavefronts, and the interferogram in the vectorial shearing

interferometer with the displacement or shear performed along an arbitrary direction.
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though this is either the only way or the best method of doing so. Paez et al. (2000)

designed and built this interferometer. Garcı́a-Torales et al. (2001) analyzed it later

on.Most recently, Garcı́a-Torales et al. (2006) and Ramirez et al. (2007) have applied

it to the testing of asphericity of spheres.

As may be seen in Figure 4.52, the region of interference is the common area of

overlap of the two wavefronts. This figure additionally illustrates the displacement

vector�r, the net directional displacement of the sheared wavefront with respect to

the position of the original wavefront, as defined by its center. The displacement

vector�r subtends an angle y relative to the x axis. We can select the size of the area

of overlap of the two wavefronts by the proper choice for the incremental displace-

ments �x and �y in the shearing vector.

Figure 4.53 shows the schematic diagram of the experimental setup for the

implementation of the vectorial shearing interferometer in the Mach–Zehnder con-

figuration, including the shearing and the compensator systems. This setup might be

used in transmission mode to test a lens, placed inside the beam just before the first

beam splitter. The shearing system, consisting of two thin prisms, displaces the

wavefront according to the angles of rotation of each prism (Strojnik et al., 2000,

Garcı́a-Torales et al., 2002). In the detector plane, the two beams are detected

forming an interference pattern.

A compensator system, in the form of a pair of fixed prisms, identical to those that

constitute the rotator systemmay be introduced into the reference arm. Due to the use

of the compensator system in the reference arm, the interferometer is white-light

compensated.

The new position of the center of the displaced wavefront is a vector sum of

individual displacements produced by the independent rotation of each prism.

The wavefront orientation remains the same. When both prisms are fabricated

from the same material and they rotate in the air, the rotation of each individual

prism generates the same angular deviation. In the image plane, the beam angular

deviation is transformed into distance. The total deviation of the ray traversing

FIGURE 4.53. The experimental setup with the vectorial shearing interferometer for testing a positive

lens in transmission.
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the shearing system is a function of the individual angular deviations (Sandoval et al.,

2001).

Additionally, the shearing system introduces the tilt in the wavefront with respect

to the y-z plane, the x-z plane, or both. Once the prism materials and optical

parameters are chosen, the tilt may be controlled with the amount and direction of

rotation of the prisms. With the tilt change, the shear is also modified, as both are

controlled by the action of the beam rotator. When only the prism separation is

changed without modifying the relative angle between them, lateral shear in an

arbitrary direction may be changed in magnitude without introducing any tilt.

This configuration has been found most helpful in flame characterization studies

(Paez and Strojnik, 2006).

A sagittal shift might correspond to the displacement in the x direction and the

tangential one to that in the y direction. We may write the optical path difference,

OPD, using the difference of the wavefront aberration polynomials,

�OPD ¼ Wðrþ�r; yþ�yÞ �Wðr; yÞ: ð4:38Þ

The shearing radius vector�r and the shearing angle y are found upon the change of

coordinates

r ¼ ð�x2 þ�y2Þ½; y ¼ arctan
�y

�x

� �

: ð4:39Þ

Next, we show the interferometric patterns simulated for a vectorial shearing inter-

ferometer and compare them with the familiar patterns obtained in the traditional

interferometers.

4.9.3. Simulated Interferometric Patterns

We use Eqs. (4.37) and (4.38) to simulate interferometric patterns that arise from

the presence of the primary aberrations. In each case, 4 waves of defocus are added.

The resultant simulated patterns are shown for 2.5 waves of spherical aberration in

Figure 4.54, for 3 waves of astigmatism in Figure 4.55, and for 7 waves of coma in

Figure 4.56. Figure 4.57 depicts a mixture of aberrations. It is included to facilitate

the comparison with the experimental results.

The simulation results of Figures 4.54 through 4.57 are presented in an array of

three columns by four rows. The intensity distributions are given inside a normalized

square with corners at 
1, whose center coincides with the central point on the

original wavefront.

The regions where the (finite) pupils do not overlap are not indicated, including

only the essential information in the figure. The columns show the simulated

interferograms for the following positions, from left to right: (a) inside focus

(with �4 waves of defocus), (b) in the focus, and (c) outside focus (with þ4 waves

of defocus). The first row presents the interferometric pattern simulated for a

Mach–Zehnder interferometer to help us recollect its familiar form. The second

row illustrates the patterns obtained in a linear shearing interferometer along the
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x direction to facilitate comparison with the familiar results. For this case, the

displacement radius vector is r ¼ 0:3 and the displacement angle is y ¼ p rad.

The last two rows show the results for the general vectorial displacements of

r ¼ 0:632 and the displacement angle y ¼ 0:322 rad (the third row), and r ¼ 0:361
and the displacement angle y ¼ 5:695 rad (the fourth row). The center of the sheared
wavefront is translated by the magnitude of the displacement radius vector r along

the direction y with respect to the origin at the center of the square pupil. We discuss

each figure in more detail.

Figure 4.54 shows the simulated interferometric patterns when 
4 waves of

defocus and no defocus are added to 2.5 waves of spherical aberration. The second

row presenting the intensity patterns of lateral shearing interferometer is in agree-

ment with the patterns presented at the beginning of this chapter. It confirms the

general reliability of our simulations. The fringe patterns outside focus appear as

FIGURE 4.54. Simulated intensity patterns of the spherical aberration (2.5 waves) and defocus ((a)-4

waves and (c)þ4waves) aregiven for theMach–Zehnder interferometer; the linear shearing interferometer;

twice in a vectorial shearing interferometer; first with a large radius vector pointing to the third quadrant and

second with a small radius vector pointing to the fourth quadrant.
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those generated by the coma in a Mach–Zehnder interferometer. The fringes due to

the spherical aberration detected outside the focus appear similar to those in a linear

shearing interferometer, except that they are tilted with respect to those generated

upon a one-dimensional shear and their origin is displaced.

The coma pattern of the shearing setup is flattened out as the amount of defocus is

decreased in all shearing cases. Additionally, the fringe density increases with the

shearing radius vector. This feature may be employed to vary the instrument

sensitivity by adjusting the prism rotation angles. We can define an axis of symmetry

to be vertical in the linearly sheared interferogram in the second row. Thus, the fringe

patterns, or the line of symmetry, are rotated in the case of a vectorial shearing

interferometer with respect to this line of symmetry. The amount of rotation is related

to the shearing angle y. The position of the fringe center also remains under the

operator’s control: the fringes are displaced in the direction opposite to that of the

FIGURE 4.55. Simulated intensity patterns of the astigmatism (3 waves) and defocus ((a)-4 waves and

(c)þ4waves) are given for theMach–Zehnder interferometer; the linear shearing interferometer; twice in a

vectorial shearing interferometer; first with a larger radius vector pointing to the third quadrant and second

with a smaller radius vector pointing to the fourth quadrant.
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displacement vector �r. The angle y remains the same when the increments along

the x and the y directions maintain the same ratio, even when the net displacement�r

changes.

Figure 4.55 displays the simulated interferometric patterns when 
4 waves of

defocus and no defocus are added to 3 waves of astigmatism. In the linear shearing

interferometer, the presence of astigmatism is recognized by the appearance of the

straight fringes normal to the shear direction.

The fringes obtained upon the application of a general vectorial shear are inclined

with respect to those of the linear shear. Their inclination, though, depends on

the amount of defocus. The fringe direction appears to be reversed for a certain

outside focus position, where the defocus and the astigmatism compensate each

other. The number of fringes decreases with defocus. The number of fringes increases

with the displacement radius vector for any defocus condition.

FIGURE 4.56. Simulated intensity patterns of the coma (7waves) and defocus (
4waves) are given for

the Mach–Zehnder interferometer; the linear shearing interferometer; twice in a vectorial shearing inter-

ferometer; first with a larger radius vector pointing to the third quadrant and second with a smaller radius

vector pointing to the fourth quadrant.

4.9. VECTORIAL SHEARING INTERFEROMETER 171



Figure 4.56 depicts the simulated interferometric patterns when 
4 waves of

defocus and no defocus are added to 7 waves of coma. The shape of the patterns seen

in the second row is astigmatism-like, corresponding to those recorded in the linear

shearing interferometer. Defocusing is observed to move the astigmatism-like pat-

tern up and down, perpendicular the shear direction.

For the two generalized shearing cases in the last two rows, we observe the

deformed astigmatism-like patterns corresponding to the two familiar astigmatism

patterns: the X-shaped one and the 0-shaped one. The great advantage of the variety

of available patterns is that one can choose an intensity distribution that is more

easily amenable to the phase reconstruction. When moving from inside the focus to

the outside position, the patterns appear to move along two diagonals.

FIGURE 4.57. Simulated interferometric patterns produced by the sum of the spherical aberration,

the astigmatism, the coma, and defocus (
4 waves) are given for the Mach–Zehnder interferometer;

the linear shearing interferometer, twice in a vectorial shearing interferometer; first with a larger

radius vector pointing to the third quadrant and second with a smaller radius vector pointing to the fourth

quadrant.
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Figure 4.57 illustrates the simulated interferometric patterns produced by the sum

of the spherical aberration, the astigmatism, the coma, and defocus (
4 waves). All

the interferometric patterns generated with the vectorial shearing interferometer

exhibit the fringe movement out of the center of the reference beam. The fringe

pattern tends to rotate in the direction opposite to that of the displacement vector. The

fringe density increases with the magnitude of the shearing vector.

4.9.4. Experimental Results

Here, we illustrate the feasibility of the identification of the type and amount of

aberration. Figures 4.53 and 4.58 illustrate two of a number of available experimental

setups that we used to record the interferograms with the vectorial shearing inter-

ferometer in the modified Mach–Zehnder configuration. The first arrangement is

used for testing a wavefront in transmission, and the second one in reflection. Even in

the laboratory environment, it is possible to achieve very small, differential, dis-

placement as well as a small, but finite one.

A photograph of a pair of beam director prisms is demonstrated in Figure 4.59.

The thin prisms are mounted in their rotary holders to control the orientation of each

prism and their separation. A photograph of the essential parts of the compact

vectorial shearing interferometer is included in Figure 4.60. It presents the wavefront

director in one arm and the optical path compensator in the other one. The source

could be incident from the left beam, horizontally. Then fringes are formed on the

right (see Figs. 4.53 and 4.58). A high resolution CCD camera on the right records

images.

An example of the experimental setup with the vectorial shearing interferometer

used for testing a positive lens upon transmission has been seen in Figure 4.53. The

experimentally obtained interferometric patterns of the lens with the (a) small and

FIGURE 4.58. The experimental setup with the vectorial shearing interferometer for testing a (para-

bolic) mirror in reflection.
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FIGURE 4.59. A photograph of a pair of beam director prisms. The thin prisms are mounted in their

rotary holders to control the orientation of each prism and their separation.

FIGURE 4.60. A photograph of the essential parts of the compact vectorial shearing interferometer

illustrates the wavefront director in one arm. The source beam could be incident from the left side,

horizontally. Then fringes are formed on the right (and above) of the beam divider (see also Figures 4.53

and 4.58). A high resolution CCD camera records the fringe pattern.
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(b) large shearing distance, respectively, are shown in Figure 4.61. In spite of the use

of the transmissive elements, this configuration is not affected by the ghost

reflections. The prisms in both the shearing and compensator systems deviate the

undesirable reflections out of the beam path of the wavefront under test.

Figure 4.58 has presented the experimental setup with the vectorial shearing

interferometer used for testing a parabolic mirror in reflection. The experimentally

obtained intensity patterns of the parabolic mirror for the (a) small and (b) large

shearing distance, respectively, are depicted in Figure 4.62.

FIGURE 4.61. The experimentally recorded interferometric patterns of the lens for (a) the infinitesi-

mally small and (b) the small, butfinite shearingdistance obtainedwith thevectorial shearing interferometer

used in transmission.

FIGURE 4.62. Theexperimentallyobtained interferometric patternsof the lens for (a) the infinitesimally

small and (b) small, but finite shearing distance obtained with the vectorial shearing interferometer used in

reflection.
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4.9.5. Similarities and Differences With Other Interferometers

We conceptualized, predicted, and demonstrated the performance of a new type of

shearing interferometer, with the significant capabilities of controlling the amount

and the direction of the displacement shear. The vectorial shearing interferometer

may be based on the Mach–Zehnder configuration by incorporating the displacement

shearing system. The shearing system is composed of a pair of wedge prisms that

modify with a high degree of precision the optical path difference and the tilt between

the sheared wavefront and the reference wavefront.

The use of small apex-angle prisms decreases the number of ghost beams within

the interferometer and the amount of straight light incident on the detector plane.

While it is believed that some limited version of the generalized linear shearing

interferometer may be implemented with a single prism, we prefer the implementa-

tion with two prisms, due to the enhanced control and the range of wavefront

positioning. Due to the knowledge of the displacement increments along two

perpendicular axes, the measured quantity is indeed a directional derivative of the

phase function. This allows complete phase recovery in two dimensions. The vari-

able shear and tilt, that may be implemented along any other direction, have the

particular beneficial characteristics that the number of fringes and their orientation

may be controlled with the shear direction and its magnitude.

Xu et al. (2005) proposed an implementation of a compact vectorial shearing

interferometer that allows phase shift by moving prisms along the beam normal. This

represents a significant simplification of its layout. With only four thin prisms,

shearing is accomplished along an arbitrary direction, and phase stepping is achieved

without incorporating a movable mirror on a piezoelectric mount. The range of

displacement is also large.

All the interferometric patterns generated with the vectorial shearing interferom-

eter exhibit the fringe movement out of the center of the reference beam. We may

define the angle of rotation of the fringe pattern to be the angle between the normal to

the fringes when the shearing angle y is zero, and when the shearing angle y has a

finite value. Its algebraic sign is opposite to that of the shearing angle y. Fringe

density increases as the magnitude of the shearing vector is incremented.

Figure 4.63 illustrates that the fringe orientation is under the control of operator.

This may be accomplished upon changing the orientation of both prisms simulta-

neously, without changing their separation or relative orientation. If part (a) is the

reference pattern, the fringes are displaced (b) up, (c) down, (d) left, and (e) right using

a pair of prism with an index of refraction n, of 1.517, and the apex-angle e ¼ 5�.
Figure 4.64 presents results of a study between the fringe density and the relative

prism orientation. Fringe density increases as the difference angle between prism

orientation increases from (a) 0.5�, (b) 0.7�, (c) 1.3�, (d) 1.5�, and (e) 1.6�. Prisms

with index of refraction N ¼ 1:517 and apex-angle e ¼ 5� are used.
The versatility and adaptability of the vectorial shearing interferometer with

variable shear and tilt are best appreciated upon examining the experimental results

depicted in Figure 4.65. The interferometric patterns are obtained in transmission

with a commercial interferometer (WYCO), on the left, and the vectorial shearing
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interferometer, on the right part (a) display, well-corrected convex lens with a focal

length f ¼ 30 cm and diameter D ¼ 5 cm. In part (b), the difference of the interfer-

ograms of a low-quality lens with focal length f ¼ 25 cm and diameter D ¼ 7 cm

favors the one on the right. In both cases, the interferogram on the right recorded with

the vectorial shearing interferometer is obtained with favorable fringe density.

FIGURE 4.63. Fringe orientation is selectable by changing the orientation of both prisms simulta-

neously, without changing their separation or relative orientation. Using part (a) as the reference pattern,

the fringes are displaced up (b), down (c), left (d), and right (e).We are using a pair of prismswith an index of

refraction N, of 1.517, and the apex-angle e ¼ 5�.
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FIGURE 4.64. Fringe density increases as the difference angle betweenprismorientation increases from

(a) 0.5�, (b) 0.7�, (c) 1.3�, (d) 1.5�, and (e) 1.6�. Prisms with index of refraction N ¼ 1:517 and apex-angle

e ¼ 5� are used.
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5

Radial, Rotational, and Reversal
Shear Interferometer

D. Malacara

5.1. INTRODUCTION

The two interfering wavefronts in a two beam interferometer can have several

possible relative orientations and sizes with many different configurations. As

pointed out by Steel (1983) and by Walmsley and Malacara (1995), the first order

properties of these two beam interferometers can be completely described by

(a) the light source position and the location, orientation, and size of the two

images of this light source as seen from the observation plane;

(b) the image plane position and the location, orientation, and size of the two

images of this observation screen as seen from the light source position; and

(c) the optical path difference between the two optical paths.

These parameters completely define the lateral shear, tilt, and lead. The shear is

the relative lateral displacement of the two interfering wavefronts and shift is their

longitudinal separation. The tilt is the lateral separation of the two images of the light

source and the lead is their longitudinal separation. A fifth independent parameter is

the optical path difference (OPD), which is a function of the traversed refractive

indices. These parameters are illustrated in Figure 5.1. The main properties of all

shearing interferometers can be analyzed by these parameters.

Although the most popular shearing interferometer is the lateral shearing instru-

ment, other types are equally useful. In this chapter we examine radial, rotational,

and reversal shear interferometers, whose basic wavefront operations are illustrated

in Figure 5.2. Many review papers (Murty, 1967; Briers, 1972; Fouéré and Malacara,

1975) and books (Bryngdahl, 1965; Steel, 1966; Baird and Hanes, 1967) have very

good general descriptions of them. The radial shear interferometer produces two

interfering wavefronts with identical deformations, but one of the wavefronts is

contracted or expanded with respect to the other. The rotational shear interferometer

Optical Shop Testing, Third Edition Edited by Daniel Malacara
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produces two identical wavefronts with one of them rotated with respect to the other.

The reversal shear interferometer produces two wavefronts, in which deformations

on onewavefront are symmetrical with respect to those on the other wavefront, with a

diameter as axis of symmetry.

For the analysis of these shearing operations, we can assume a completely general

wavefront function given by

Wðr; yÞ ¼
Xk

n¼0

Xn

l¼0

rnðanl cos lyþ bnl sin lyÞ ð5:1Þ

where ðn� lÞ is given (n and l have the same parity) and generally l � n.

Observation
plane

Observation
plane

Observation
plane images

Light
source images

LeadShift Shear Tilt

FIGURE 5.1. First order parameters for any interferometer.

F

F F F

Reference
wavefront

Radially
sheared
wavefront

Rotationally
sheared
wavefront

Reversally
sheared
wavefront

FIGURE 5.2. Three shear possibilities between two wavefronts.
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5.2. RADIAL SHEAR INTERFEROMETERS

Radial shear interferometers perform the basic operations illustrated in Figure 5.3.

One of the wavefronts is contracted or expanded with respect to the other. The

interferometer may be thought of as an optical system producing two images of an

object at A, with different magnifications, at the location A0. These two images must

coincide at A0 if a defocusing term is to be avoided.

As described in Chapter 2 on Twyman–Green interferometers, the interferogram to

beanalyzedhas tobean imageof the exit pupil of the systemunder test, especiallywhen

the wavefront deviations from the spherical shape are large. If the wavefront is almost

spherical, this condition is not necessary. In the case of the radial shear interferometer,

both wavefronts are deformed. Thus, both wavefronts in the interferogram must be

images of the pupil. When the shear is very large, only the smaller wavefront needs to

bean imageof theexitpupil of thesystem.Fortunately, thisconditionmayfrequentlybe

satisfied since, as described by Steel (1984), all radial shear interferometers have a

second pair of conjugates, B andB0, as shown in Figure 5.3, with the same shear ratio as

the imagesAandA0.Then, ideally, theexitpupilof thesystemunder testmustbe located

at B and the interferogram should be analyzed at B0.
Steel (1984) also showed that by reversing the direction of the light, a radial shear

interferometer with the same shear is also obtained. Thus, any system may be used in

four ways to produce the same shear.

These types of interferometers directly represent the wavefront deformations

when the shear is large, but even if the shear is small, they are simpler to interpret

than lateral shear interferometers, and unlike them, not only in one, they provide

information in all directions. Then, only one interferogram is needed. Radial and

lateral shear interferometers have been compared in detail by Hariharan (1988).

Instead of the typical approach of using a long-wavelength or two-wavelength

interferometry, the lower sensitivity of radial shear interferometers makes them ideal

for testing wave fronts with a high degree of asphericity because the number of

fringes is smaller.

When the surface under test has a central hole, the shear has to be small, otherwise

the smaller of the twowavefronts would be over the hole of the larger wavefront. This

Radial
shear
interferometer

A

Wavefront
under test Radially

sheared
wavefronts

B A′ B ′

FIGURE 5.3. Schematic block for a radial shear interferometer.
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small shear reduces the sensitivity, but this disadvantage may be compensated for by

the use of phase shifting techniques (Hariharan et al., 1986).

We can assume that one of the wavefronts is expanded so that the ratio of the

diameters of the two wavefronts is R, defined by

R ¼ r

re
ð5:2Þ

where r is the ratio of the radial distance of a point in the interference pattern to the

maximum radius of the nonexpanded (or smaller) of the two wavefronts. Similarly,

re is the ratio of the same radial distance to the maximum radius of the expanded

(or larger) wavefront.

Then, the wavefront deformation for the larger (noncontracted or expanded)

wavefront is represented by Eq. (5.1) and the wavefront deformation for the smaller

(nonexpanded or contracted) is

Wðr; yÞ ¼
Xk

n¼0

Xn

l¼0

Rnrnðanl cos lyþ bnl sin lyÞ ð5:3Þ

and hence the interference pattern will be given by the OPD,

OPDðr; yÞ ¼ Wðr; yÞ �WðRr; yÞ ¼
Xk

n¼0

Xn

l¼0

rnð1� RnÞðanl cos lyþ bnl sin lyÞ

ð5:4Þ

The sensitivity of a radial shear interferometer relative to that of a Twyman–Green

interferometer is given by

s ¼ dOPDðr; yÞ=dr
dWðr; yÞ=dr ¼

Pk

n¼0

Pn

l¼0

nrn�1ð1� RnÞðanl cos lyþ bnl sin lyÞ

Pk

n¼0

Pn

l¼0

nrn�1ðanl cos lyþ bnl sin lyÞ
ð5:5Þ

but if only one aberration ðn; lÞ is present, the relative sensitivity can be expressed as

sn;l ¼ 1� Rn ð5:6Þ

and is plotted in Figure 5.4. for some aberrations. We can see that a moderate

effective radial shear R equal to 0.5 gives a very high relative sensitivity. When

testing aspherical wavefront with pure primary spherical aberration, the radial shear

interferometer provides a reduced sensitivity and an increased dynamic range

equivalent to the use of a larger wavelength.
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If the expansion of one of the wavefronts becomes infinite ðre ! 1 and r ! 0Þ,
we have a kind of radial shear interferometer that is said to have exploded shear. This

topic is treated in the chapter on common-path interferometers.

5.2.1. Wavefront Evaluation from Radial Shear Interferograms

Radial shear interferograms are basically identical to the Twyman–Green interfer-

ograms studied in Chapter 2, especially if only pure primary aberrations are present.

Of special interest are wavefronts with rotational symmetry because they are

obtained during the testing of aspherical rotationally symmetric surfaces, for exam-

ple, an astronomical mirror. The procedure for computing thewavefront from a radial

shear interferogram under these conditions has been given by Malacara (1974) and

by Honda et al. (1987). However, in general, the wavefront is not rotationally

symmetric and even some lateral shear may be present. Then, the wavefront may

be computed by one of three possible methods.

1. The first procedure consists in calculating the anl; bnl coefficients in Eq. (5.4)

by a least-squares fitting of the OPD ðr; yÞ to the radial shear interferogram, by

assuming that the wavefront is smooth enough, so that it can be represented by a

polynomial.

2. Another method, described by Kohler and Gamiz (1986) is by successive

iterations. In the first iteration, the reference wavefront (the larger wavefront) is

assumed to be perfectly flat and the interferogram is sampled and fitted to a

polynomial. The result of this evaluation is then used in the second iteration with

a better estimation of the reference wavefront. This procedure produces a very

accurate result, limited only by the sample spacing, reading errors, and the quality

of the wavefront fitting.

3. The third method, described by Kohno et al. (2000) and later in a similar

manner by Li et al (2002) is by an iterative process. From Eq. (5.4) we can obtain

OPDðr; yÞ ¼ Wðr; yÞ �WðR r; yÞ
OPDðR r; yÞ ¼ WðRr; yÞ �WðR2 r; yÞ
. . . . . . . . .

OPDðRnr; yÞ ¼ WðRnr; yÞ �WðRn�1r; yÞ

ð5:7Þ
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FIGURE 5.4. Radially sheared wavefronts used in iterative calculation of the wavefront.
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If we now add all these terms we may write

Wðr; yÞ ¼
Xn

i¼1

OPDðRir; yÞ �WðRnr; yÞ ð5:8Þ

If the number of iterations is sufficiently large, the last term becomes a small flat

wavefront whose deformations can be considered zero (see Fig. 5.5). Thus, we finally

obtain

Wðr; yÞ ¼
Xn

i¼1

OPDðRir; yÞ ð5:9Þ

5.2.2. Single-Pass Radial Shear Interferometers

In this kind of interferometer, the light goes through the instrument only once and

two radially sheared interfering wavefronts are produced as illustrated in Figure 5.3.

If the interferometer is illuminated by a small, circular extended source, the degree of

coherence g12 between any two points on the wavefront is given (Hariharan and Sen

1961a; Murty 1964b) by

g12 ¼
2J1½ð2p=lÞad�
ð2p=lÞad ð5:10Þ

where 2a is the angular diameter of the source as seen from the wavefront under

consideration and d is the distance between the two points on the same wavefront.
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FIGURE 5.5. Relative sensitivity s versus radial shear R.
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For a radial shear interferometer, the distance d between two points on the

wavefront that interfere at a point on the interference pattern can be shown to be

given by

d ¼ r0 � r
00 ¼ r0ð1� RÞ: ð5:11Þ

Therefore, for those two points we obtain (Hariharan and Sen, 1961a)

g12 ¼
2J1½ð2p=lÞð1� RÞr0a�
ð2p=lÞð1� RÞr0a : ð5:12Þ

Since the visibility of the pattern is directly proportional to g12, a fringe pattern

similar to that in Figure 5.6 will be obtained. The first minimum on the visibility is

obtained when the argument x of J1ðxÞ is equal to 1.22p. Hence, for a good visibility
of the whole pattern, the circular light source must have an angular semiconductor a,

as seen from the wavefront (entrance pupil of the interferometer), smaller than a

certain value given by

a � 1:22l

ð1� RÞD ð5:13Þ

where D is the entrance pupil diameter.

A radial shear interferometer is said to be compensated for the imperfect mono-

chromaticity of the light (wavelength bandwidth) when the optical paths for the two

FIGURE 5.6. Fringe visibility changes in a radial shear interferometer with a large source. (From

Hariharan and Sen, 1961a.)
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interfering beams involve the same glass and air paths. Interferometers of this kind

will now be discussed in this section.

Radial shear interferometers were first considered by Brown (1959), who

described the instrument shown in Figure 5.7 (Brown, 1962). Basically, this is a

Jamin interferometer, but it uses convergent light and has a small meniscus lens in

one of the beams. A compensating parallel plate is placed in the other beam.

Another of the first radial shear interferometers, designed by Hariharan and Sen

(1961b), is shown in Figure 5.8. It consists of a plane parallel beam splitter plate P

and two plane mirrors M1 and M2. The radial shear is produced by two lenses L1 and

L2, which are placed in such a manner that their foci are at the face of the beam

FIGURE 5.7. Brown’s radial shear interferometer.

FIGURE 5.8. Hariharan and Sen’s radial shear interferometer.
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splitter. The radial shear is produced when the two lenses have different focal lengths

f1 and f2 (f2 > f1) and is given by

R ¼ f1

f2
: ð5:14Þ

The two lenses could be replaced by a single lens, but two lenses serve to facilitate

the elimination of aberrations produced by the lenses.

The visibility is equal to 1 only if the two beams have the same irradiance; but

since the two beams are differently expanded, this is possible only if the reflectance

R and the transmittance F of the beam splitter satisfy the equation

R
F ¼ f2

f1

� �2

: ð5:15Þ

Hariharan and Sen (1962) successfully used this interferometer to test microscope

objectives.

Murty (1964a) suggested several arrangements to produce radial shear. One of

them is based on the Mach-Zehnder interferometer, using telescopic systems S1 and

S2 on each of the arms as shown in Figure 5.9. The effective radial shear F is given by

1/M2, where M is the magnification of each of the telescopes.

Another system is a cyclical interferometer (shown in Fig. 5.10) that resembles the

interferometer designed by Hariharan and Sen. Here, however, the light entering the

interferometer should be collimated.

A very practical and interesting interferometer, also described by Murty (1964a),

is based on the contraction and expansion of the numerical aperture by a

FIGURE 5.9. Telescopic systems in a Mach-Zehnder interferometer to produce radial shear.
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hemispherical lens as illustrated in Figure 5.11. Using this principle and the basic

cyclic configuration, Murty designed the interferometers shown in Figures 5.12

and 5.13. The hemispherical cavity in the second interferometer may be emptied

or filled with oil, in order to obtain the desired radial shear. Some very unconven-

tional radial shear interferometers with discontinuous stepping wave-fronts have

been described by Bryngdahl (1970, 1971).

FIGURE 5.10. Cyclic radial shear interferometer for collimated beams.

FIGURE 5.11. Contraction and expansion of the numerical aperture by a hemispherical lens.
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5.2.3. Double-Pass Radial Shear Interferometers

The schematic block for a double-pass radial shear interferometer is shown in Figure

5.14. It must be recalled that the single-pass interferometer in Figure 5.3 produces

two interference patterns, one formed by the light passing through the interferometer

and another by the light that is reflected back from the instrument in order to preserve

FIGURE 5.12. Murty’s cyclic radial shear interferometer.

FIGURE 5.13. Murty’s solid radial shear interferometer.
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the total amount of energy. If the reflected pattern were present in the double-pass

interferometer, the observed pattern would be extremely complicated because four

returning beams instead of two would be interfering. This problem can be avoided if

the two sheared interfering wavefronts illuminating the system under test after the

first pass do not interfere with each other. This can be achieved if the two wavefronts

are produced with orthogonal polarizations, but are nevertheless coherent to each

other. As pointed out by Brown (1959) and later by Steel (1965), the spatial

coherence requirements are greatly relaxed on double-pass interferometers because

they are essentially compensated for the size of the source. Although the surface

cannot be made extremely large—only about three times (Brown, 1959) as large as

that in the single-pass interferometer—this provides about ten times more light.

Two interferometers of this type have been designed by Steel to test microscope

objectives. One of these is shown in Figure 5.15 (Steel, 1965). The radial shear is

produced by two birefringent systems, each formed by two calcite components

between two glass lenses. The glass is Schott La K11, chosen to match the ordinary

index of calcite and to correct the chromatic aberration of the lens. The calcite lenses

are designed to have small off-axis errors, are equiconcave, and are divided into two

parts by plane surfaces. The optical axes of the two halves are at 90� with respect to

each other. The plane of polarization between the halves is rotated 90� by means of a

half-wave plate, so that the ordinary ray in the first half remains an ordinary ray in the

second half. The two bi-refringent systems have a relative orientation such that the

ordinary ray of the first system becomes the extraordinary ray of the second system

and vice versa.

The two bi-refringent systems are adjusted to satisfy the following conditions: (a)

the apparent point of divergence of the two radially sheared wavefronts is at the

proper distance (16 cm) from the microscope objective and (b) the focal plane of the

whole birefringent system coincides with the exit pupil of the microscope objective,

which also coincides with the back focal plane of this objective. For the reasons

explained in Chapter 2, a Dyson system is used in front of the microscope objective.

Since the fringes must be observed at the exit pupil of the objective, a telescope is

used to look at them.

FIGURE 5.14. Double-pass radial shear interferometer.
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The second double-passage radial shear interferometer designed by Steel (1966)

is illustrated in Figure 5.16. It is similar to the Hariharan and Sen interferometer

except that the two lenses are replaced by a single lens from a low-power microscope

objective.

The combination of the polarizing beam splitter 1 and the l/4 plate forms a source

of circularly polarized light. When the light returns from the instrument after being

reflected on the system under test, the direction of rotation of the circularly polarized

light is reversed (assuming a perfect system). Therefore, the returning light passes

through the prism to go to the camera. If the system under test is imperfect, an optical

path difference between the two radially sheared and orthogonally polarized beams is

introduced. Then the returning light will not be circularly but elliptically polarized,

giving rise to dark zones (fringes) on the camera.

5.2.4. Laser Radial Shear Interferometers

The radial shear interferometers so far described are of the equal-path type with

white-light compensation. This is necessary when conventional light sources are

used. When a laser is employed, the two beams do not need to have the same optical

paths.

FIGURE 5.15. Steel’s double-passage radial shear interferometer to test microscope objectives.
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With laser light the design of the interferometer is greatly simplified, but some

new problems are introduced. The main problem is the presence of many spurious

fringes over the desired interference pattern due to reflections on lens surfaces and

glass plates. All reflections produce interference fringes because of the long coher-

ence length of laser light.

Probably the first laser radial shear interferometer was designed by Som (1970); it

is illustrated in Figure 5.17. There is, however, a great problem with this design since

the virtual points of divergence P1 and P2 for the two wave-fronts do not coincide, as

pointed out by Murty and Shukla (1973). Hence, a perfect system produces a system

of concentric circular fringes, similar to Newton rings, and it is difficult to analyze the

interferogram with this as a reference. Murty points out that for easier analysis a

perfect optical system under test must give either a fringe-free field or a set of straight

fringes.

To eliminate this problem, Murty and Shukla (1973) modified Som’s design and

proposed the interferometer shown in Figure 5.18, in which one of the reflecting

surfaces is spherical. If a and b are the distances from the concave and plane mirrors,

repectively, to the center of the beam-dividing surface, the radius of curvature r of the

reflecting surface must be

r ¼ ð2b� aÞa
b� a

: ð5:16Þ

FIGURE 5.16. Steel’s double-passage radial shear interferometer.
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The effective radial shear R is then

R ¼ a

2b� a
: ð5:17Þ

This interferometer can be fabricated very easily from a solid cube beam splitter.

Ideally, the reflecting surface should be a hyperboloid of revolution and thus a

FIGURE 5.17. Som’s laser radial shear interferometer.

FIGURE 5.18. Murty’s laser radial shear interferometer.
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spherical surface introduces a small amount of spherical aberration. Murty et al.

(1975) showed that the wavefront spherical aberration is given by

OPD ¼ �Na4b2a4

ðb� aÞ2r3
ð5:18Þ

where N is the refractive index of the glass and a is the numerical aperture. Thus, it is

necessary to reduce a as much as possible. If the numerical aperture is small, very

high accuracies can be obtained.

Malacara et al. (1975) designed a lateral shearing interferometer for converging or

diverging laser beams that uses a plano-concave prismatic glass plate. Similar to the

interferometer just described, this instrument also produces some radial shear

together with the lateral shear.

Hariharan et al. (1984a, 1984b) has used an interferometer based on the instru-

ment designed by Murty and Shukla (1973) in order to perform phase shifting

interferometry.

Another of the early laser radial shear interferometers was designed by Steel

(1970); it is illustrated in Figure 5.19. The two beams are split and recombined at the

two surfaces of a prism, thus eliminating the possibility of unwanted fringes on the

second face of a beam splitter. The diameter of one of the beams is reduced in size by

means of a telescope with 5.5 magnification. The advantage of using glass spheres is

that they do not need to be squared to the beam; a disadvantage is that they introduce

spherical aberration. It must be pointed out that, simultaneously with the radial shear,

this interferometer also produces reversal shear, since one of the wavefronts is

reversed with respect to the other.

Another laser light radial shear interferometer has been described by Shukla

et al.(1992), as illustrated in Figure 5.20. It is made from a cube beam splitter either

by grinding and polishing or by cementing two plano convex lenses on the opposite

ends of the cube. These two convex surfaces are at different distances from the center

of the beam splitter interface surface, so that their centers of curvature are located at

this center. We can easily see that the radial shear is equal to the ratio of the two radii

of curvature. Since the surfaces are spherical, some spherical aberration is intro-

duced, but its magnitude can be set within a reasonable limit. It is also interesting to

notice that one of the two beams is reflected twice and transmitted once on the beam

FIGURE 5.19. Steel’s laser radial shear interferometer.

200 RADIAL, ROTATIONAL, AND REVERSAL SHEAR INTERFEROMETER



splitter, while the other beam is just transmitted once. Thus, the intensities of the two

interfering beams will be quite different. However, this is partially compensated

because the weaker beam is the one with a smaller diameter. Shukla et al. (1992) has

also described several other radial shear interferometers based on the same working

principle.

A very simple holographic radial shear interferometer, shown in Figure 5.21 was

devised by Fouéré and Malacara (1974) and Fouéré (1974). The first step in making

Wavefront
under test

r2 r2

Interfering
wavefronts

Beam splitter
interface

FIGURE 5.20. On-axis radial shear interferometer.

FIGURE 5.21. Holographic radial shear interferometer.
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this interferometer is to fabricate a Gabor zone plate by photographing the inter-

ference between a convergent and a flat wavefront. The numerical aperture of this

plate is the numerical aperture that the interferometer will accept. The second step is

to illuminate the Gabor zone plate with a convergent wavefront. If the point of

convergence corresponds exactly to the focus of the zone plate, the diffracted þ1

order beam emerges as a parallel beam. Let us now place a photographic plate behind

the zone plate and make an exposure. By developing the photographic plate, we

obtain a hologram. The convergent beam (order 0) can be regarded as the reference

beam and the diffracted parallel beam (order þ1) as the object beam.

Considering Figure 5.21 now, if we place the hologram exactly in its original

position, we obtain an emergent parallel beam (0, 1) by reconstruction. The incident

parallel beam goes through the hologram as the parallel beam (1, 0). Thus, these two

beams emerge parallel but with different magnifications, achieving a radial shear

interferometer. All undesired diffracted beams are filtered out by means of a lens and

a pinhole at its focus. It may be shown that all imperfections on the glass plates are

automatically canceled out. Tilt and defocusing in this interferometer can very easily

be obtained by small lateral and longitudinal movements, respectively, of the Gabor

zone plate. Figure 5.22 shows an interferogram obtained with this interferometer.

Several variations of this basic configuration of the two-zone plates have been

proposed, in order to have rotational shear also or to produce an exiting spherical,

instead of flat wavefront.

5.2.5. Thick-Lens Radial Shear Interferometers

Steel (1975) and Steel andWanzhi (1984) have described an interesting class of laser

interferometers called thick-lens radial shear interferometers. Figure 5.23 shows

FIGURE5.22. Interferogramobtained in holographic interferometer. (FromFouéré andMalacara, 1974.)
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some designs. One of the beams is obtained from the direct beam, going through the

thick lens. The other beam is obtained with two internal reflections, first on the

second lens face and then on the first lens face. If the direct beam has an irradiance I1,

the internally reflected beam has an irradiance I2 given by

I2 ¼
R1R2

S2
I1 ð5:19Þ

where S is the radial shear, defined by the ratio of the diameter of the internally

reflected beam to the diameter of the direct beam. The maximum constant of the

fringes is obtained when R1R2 ¼ S2. This is possible only if S < 1, in other words,

when the direct beam has the smallest diameter. Steel and Wanzhi suggest keeping

the contrast to a low value of the order of 0.8, to reduce the disturbing effects

of higher-order ghosts due to secondary internal reflections. Unfortunately, these

reflections arrive at the same focus, and thus they cannot be eliminated by a spatial

filter.

Figure 5.23 shows some thick-lens interferometers. The first one, Figure 5.23(a), is

a radial as well as a rotational shear interferometer; the rest are pure radial shearing.

The interferometer in Figure 5.23(b) may be used to test large collimated beams. In

the interferometer in Figure 5.23(c), the direct beam has a diameter smaller than the

reflected beam. Thus, the contrast of the fringes cannot be controlled. The system in

Figure 5.23(e) may be used in convergent beams with the exit pupil located far away.

The reflecting radial shear interferometer described byWanzhi (1984) is a special

case of the thick lens interferometer working in a reflection mode as shown in

Figure 5.24(a) and 5.24(b). The fringe contrast is much better than in the transmis-

sion system. The only problem with this glass-spaced system is that the magnitude of

the shear is fixed. An alternative is the air-spaced system shown in Figure 5.24(c), as

described by Wanzhi (1985).

(a) (b)

(c) (d)

(e)

FIGURE 5.23. Thick-lens laser radial shear interferometers.
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5.3. ROTATIONAL SHEAR INTERFEROMETERS

In rotational shear interferometers, identical wavefronts are made to interfere, but

one of them is rotated with respect to the other by a certain angle about their common

optical axis. They are useful for detecting and evaluating nonsymmetrical aberrations

such as coma and astigmatism. Many procedures have been developed for the

interpretation of rotational shearing interferograms. For example, Golikov et al.

(1981) have described a method using cylindrical coordinates.

Let a wavefront be represented by Wðr; yÞ. A rotational shear interferometer is

one that performs the operation of rotating one wavefront with respect to the other to

give an interferogram defined by

OPDðr; yÞ ¼ W r; y� f

2

� �

�W r; yþ f

2

� �

ð5:20Þ

where f is the rotation of one wavefront with respect to the other. If the wavefront is

given by general expression (5.1), we obtain

OPDðr; yÞ ¼
Xk

n¼0

Xn

l¼0

rn anl cos l y� f

2

� �

� cos l yþ f

2

� �	 
�

þ bnl sin l f� y

2

� �

� sin l yþ f

2

� �	 
�

ð5:21Þ

where n and l are both even or both odd. It is interesting that all terms for l ¼ 0 cancel

out, rendering the rotational shear interferometers insensitive to rotationally sym-

metric wavefronts, as could be expected. Therefore, the sums in this expression can

be started from n ¼ l ¼ 1. If we now assume that the aberrations are produced by an

(a) (b)

(c)

FIGURE 5.24. Reflection laser radial shear interferometers.
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axially symmetric optical system, we have the wavefront symmetric about the

tangential ðy� zÞ plane and therefore, all coefficients bnl become zero. Thus

OPDðr; yÞ ¼
Xk

n¼1

Xn

l¼1

rnanl cos l y� f

2

� �

� cos l yþ f

2

� �	 


¼
Xk

n¼1

Xn

l¼1

2rnanl sin ly sin
lf

2
: ð5:22Þ

The only two primary aberrations contained in this expression are astigmatism

(n ¼ 2; l ¼ 2) and coma ðn ¼ 3; l ¼ 1Þ, in addition to a tilt of the wavefront about

the x axis ðn ¼ 1; l ¼ 1Þ that we may ignore, thus obtaining

OPDðr; yÞ ¼ 2a22r
2 sin 2y sinfþ 2a31r

3 sin y sin
f

2
ð5:23Þ

which can also be written as

OPD ðr; yÞ ¼ 2a22r
2 cos 2 yþ p

4

� �

sinfþ 2a31r
3cos yþ p

2

� �

sin
f

2
ð5:24Þ

Observing this expression, we can see that the sensitivity sast for astigmatism with

respect to that of a Twyman-Green interferometer is given (Murty and Hagerott,

1966) by

sast ¼ 2 sinf; ð5:25Þ

but it is also important to note that the interference pattern is rotated 45� with respect
to the Twyman–Green pattern, as shown in Figure 5.25, and that the rotational shear

interferometer is insensitive to real defocusing. The apparent focus is such that the

observed pattern is similar to the Twyman–Green pattern at the intermediate focus

between the tangential and sagittal foci.

The relative sensitivity scoma for coma is given (Murty and Hagerott, 1966) by

scoma ¼ 2 sin
f

2
; ð5:26Þ

and the interference pattern is rotated 90� with respect to the corresponding

Twyman–Green interferogram, as shown in Figure 5.26. No defocusing appears,

nor can it be introduced in this pattern.

The relative sensitivities sast and scoma for astigmatism and coma, respectively,

are plotted in Figure 5.27 which shows that the ability of a rotational shear

interferometer to detect astigmatism and coma depends on the amount of rotational

shear f. We can see that the coma can be isolated at f ¼ 180�, but the astigmastism
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can never be isolated. However, the coma can be eliminated and the astigmatism

doubled by the use of a small, flat mirror to allow the wavefront to go twice through

the optical system. Thewavefront goes first to the system under test (concavemirror),

proceeds next to the small, flat mirror near the center of curvature of the concave

mirror, and returns through the same path.

It is important to point out the difference between the two similar processes, in

which either the symmetrical (power of cos y is even) or the antisymmetrical (power

FIGURE 5.25. Astigmatism pattern in a rotational shear interferometer with maximum sensitivity

ðf ¼ 90�Þða22 ¼ 2lÞ.

FIGURE 5.26. Coma pattern in a rotational shear interferometer with maximum sensitivity

ðf ¼ 180�Þða31 ¼ 5lÞ:
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of cos y is odd) components of thewavefront are isolated. To isolate the asymmetrical

components, the wavefront is made to interfere with an image of itself that is

identical but is rotated 180�, in order to obtain the difference between them. To

isolate the symmetrical components, the wavefront is rotated 180� and then passed

again through the optical system under test, in order to duplicate the symmetrical

errors and to eliminate the asymmetrical ones. Then the wavefront is made to

interfere with an unaberrated wavefront. These two processes have been exploited

by Hariharan and Sen (1961c) in a single arrangement, as described in Chapter 7 of

this book.

As pointed out by Murty and Hagerott, it is interesting to consider the testing of a

ribbed lightweight mirror. When such a mirror is polished, the region of the face

directly on top of the rib is low, whereas the region between the ribs is high. The

astigmatism of a mirror of this kind ðn ¼ 2; l ¼ mÞ produces on a rotational shear

interferometer on OPD given by

OPD ¼ 2rnanl sinmy sin
mf

2
ð5:27Þ

wherem is the number of ribs supporting the faceplate. It should be noticed that n =m

are both even or both odd. The maximum relative sensitivity is 2 and occurs for

f ¼ 180�. Figure 5.28 shows the interferogram for a mirror with four ribs.

5.3.1. Source Size Uncompensated Rotational Shear Interferometers

The degree of coherence g12 of a uniform circular source with angular diameter 2a is

given in Eq. (5.10). Thus to maintain good fringe contrast, the pinhole of a rotational

shear interferometer must be of the proper size. If a point of the wavefront is sheared

through an angle f, the distance in the wavefront between two interfering points is

given by

d ¼ 2r sin
f

2
: ð5:28Þ
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FIGURE 5.27. Relative sensitivity for astigmatism and coma in a rotational shear interferometer.
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Substituting this value in Eq. (5.10), we obtain

g12 ¼
2J1½ð4p=lÞar sinðf=2Þ�
ð4p=lÞar sinðf=2Þ : ð5:29Þ

For the reasons given in Section 5.2.1, to have a good contrast on the interference

pattern, the pinhole must be smaller than the certain value given by Murty and

Hagerott (1966) as

a � 1:22l

2D sinðf=2Þ ð5:30Þ

where D is the interferometer entrance pupil diameter, from which the angular

diameter 2a of the source is measured.

Murty and Hagerott also designed the rotational shear interferometer shown in

Figure 5.29. It is a Jamin interferometer with two identical Dove prisms between the

glass plates. A microscope objective L1 collimates the light from a point source, and

the pattern is observed by looking through the microscope objective L2. One of the

wavefronts is rotated an angle 2a by rotating one of the Dove prisms an angle a.

An ordinary Twyman–Green interferometer can be converted to a rotation shear

interferometer, in order to test the illuminating wavefront, by means of several

procedures. A 180� rotational shear is achieved, as suggested by Murty (1964c),

by replacing the mirror in one of the arms with a cat’s-eye retroreflector or a cube

corner prism. Armitage and Lohmann (1965) suggested using two roof prisms as

reversing prisms instead of the flat mirrors. Themagnitude of the rotational shearf is

FIGURE 5.28. Pattern for a mirror with four ribs in a rotational shear interferometer with maximum

sensitivity ðf ¼ 45�Þða24 ¼ 4lÞ:
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changed by rotating one of the prisms about its optical axis by an amount f=2. The
interferometer proposed by Armitage and Lohmann is illustrated in Figure 5.30. The

wavefront under test is collimated by the lens L1 or a pinhole is used if L1 is the lens

to be tested. The pair of lenses L2 and L3 forms an image of the entrance pupil at L1

on the observing screen. To obtain good coherence, the state of polarization of both

beams must be identical, but this is not sowhen the rotating roof prism is rotated at an

angle f/2, because the roof prisms modify the state of polarization according to their

positions. To solve this problem, a polarization coupling is used as follows. Two

polarizers are included, one before and one after the interferometer, both at 0�. Also,
two quarter-wave plates are placed between the main interferometer body and the

FIGURE 5.29. Murty and Hagerott’s rotational shear interferometer.

FIGURE 5.30. Armitage and Lohmann’s rotational shear inteferometer.
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rotating roof prism. One plate is fixed at 45� to the main body of the interferometer

and the other plate is fixed to the roof prism at 45� to the line of intersection of the

roof planes. Between the two quarter-wave plates, the light will be circularly

polarized. Within the roof prism, it will be linearly polarized and parallel to the

roof ridge. Upon returning into the main body, the old direction of linear polarization

is restored, independently of the rotational position of the roof prism.

The problem with the interferometer just described is that the use of the polarizers

causes an appreciable loss of light. An alternative solution has been employed by

Roddier et al. (1978, 1989) in the interferometer shown in Figure 5.31. There are two

roof prisms, one is fixed and the other is rotatable about its optical axis, as in the

interferometer by Armitage and Lohmann. Let us assume for the time being that the

light entering the interferometer is linearly polarized, with the plane of polarization

either parallel or perpendicular to the fixed roof ridge. If the rotatable roof prism is

rotated at an angle with respect to the first prism, we may decompose the electric

vector in two orthogonal components, one parallel and one perpendicular to the roof

ridge of this second prism. The phase shift upon reflection for these two components

will be different in general, so, they will recombine after leaving the prism producing

a different polarization state from that of the entering light beam. The only way to

preserve the incident polarization state is to have a phase shift difference between

these two components equal to 180�. The electrical component perpendicular to the

roof edge comes out of the prism in opposite direction because of the two reflections.

The net effect is that the linear polarization and its direction is thus preserved.

Since the total shift upon reflection for the two electrical components is about 74�,
an additional phase shift of about 106� is required. This is obtained by cementing to

the entrance face (hypotenuse) of the rotatable prism a phase plate with a phase

retardation of 53�, with its principal axes parallel and perpendicular to the roof ridge.
We assumed at the beginning that the light entering the interferometer was

linearly polarized, with the plane of polarization either parallel or perpendicular to

Rotating
prism

53° Phase
plate

Wavefront
under test

Interfering
wavefronts

FIGURE 5.31. Rotational shear interferometer with phase compensation.
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the fixed roof ridge. If the light is unpolarized, the components parallel and

perpendicular to the roof ridge of the fixed prism will produce different interference

patterns. The same interference pattern is produced with these two components if

they come out of the fixed prism in phase, as when they entered the prism. This goal is

achieved by cementing another phase plate to the fixed prism. Then, unpolarized

light may be used.

Another interferometer suggested by Armitage and Lohmann (1965) is based on

the Sagnac or cyclic interferometer. Here the rotational shearing angle f is produced

by a Dove prism rotation of f=4 within the closed loop of the interferometer.

Although not really intended as a rotational shear interferometer, the inverting

Fizeau interferometer designed by Sen and Puntambekar (1965, 1966) produces a

rotational shear of 180�. This instrument and its adaptation to test spherical surfaces

(Puntambekar and Sen, 1971) are described in Chapter 7.

5.3.2. Source Size Compensated Rotational Shear Interferometers

A large light source cannot be used in general because of the coherence problems

explained in the preceding section. The only way to have good contrast with a large

source is to make the two images of the source coincide in position and orientation.

At the same time, the images of the object under test must be shared with respect to

each other. One solution is to shear the wavefronts before they reach the object, with

an equal magnitude but in an opposite sense to the main shear, which is to take place

after the object. These two shearing operations cancel each other as far as coherence

is concerned, but only the second shear takes place with the information about the

object. These considerations, equivalent to those made before for radial shear

interferometers, were also advanced by Armitage and Lohmann (1965) in suggesting

several compensated interferometers. The systems they proposed consist basically of

two identical interferometers placed symmetrically one after the other, with the

object under test between them.

As previously explained the same compensation can be obtained by using a

rotational shear interferometer in a double-pass configuration.

5.4. REVERSAL SHEAR INTERFEROMETERS

The reversal of a wavefront about a reversing axis is illustrated in Figure 5.32 where

point P goes to point P0, according to the transforming equations

r0 sin y0 ¼ r sin y ð5:31Þ

and

r0 cos y0 ¼ S� r cos y ð5:32Þ

It is easy to see that this reversing about an arbitrary axis is equivalent to a

reversion about the x axis followed by a lateral shear S in the y direction. If the
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wavefront is defined by Eq. (5.1), the interferogram in a reversal shear interferometer

is given by

OPD ¼ Wðr; yÞ �Wðr0; y0Þ: ð5:33Þ

Let us consider a wavefront that has only primary aberrations as follows:

Wðr; yÞ ¼ a20r
2 þ a40r

4 þ a31r
3 cos yþ a22r

2 cos 2yþ a11r cos y ð5:34Þ

where the aberrations being represented are defocusing, spherical aberration, coma,

astigmatism, and a tilt about the x axis, respectively.

We can see that the reversal shear interferometer has no sensitivity to symmetric

aberrations, such as defocusing ða20Þ, spherical aberration ða40Þ, and astigmatism

ða22Þ, if the axis of reversion coincides with the x axis ðS ¼ 0Þ. The interferometric

pattern and the sensitivity of this interferometer to symmetrical aberrations are,

however, identical to those of a lateral shearing interferometer with shear S when the

axis of reversion is shifted at a distance S=2, as in Figure 5.32

OPD ¼ 2a31r
3 cos yþ 2a11r cos y: ð5:35Þ

Thus the relative sensitivity of the reversal shear interferometer without any

lateral shear ðS ¼ 0Þ to antisymmetric aberrations, such as coma and tilt about the

x axis, is equal to 2.

If the interferometer is uncompensated for the size of the light source, that is, if the

reversion affects not only the object under test but also the light source, the contrast in

the fringe pattern is given by Eq. (5.10) (Murty, 1964c). The distance for any two

interfering points is ð2r cos y� SÞ. Therefore, its maximum value d is

d ¼ Dþ S ð5:36Þ

FIGURE 5.32. Reversal of a wavefront.
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where D is the waveform diameter. Then the maximum angular diameter a of the

pinhole will be

a � 1:22l

Dþ S
: ð5:37Þ

An uncompensated reversal shear interferometer of this type is represented by a

Twyman–Green interferometer with a right-angle prism used as a roof prism in one

of the arms.

5.4.1. Some Reversal Shear Interferometers

In this section, three different versions of a prism reversal shear interferometer are

described. They are variations of a basic prism system invented by Kösters (1934),

who pointed out that any combination of two exactly similar prisms can be used as an

interferometer in the way he described, as long as one of the angles of the prism

adjoining the common face is exactly half the angle that is opposite this common

face.

One of the two systems suggested by Gates (1955b), based on Kösters’s prism, is

illustrated in Figure 5.33; it uses two 30�-60�-90� prisms. The intersection of the

plane defined by the beam-splitting surface with the optical system defines the axis of

reversion. Lateral shear S is produced if the axis of reversion does not coincide with a

diameter of the optical system under test. A tilting of the mirror under test provides a

control of the separation of the interference fringes. A lens can be tested if an

autocollimating flat mirror is used behind the lens.

The interferometer is compensated for use with white light because the optical

paths are exactly equal. It is also compensated for the size of the light source, but in

practice this size is limited to about 0.5 mm in diameter by small errors in construc-

tion, as pointed out by Gates.

FIGURE 5.33. Köster’s reversal shear interferometer.
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Using the same principle, Gates (1955a) also suggested using the popular beam

splitter cube as shown in Figure 5.34. This, however, has the disadvantage that only

optical systems with small numerical apertures can be tested.

Two common disadvantages of both instruments described by Gates are that (a)

the virtual light source and the image do not coincide but have some small separation

and (b) some aberrations are introduced on the plane exit face of the prism. These

problems are not present in a prism system invented by Saunders (1955) shown in

Figure 5.35. The use of this instrument for the testing of optical systems, as described

by Saunders (1962), is illustrated in Figure 5.36. Many other applications to metrol-

ogy have also been found (Strong, 1958; Saunders, 1960). The construction method

has been very well described by Saunders (1957).

Another interesting reversal shear interferometer to test lenses was described by

Waetzman (1912) and later by Murty (1964b). It is illustrated in Figure 5.37. This

instrument, which has also been used to test right-angle and cube corner prisms by

Murty (1964b) and Sen and Puntambekar (1966), produces reversal and lateral

shears. It is interesting to observe that the asymmetric aberrations are canceled out

because of the double passage through the lens and that the reversal interferometer is

FIGURE 5.34. Gates’ reversal shear interferometer.

FIGURE 5.35. Saunders’s prism system.
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not sensitive to symmetric aberrations. Since the symmetric aberrations are detected

by means of lateral shear only, this instrument can more properly be considered as a

lateral shearing interferometer.

Holographic techniques may also be used to obtain a reversal shear interferometer

as shown by Partiban et al. (1987, 1988).

FIGURE 5.37. Modified Jamin interferometer to test lenses and prisms.

FIGURE 5.36. Saunders’ reversal shear interferometer.
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6

Multiple-Beam Interferometers

C. Roychoudhuri

6.1. BRIEF HISTORICAL INTRODUCTION

The historical origin of multiple-beam interference was found as early as 1836, when

Airy derived an expression for the multiple-beam interference pattern that would be

produced by a plane parallel plate. However, the idea remained unexploited since

high-reflectance coatings were not available and uncoated glass plate has a

reflectance of only 0.04. It can produce good visibility fringes but of a two-beam

type in reflection; no recognizable fringes can be seen in transmission.1 Then Fizeau

(1862a, 1862b) devised his celebrated interferometer, which now bears his name (see

Chapter 1). His invention led to the idea of studying surface topography by optical

interferometer(Laurent, 1883). The interferometer, being formed by two uncoated

glass plates, gives interference fringes of a two-beam (cosine) type in reflection that

contour the surface topography. Then Boulouch (1893) revived Airy’s (1836)

derivation of multiple-beam interference and demonstrated that with increasing

reflectance of the Fizeau surfaces the multiple-beam fringes, both in reflection and

in transmission, become increasingly sharper.

A few years later Fabry and Perot (1897) recognized the potential of the

interferometer that consists of two plane parallel surfaces of high-reflection coating

with variable separation, now known as the Fabry–Perot interferometer. Today it is

still one of the most compact and highest resolving power spectrometers (Cook,

1971). To exploit this capability for high resolving power, the Fabry–Perot plates

were usually used with a large separation that obscured the great potential of this

instrument for mapping surface microtopography with ultrahigh local precision.

Then in 1913, Benoit, Fabry, and Perot used a Fizeau interferometric arrangement

with coated surfaces for their determination of the standard meter. They also missed

the ‘‘optimum conditions’’ under which this multiple-beam Fizeau interferometer

could be used for precision surface testing. These were provided and demonstrated

Optical Shop Testing, Third Edition Edited by Daniel Malacara

Copyright # 2007 John Wiley & Sons, Inc.

1The relative strengths of the first three reflected beams are 0.04, 0.037, and 0.000059, and those of the

transmitted beams are 0.92, 0.0015, and 0.0000024.
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by Tolansky (1944), although he himself noted (Tolansky 1948a, pp. 7, 184) from a

private communication sent to him fromWilliams that Adams Hilger Ltd. of England

had been using multiple-beam Fizeau fringes for optical flat testing for some years. A

lucid and detailed analysis and application of a multiple-beam interferometer of the

Fizeau type can be found in Tolansky’s books (1948a, 1948b, 1948c, I960, 1966,

1968). Section 6.3 summarizes the essentials of the multiple-beam Fizeau interfe-

rometer.

To obtain sharp fringes as well as localized precision with the multiple-beam

Fizeau, the proper conditions of Tolansky (the following section) require a very small

separation and wedge angle between the mirrors. This mandates a high-quality test

flat to give only a few narrow fringes of l=2 interval2 in the entire field of view,

leaving most of the surface without any topographic information. The next year,

Tolansky (1945a, 1945b) developed the so-called fringes of equal chromatic order

(FECO) interferometry, where the illumination is by white light, rather than by

quasimonochromatic light, and one observes small sections of the test surface

successively through a prism spectrometer that displays fringes of equal chromatic

order. The advantages of FECO over multiple-beam Fizeau are the greater precision

of the former and its capability for distinguishing ‘‘hills’’ from ‘‘valleys’’ in a

straightforward manner from the direction of bending of the colored fringes. Again,

a good expression of the field is given in Tolansky’s book (1948a). Contributions by

Koehler (Koehler, 1953, 1955a, 1955b; Koehler and Eberstein, 1953; Koehler and

White, 1955) are also worth mentioning. We describe FECO interferometry briefly in

Section 6.4, wherewe also mention a somewhat different but very useful technique of

illuminating the Fizeau interferometer by two different wavelengths that can be

chosen suitably from two different calibrated monochromators (Shaalan and Little

1975).

Later, several persons introduced various techniques to reduce the fringe interval

of l=2 so that microtopographic information can be obtained from otherwise fringe-

free regions, using monochromatic or quasimonochromatic illumination. The first of

these techniques, by Saunders (1951), introduces optical path differences into the

interference film (formed by the two mirrors) by changing the air pressure by

controlled amounts and taking a multiple photographic exposure of the fringe

systems. Another technique to reduce the contour interval is to use a suitably chosen

discrete set of wavelengths for illumination (Herroitt, 1961; Schwider, 1968; Pilston

and Steinberg, 1969). A somewhat simpler technique by Murty (1962) employs

regular quasimonochromatic illumination but a spatially separated set of pinholes.

These techniques for reducing the fringe interval are described briefly in Section 6.5.

Some parallel development has also taken place in using the conventional Fabry–

Perot interferometer with the plates parallel (rather than wedged) for deriving surface

microtopography (Benedetti-Michelangeli, 1968; Hodgkinson, 1969) and for

precision measurement of thin-film thickness (Schulz 1950a, 1950b). See Section

6.6 for methods of using a Fabry–Perot interferometer for testing.

2In some multiple-pass interferometers, the interval between consecutive fringes in less than l=2; see

Chapter 7.
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A somewhat different set of multiple-beam fringes, produced by a Fabry–Perot

illuminated by a point source but lacking the conventional fringe-focusing lens after the

Fabry–Perot plates (see Figs. 6.2 and 6.17), was first observed and used by Tolansky

(1943, 1946). The utility of these ‘‘Tolansky fringes’’ is described in Section 6.7.

The development of the spherical Fabry–Perot interferometer (Connes, 1958) of

general curved mirror laser cavities (Boyd and Gordon, 1961; Fox and Li, 1961) and

of the scanning spherical Fabry–Perot (Herroitt, 1963) paved the way for an elegant

technique for testing curved surfaces with multiple-beam fringes preserving the

localized precision (Herroitt, 1966).

A similar spherical wave interferometer was also developed independently by

Perkin-Elmer of the United States (Heintze et al., 1967) and SIRA (1967) of the

United Kingdom (Biddles, 1969). A strong desire to test many spherical surfaces by

multiple-beam fringes against a single surface or a fewmaster surfaces, coupled with

the existing knowledge of Williams’ (1950) interferometer, paved the way for this

development. We describe such multiple-beam interferometers with curved surfaces

in Section 6.8.

Other developments worthy of mention in the field of multiple-beam inter-

ferometry are the so-called dual interferometry and holographic multiple-beam

interferometry. In the former, one combines the multiple-beam fringes with another

wavefront in a dual interferometric setup to utilize a live Moiré technique or to

control the background contrast to advantage, especially while testing opaque

surfaces in reflection by multiple-beam Fizeau (Langenbeck, 1968; Pastor and

Lee, 1968). This is described in Section 6.9. The latter development can be exploited

when one has already chosen to use holographic interferometry by modifying the

system from two-beam to multiple-beam interferometry, as suggested by Matsumoto

(1969) and Bryngdahl (1969). This is mentioned briefly in Section 6.10. For a

detailed exposition of Moiré and holographic interferometry see Chapter 12.

Readers with broader interest on interferometry should consult the following

review articles: Kuhn (1951), Baird (1967), Baird and Hanes (1967), Koppelmann

(1969), Briers (1972), Malacara et al. (1975), and Vrabel and Brown (1975). For a

good review on precision interferometric testing, see Schulz and Schwider (1976)

and Hariharan (1991). Readers interested in Fabry–Perot interferometer as a high-

resolution spectrometer should consult the books by Hernandez (1988), Vaughan

(1989) and Hillebrands (1999).

6.2. PRECISION IN MULTIPLE-BEAM INTERFEROMETRY

All the preceding chapters of this book dealing with various interferometric tests of

optical components have one thing in common: The final fringe pattern, contouring

the surface or the wavefront under test is formed by interference between two

wavefronts. Then the recorded intensity variation follows the cos2 f or

ð1þ cos 2fÞ type curve shown in Figure 6.1(a). Such fringes are said to have the

so-called fringe quality, the finesse number, equal to 2. This is understood from the

definition of finesse, which is the ratio of the fringe interval to the width of the fringe
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at half its height (Fig. 6.1). In general, the fringe interval being l=2, visual observa-
tion of two-beam cosine fringes can rarely achieve an error estimation of precision

better than l=20.
In contrast, multiple beam fringes are extremely sharp and can have finesse as

high as 200 to 300 for commercial Fabry–Perot interferometers (FP) and many tens

of thousands for specialized FP’s with mirrors having super flatness and super high

reflectance. Very large super finesse FP’s are now used for trace gas detection

[O’Keefe and Deacon, 1988] and gravitational wave detection [LIGO, 2005]. Micro

super finesses cavities are used in studying cavity quantum electrodynamics

[Kimble, 1994; Blais et al., 2004]. And the mirrors for such super finesse FP can

be tested only as apart of a super finesse FP in the production facility [Herbelin et al.,

1980; Itoh et al., 2001].

It must be realized, however, that to obtain multiple-beam fringes the

interferometer plates must be coated with high-reflectance coating. This unquestion-

ably interrupts the polishing process for a period of time, in contrast to two-beam

interferometry, in which the surfaces under test can be simply cleaned and tested

directly as frequently as the polisher wishes. For this reason multiple-beam

interferometric tests are applicable chiefly to the field of thin-film technology

(Bennett and Bennett, 1967; Eastman, 1975). The technique is also applied with

FIGURE 6.1. The finesse, the ratio of the fringe interval to the full width of the fringe at half its height,

(a) for two-beam cosine fringes and (b) for multiple-beam Fabry–Perot fringes. For example, the finesse of

(b) is 50.
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relative ease (say, instead of electron microscopy) for special precision testing of the

surface roughness of high-quality optical surfaces (Koehler, 1955b; Koehler and

White, 1955; Hodgkinson, 1970), but here one must be careful to choose a surface

coating material (usually silver is selected; see Tolansky, 1960) that contours the

substrate as closely as possible and also to analyze the phase change on reflection

from the coating substance (Tolansky, 1948a; Koehler, 1953). These problems

usually do not arise in two-beam interferometry. Multiple-beam interferometry is

not advisable for routine shop testing unless the surface to be tested is definitely

better than l=20.
Of course, multiple-beam interferometry is not the only method for obtaining high

spatial precision. If fringe sharpening is the main criterion, one can simply image the

two-beam Fizeau fringes on a high-resolution vidicon camera and observe the fringes

on closed circuit television. The fringes can be artificially sharpened through

electronic control of the contrast. The precision by simple visual observation can

certainly exceed l=50, and an on-line computer analysis may give ultrahigh

precision. Fringe sharpening can also be achieved through nonlinear photography.

Precision densitometric traces of a regular photographic record of two-beam fringes

or a direct photoelectric scanning of the fringe field, when suitably analyzed, can also

give very high precision (Rosier, 1962; Roesler and Traub, 1966; Dew 1964, 1966). A

more recent technique, oscillating mirror interferometry (see Chapter 13) with a

simple two-beam instrument but with an electronic analyzing system, can also

achieve a precision of l=1000 (Raymond, 1970; Bruce and Sharpless, 1975). In

fact, Moss et al. (1971) and Logan (1973) stated that their two-beam heterodyne

(Michelson) interferometry, used in a gravitational wave detection system, can detect

a displacement of a mirror with a precision of 10�6 Å. A somewhat different

technique of detecting an optical path variation down to 10�5 Å through the

measurement of the beat signal from a three-longitudinal-mode three-mirror laser

cavity has also been reported in the literature (Boersch et al., 1974).

Here one should remember that the overall thermal and mechanical stability of

the interferometer assembly must be higher by an order of magnitude than the

precision expected from the system, unless the very purpose of the testing is to

measure the relative ‘‘instability’’ (Dyson, 1968). The ultimate precision in inter-

ferometry is limited by the noise inherent in photoelectric detection (Hanes, 1959,

1963; Hill and Bruce, 1962; Raymond, 1970) and also by the diffraction phenomena

that lead to the ‘‘optical uncertainty principle,’’ analogous to Heisenberg’s uncer-

tainty principle (Heisenberg, 1949), discussed by Tolan-sky and Emara (1955),

Thornton (1957), Koppelmann (1966), and Lang and Scott (1968). The very high

resolution, on the order of an angstrom ora fraction thereof, that is obtained through

multiple-beam interferometry is in the longitudinal, not in the lateral direction. The

resolution in the lateral direction is determined by the wavelength of the radiation

due to diffraction.

The choice of multiple-beam interferometry should be guided by the following

considerations: (a) the time available for the test, (b) the maximum precision of the

test that is really necessary for the particular job the test surface is designed for, and

(c) the equipment available in the laboratory.
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6.3. MULTIPLE-BEAM FIZEAU INTERFEROMETER

6.3.1. Conditions for Fringe Formation

A multiple-beam Fizeau interferometer constitutes a very thin wedge-shaped film

formed by two highly reflecting flat surfaces. Any incident beam falling on this film

will, in general, produce a series of increasingly diverging beams (Fig. 6.3). These

multiply reflected beams cannot be superposed in any plane with exactness. How-

ever, within certain approximations multiple-beam fringes are formed. Because the

necessary conditions are more easily appreciated after following the process of

formation of the ideal multiple-beam fringe by a Fabry–Perot interferometer, we

shall briefly digress to describe fringe formation by this instrument.

The Fabry-Perot interferometer consists of two perfectly plane and parallel

mirrors (Fig. 6.2). Naturally, a single incident wave will produce a series of waves

by multiple reflection, and all of them can be superposed to form ideal Airy fringes

(Tolansky, 1948a) at the focal plane of a lens.

We are assuming that the incident wave is continuous with a single carrier

frequency n. The intensity reflectance is R and the transmittance is T. The mirror

spacing is d and hence the round trip phase delay, j ¼ ð2p=lÞ2d ¼ 2pnt, t being the

round trip time delay. Then the normalized amplitude transmittance icwðn; tÞ is given
by

icwðn; tÞ ¼
X1

n¼0

TRneinj ¼
X1

n¼0

TRnein2pnt ¼ T=ð1� Rei2pntÞ ð6:1Þ

Then the normalized irradiance is given by the square modulus of Eq. (6.1),

Icwðn; tÞ ¼ T2=½ð1� RÞ2 þ 4R sin2 pnt� ð6:2Þ

FIGURE 6.2. Fringe formation by a Fabry–Perot interferometer consisting of a pair of plane parallel

mirrors M1, M2 followed by a fringe focusing lens L, S is the fringe plane in the focal plane of L.
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The ideal reflective finesse N for these fringes (neglecting mirror aberrations and

misalignments) is given by

N ¼ p
ffiffiffi

R
p

=ð1� RÞ ð6:3Þ

where T and R are the intensity transmittance and reflectance, respectively, of both

mirrors and f is the total effective phase or optical path delay between any two

consecutive wavefronts.

Although the series in Eq. (6.1) is infinite, in practice, the total effective number of

interfering beams is finite because of the fact that the energy carried by the nth

transmitted beam, T2R2n, becomes negligible for sufficiently large n. [See the solid

curves of Figure 6.4, which indicates the number of superposed beams required to

form a multiple-beam fringe, for a particular reflectance, within 1% of the ideal

(infinite sum) of the Airy curve.] This is a useful practical point to remember for any

type of multiple-beam interferometry, as we shall soon see. If it were really necessary

in practice to superpose the infinite sequence of multiply reflected beams to form the

ideal Airy fringe, the interferometrist would have to wait throughout eternity to

observe it (Roychoudhuri, 1975)! For recent developments in time domain use of FP

for testing and characterizing super finesse Fabry–Perot mirror see Section 6.11.

The next point of practical interest in multiple-beam Fabry–Perot fringe forma-

tion is that the phase delay f between any two consecutive wavefronts is constant.

Then, once f has been determined, the entire series of multiply reflected beams

combines to form the appropriate part of the ideal Airy fringe. Thus, when f is either

2np or ð2nþ 1Þp (n any integer), the entire series of beams, when superposed, either

combines constructively to form a bright fringe or adds destructively to form a dark

fringe.

This is where the major point of departure appears between a plane parallel

Fabry–Perot and a wedge-shaped Fizeau interferometer. The phase delay between

the consecutivewavefronts produced by thewedged Fizeaumirrors is a progressively

increasing quantity, rather than a constant one as in a parallel Fabry–Perot. The other

difference is the spatial walk-off of the beams with multiple reflection (in Fizeau

interferometry) that cannot be compensated for perfectly by any focusing or imaging

device. Both these effects are displayed in Figure 6.3 (see also Rogers, 1982).

The progressive phase delay is easily derived by using Brossel’s (1947) very

general but elegant method developed to compute the intensity distribution and

localization of Fizeau fringes (see also Born and Wolf, 1975, p. 286). We shall

consider the particular case of perpendicular illumination of one of the mirrors by a

collimated beam that is used in many optical shops (Fig. 6.3 and 6.6). Two partially

transmitting mirrors M1 andM2 form a very small wedge angle E, whose apex is at O.

An incident plane wavefront, parallel to the mirror M2, produces a series of beams

due to multiple reflection. The arrow heads in Figure 6.3(a) correspond to the

‘‘center’’ of the incident wavefront and hence demonstrate the beam walk-off defect

of the Fiteau interferometer. Figure 6.3(b) shows the position of the multiply

reflected wavefronts relative to the incident one at the plane of the mirror M2

(Y plane). The choice of such a diagram to compute the phase delay (Brossel, 1947;
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Tolansky, 1948a) was based on the fact that none of the multiply reflected wavefronts

suffers any phase delay relative to the incident one (OA1) at the apex of the wedge O,

formed by the two Fizeau mirrors. The tilts of the multiply reflected wavefronts are

designed by lines OA2ðh2EÞ;OA3ðh4EÞ; � � � ;OAnðh2nEÞ. If the effect of superposition
is observed in transmission at a general point Pðx; yÞ, the path difference between the
first and the nth wavefronts is

dnðx; yÞ ¼ PAn � PA1 ð6:4Þ

But

PAn ¼ PQþ QAn ¼ PQþ OQ sin 2nE

¼ PQþ ðy� QA1Þ sin 2nE ¼ x cos 2nEþ y sin 2nE

Then

dnðx; yÞ ¼ xðcos 2nE� 1Þ þ y sin 2nE ð6:5Þ

If the fringes are observed on mirror surface M2 ðx ¼ 0Þ, as is customarily done in

optical shops through an imaging device, the expression for the phase difference

simplifies to

dnð0; yÞ ¼ 2tn� 4

3
n3E2t ð6:6Þ

FIGURE 6.3. (a) Multiply reflected beams produced by a Fizeau interferometer consisting of a pair of

‘‘plane’’ mirrors M1, M2 with a wedge angle E between them when illuminated by a collimated wavefront

parallel toM2. (b)Geometrical construction to aid in the computation of the relative path difference between

multiply reflected beams produced by a Fizeau interferometer.
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where we have used t ¼ yE, the separation between the plates at y and the first two

terms of the series expansion of sin 2nE, considering 2nE to be still a small angle. For a

parallel plate Fabry–Perot with orthogonal collimated illumination, the phase

difference between the first and nth wavefronts is 2tn. Then the nth beam of a Fizeau

interferometer lags behind in phase, compared to 2tn, by

ddn ¼
4

3
n3E2t: ð6:7Þ

This lesser delay in the Fizeau than in the Fabry–Perot arithmetic series ð2tnÞ is the
single most important restriction against forming high-quality symmetric and sharp

fringes, as was first realized by Tolansky. (This problem is avoided in white-light

FECO interferometry, described in the following section, where the mirrors are set as

nearly parallel as possible.) In particular, if

4

3
n3E2t ¼ l

2
ð6:8Þ

the nth beam will add destructively rather than constructively to the first one. Hence

to obtain symmetric and sharp Fizeau fringes, one should restrict one-self to the

Tolansky inequality,

4

3
n3E2t <

l

2
: ð6:9Þ

Here the most rapidly varying quantity is n, the number of interfering beams. But we

cannot set a low value for it because the very purpose of a multiple-beam Fizeau is to

produce high-quality, high-finesse fringes that require superposition of a large

number of regularly delayed beams; this number, in turn, depends on the reflectance

of the surfaces. The broken curve in Figure 6.4 shows how the finesse NR (the ratio of

the fringe interval to the full width of a fringe at half the height from its peak) of

Fabry–Perot fringes increases with increasing reflectance. The solid curve in the

same figure shows the effective number of beamsM added by a computer to obtain a

peak transmittance within 0.1 % of the ideal Airy value [infinite sum of Eq. (6.1)] for

different reflectances. It can be seen that for a reflectance below 90%, the effective

number of beams M that are superposed to obtain a finesse NR is roughly equal to

2NR. For higher reflectivity, the required value of M steadily increases. See also

Eq. (6.5) and the rationale given there.

These curves can be exploited for Fizeau interferometry in the following manner.

If the surfaces to be tested have a given reflectance R (or equivalently, R ¼
ffiffiffiffiffiffiffiffiffiffi
R1R2

p

when the reflectances are different for the surfaces), or one requires a desired finesse

NR such that the reflectance is R, then the curves of Figure 6.4 indicate the value ofM,

the effective number of beams that are superposed. Then to maintain the Tolansky

inequality, one substitutes M for n in Eq. (6.9) and reduces the values of E and t

accordingly. Tolansky (1948a) gave some typical values of n; E, and t for obtaining

symmetric Fizeau fringes. The lowest limit of t, the plate separation, is usually
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determined by omnipresent dust particles whose average size is generally of the order

of 1 mm. The lowest limit for the wedge angle E is determined by the minimum

number of fringes one wants within the field of view. The smaller the angle the larger

is the spatial separation between two adjacent fringes.

When the Tolansky inequality [Eq. (6.9)] is not satisfied (in other words, under the

most general condition), the intensity profile of each Fizeau fringe at high reflectance

is an asymmetric and composite one and constitutes a primarymaximum followed by

a series of secondary maxima on the side of the thicker wedge. The intensity of these

secondary maxima rapidly decreases in the same direction as the increasing wedge

separation. The primary maximum is broadened and is no longer symmetric like the

Fabry–Perot fringes; also, its peak shifts toward the opening of the wedge with

reduced height (Kinosita, 1953). Figure 6.5 shows a qualitative representation of a

general Fizeau fringe profile plotted against one due to Fabry–Perot. These general

Fizeau fringes show a remarkable similarity to Tolansky fringes (Fig. 6.17) produced

through a plane parallel Fabry–Perot but illuminated by various tilted rays from a

point source. Such composite fringes will not destroy precision testing if the smooth

edge of the fringes is used (Polster, 1969). Characteristic Fizeau fringes are formed

FIGURE 6.4. The number of interfering beamsM that gives a value for the ideal Airy curve within 0.1%

plotted against the reflectanceR (continuous curve.) The discontinuous curve shows the reflective finesseNR

plotted against the reflectance R.
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not only on the plane of the thin wedged film but also at various well-defined

distances on planes named after Feussner (Barakat et al., 1965).

There is another important constraining parameter of a Fizeau interferometer: the

lateral displacement�n of the nth beam due to the wedge angle E (Tolansky, 1948a),

�n ¼ 2n2tE: ð6:10Þ

This implies that each multiple-beam fringe formed by a Fizeau interferometer

always gives the contour map of the average surface topography over a region

spanned by �n, rather than a precise geometrical point-by-point mapping.

6.3.2. Fizeau Interferometry

The essential components of a Fizeau interferometer arrangement are shown in

Figure 6.6. A monochromatic or quasimonochromatic collimated beam illuminates

the coated flats (M1, M2) forming a wedge. The fringes can be observed both in

transmission ðOTÞ and in reflection ðORÞ. The fringes in transmission are sharp and

bright, in very high contrast against an almost dark background, and those in

FIGURE 6.5. A composite Fizeau fringe (continuous curve) produced by a pair of flat wedged

ð�10�3 radianÞ mirrors compared with a symmetric Fabry–Perot fringe (discontinuous curve) produced

by the same mirrors when they are perfectly parallel.
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reflection are exactly complementary (by simple energy conservation), that is, they

are dark fringes against a bright background (Fig. 6.7). The fringes in reflection,

however, may have very poor contrast when the reflection coating (such as a silver

layer) has a very high absorption coefficient (Tolansky, 1948a). All Fizeau fringes

have the same fringe interval of l=2, just as do the multiple-beam Fabry–Perot or

regular two-beam fringes. This is the reason why sharp Fizeau fringes leave most of

the surface area under test without much available information. Alternatives to this

arrangement are discussed in the following sections.

Since the surface contour fringes show the total optical path variation of both flats,

one of them should be a very high quality reference flat so that the fringes can be

interpreted as contours only because of the flat being tested (Clapham and Dew,

1967). One way of obtaining an extremely high quality flat is to use a liquid surface

such as liquid mercury. A detailed description of such a Fizeau interferometer has

been given by Bünnagel et al. (1968). However, deviation of a surface from absolute

planeness can also be obtained without the use of an absolute reference flat. The

method (Schulz, 1967; Schulz and Schwider, 1967; Schulz et al., 1971) requires the

use of three flats, none of which is a high-quality reference flat.

Because of the Tolansky inequality [Eq. (6.9)], good-quality Fizeau fringes are

obtained more easily if the separation between the plates, t, is set to a very small

value. However, this is not an absolute necessity, as has been demonstrated by Moos

et al. (1963), who used a highly collimated laser beam to obtain the surface contours

with a plate separation as large as 20 cm. Of course, the tilt must be very small; in

their case, it was less than 10�4 rad. This point is worth remembering for shopwork

because a large separation ensures against developing scratches or spoiling the

reflection coating by physical contact. A large separation requires a high-quality

mounting to maintain a stable relative alignment.

In an interesting example of off-axis illumination for improving fringe sharpen-

ing, described by Langenbeck (1970), the incident angle is chosen in such a way that

the incident beam is first reflected toward the apex of the Fizeau plates and then, after

a controllable finite number of reflections, it is reflected away from the apex. This can

FIGURE 6.6. The essential components of Fizeau interferometric arrangement: S, point source. B. beam

splitter to observe fringes in reflection ðORÞ; L1, collimator; M1, M2, Fizeau mirrors, the wedge and

separation very much exaggerated; L2, observing lens, which images the localized fringes between the

mirrors at the observation plane OT .
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be appreciated from Figure 6.8, where if the illumination follows the direction of the

ray SA1, after a few reflections it becomes perpendicular to mirror M2 at An and starts

retracing its path. In this manner, sharper Fizeau fringes can be formed in special

situations where a relatively large separation between Fizeau mirrors is required by a

particular test object, such as a corner cube (Langenbeck, 1970).

Eastman and Baumeister (1974) designed a regular Fizeau interferometer with

one of the mirrors mounted on a piezoelectric scanning device. Instead of photo-

graphic recording, the fringes can be detected and analyzed electronically. The

reported accuracy is about 20 Å, but techniques to improve the measurement

precision are probably available. Fizeau interferometry with illumination of two

wavelengths (Shaalan and Little, 1975) is discussed briefly in the following section.

FIGURE6.7. Fizeau fringes in transmission and in reflection, (a) Fringes in transmission constitute sharp,

bright lines against a dark background. Insert, the same transmission fringes butwithout the collimating lens

L1 of Figure 6.6. (b) Fringes in reflection constitute complementary fringes of dark lines against a bright

background. (Fine fringes are due to back reflection from the beam splitter.)
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6.4. FRINGES OF EQUAL CHROMATIC ORDER

In 1945, Tolansky developed a new technique of surface microtopography using

white-light illumination. The interferometer has evolved from the multiple-beam

Fizeau interferometer, where the fringes are formed by a thin, wedge-shaped film

bounded by two highly reflecting surfaces. This wedge reduces the fringe sharpness

(finesse) because of beam walk-off (Fig. 6.3). Therefore, Tolansky (1945a, 1945b)

had set the surfaces as parallel as possible, increasing the inherent finesse. With this

arrangement a collimated and orthogonal illumination with white light will produce a

channeled spectrum (Jenkins and White, 1957) of all the wavelengths, li, that satisfy

the relation

2t ¼ nili: ð6:11Þ

However to see the spectrum, one needs to use a spectrograph for dispersion. When a

narrow section of an ideal interference film (t constant) is imaged through a spectro-

graph, a series of laterally separated and parallel straight fringes (the channeled

spectrum) that satisfy Eq. (6.11) is displayed. If there is a variation in t within the

imaged section of the film, each point is passing a group of waves corresponding to

the local value of t. The spectrographic image then consists of nonstraight ‘‘fringes,’’

each one of which shifts along the wavelength scale, keeping t=l constant. As stated
earlier, the name fringes of equal chromatic order (FECO) is used since along each

fringe the order number n is constant.

The basic interferometric setup is illustrated in Figure 6.9. Figure 6.10(a) shows

some FECO fringes (black and white reproduction) of a cleaved mica surface, the

topographic variation of which is shown in Figure 6.10(b) (Tolansky, 1945a).

Determination of the ‘‘hills’’ and ‘‘valleys’’ of a surface microtopography becomes

very simple since fringes are convex to the violet on the ‘‘hills’’ and are concave to

FIGURE6.8. Fringe sharpening in a Fizeau interferometer. For a givenwedge between the Fizeaumirrors

M1, M2, a suitable choice of the direction of illumination SA1 can reduce the range of beam walk-off and

increase the effective number of interfering beams to sharpen the fringes.
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the violet on the ‘‘valleys.’’ The steepness of the incline at a local region of a surface

is given by the number of fringes intersected per unit length of the vertical section of

the fringes (Fig. 6.10). For a detailed exposition of FECO interferometry, the reader

should refer to Tolansky (1948a).

FIGURE6.9. The essentials of the interferometric arrangements for observing fringes of equal chromatic

order (FECO) either in transmission ðOT Þ or in reflection ðORÞ: S1, white-light point source;B, beam splitter

to aid observation in reflection; L1, collimating lens; M1, M2, parallel mirrors forming the interferometer,

one ofwhich is being compared to the other as a reference; L2, lens that images the channeled spectrum from

a small section of M1–M2 on the spectrographic slit S2 (slit S2, lenses L3 and L4, and prism P form the

spectrograph); OT , observation plane for fringes in transmission.

FIGURE 6.10. (a) Fringes of equal chromatic order (in black and white) from a freshly cleaved and

silvered mica surface tested against a reference flat mirror. The dense fringes at the central region along the

vertical direction indicate a sharp ridge, (b) A quantitative plot of the surface height variation along the

vertical direction depicted by the fringes of (a). (From Tolansky, 1948a.)
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Fringes of equal chromatic order interferometry find a very useful application in

the accurate determination of thin-film thickness and in surface roughness

measurement (Bennett and Bennett, 1967; Eastman, 1975; Bennett, 1976). The

steadily increasing demand for very high quality optical surfaces in modern optical

technology has motivated the development of FECO interferometry for studying

surface roughness and has led to a better understanding of the mechanism of

polishing (Koehler and White, 1955; Koehler, 1955b; Vinokurov et al., 1962;

Hodgkinson, 1970). One should be careful, however, to consider the problem of

the phase change on reflection due to the material coated on the substrate (Tolansky,

1948a; Koehler, 1953; Schulz, 1951a) and also the dependence of the phase change

on the thickness of the thin-film material (Schulz and Scheibner, 1950). It has been

observed that the original surface microtopography is more faithfully contoured by a

metallic silver film (Tolansky, 1948a) than by a dielectric film.

Following the lead of Tolansky, Shaalan and Little (1975) reported a different

technique of exploiting white-light fringes for the study of surface micro-topography.

To exploit the full advantage, one should use an illumination for the Fizeau

interferometer that has two wavelengths simultaneously present from two calibrated

monochromators (like constant deviation spectrometers). Figure 6.11 shows the

experimental arrangement. With this technique, the direction and the height of

crystal cleavage steps or of thin films can be measured with great facility. Any

region of the surface under test can be scrutinized by first choosing one of the

wavelengths to form a fringe in the region of interest, and then adjusting the second

monochromator to produce a different colored but matched fringe on the other side of

the step (Fig. 6.12). Since the two wavelengths are known, the direction and the

height of the step are determined easily using Eq. (6.11); but one should take into

account the phase change on reflection, which is not explicit in this equation (Shaalan

and Little, 1975).

FIGURE 6.11. Fizeau interferometry with white light, using two calibrated monochromators: S1, L1, P1
and S2, L2, P2, the two monochromators; B, beam splitter; L3, common spectrum-forming lens for both

monochromators; S3, entrance split for the Fizeau interferometer (M1–M2); L4, collimator for the

interferometer; L5, observing lens.
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6.5. REDUCTION OF FRINGE INTERVAL IN MULTIPLE-BEAM

INTERFEROMETRY3

In most regular interferometry with monochromatic or quasimonochromatic

illumination, the fringe interval is l=2, the fringes being contours of equal optical

thickness. This is the reason why in multiple-beam interferometry, the fringes being

very sharp and of high contrast, most of the surface area under test produces almost

no information about the surface topography. Even in the case of interferometry with

white light, discussed in Section 6.4, only a small surface area is imaged on the

spectrometer slit. One can scan the surface of the test object region by region.

However, this procedure is somewhat tedious.

A simpler solution (Saunders, 1951), using ‘‘pressure scanning’’ with normal

quasimonochromatic illumination, gives sharp Fizeau fringes but obtains a fringe

interval less than l=2. The basic technique requires placing the entire interferometer

in an airtight chamber and taking a series of exposures of the fringe system, the

fringes being shifted between every exposure by the desired amount. The shift is

achieved by a controlled amount of change in the optical path through a change in air

pressure. The same objective can be achieved a bit more conveniently by mounting

one of the mirrors on piezoelectric scanning devices and applying a suitable staircase

voltage to the piezoelectric (Roychoudhuri, 1974). This eliminates the necessity of

putting the entire interferometer within an airtight system.

In a different solution demonstrated by Herriott (1961), one illuminates the

interferometer simultaneously with a discrete set of wavelengths obtained through

FIGURE 6.12. Multiple fringes of variable chromaticity meeting across a step. The lighter fringe

corresponds to the red and the darker one to the green radiation as they appear in the original, which was

in color. (From Shaalam and Little, 1975.)

3The fringe interval can also be decreased by multipass interferometry, which is discussed in Chapter 7.
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a monochromator whose entrance illumination consists of a set of spatially separated

slits, instead of a single slit. Later Murty (1962) suggested a simpler solution,

whereby one can use a regular quasimonochromatic (or monochromatic) source

with a set of spatially separated pinholes to illuminate the interferometer. A multiple

set of fringes with a reduced fringe interval is provided. A simple computation to

achieve the desired fringe interval has been given by Murty (1962). Schwider (1968)

also used Herriott’s idea of multiple-wavelength illumination but employed the

channeled spectra from a suitable Fabry–Perot. The flexibility of the test is greatly

increased if one uses a tunable laser source, as described by Pilston and Steinberg

(1969). With the continuously tunable dye lasers currently available, such tests can

be carried out very conveniently and rapidly.

6.6. PLANE PARALLEL FABRY–PEROT INTERFEROMETER

It is somewhat surprising that even though the capabilities of the plane parallel

Fabry–Perot (1897) interferometer as a high-resolution spectroscopic instrumerit

were well understood, the interferometer was not used for surface measurements

until fairly recently (Schulz, 1950a, 1950b). The standard techniques that evolved for

its utility as a spectroscopic instrument require (a) illumination by an extended

source to obtain fringes of sufficient brightness and (b) a reasonable separation

between the plates to provide sufficient resolving power. These two general

conditions probably inhibited the use of this interferometer for surface topography

because the fringes formed under these conditions cannot describe the local defects

region by region; rather, every part of the fringes is characteristic of the overall

defects of the entire surface (Chabbal, 1953, 1958). In the following discussion we

describe briefly, in chronological order, a series of uses of the Fabry–Perot

interferometer for surface testing.

6.6.1. Measurement of Thin-Film Thickness

The thickness of thin evaporated films can be measured to an accuracy of
 15 Å (or

better) by using conventional Fabry–Perot fringes (Schulz, 1950a, 1950b). The

method exploits the fact that a simple sodium vapor lamp emits a close doublet

(5890 and 5896 Å) that forms, in general, a pair of closely spaced fringes and, in

particular, consonance and dissonance of the pair of fringes, depending on the

separation between the plates. Then a knowledge of the wavelengths and plate

separations for suitable positions of the pair of fringes on the two different layers

of the plate gives one the thickness of the thin film. The precise method of

quantitative analysis has been described by Schulz (1950a, 1950b). The advantage

of the method over the multiple-beam Fizeau is that the interferometer-forming

surfaces do not have to be pressed together so closely as to endanger the high-quality

surfaces and/or reflection coatings. [But here it should be remembered that Fizeau

fringes can also be formed with large separation of the plates but with a very small

wedge angle (Moos et al., 1963).]

236 MULTIPLE-BEAM INTERFEROMETERS



Schulz (1951a, 1951b) extended this technique to measure the phase change on

reflection from a thin film, its dependence on the wavelength and the thickness of the

material, and also the absorption coefficient of the film.

6.6.2. Surface Deviation from Planeness

Benedetti-Michelangeli (1968) developed a method to measure the local defects of

plane surfaces by using a narrow collimated laser beam to illuminate the local region

of the Fabry–Perot interferometer formed by the test and the reference plate. The

computation of the defect is carried out by using the standard relation for the

diameter of the Fabry-Perot fringes with the interferometer parameters as explained

in this paper. The method of illumination consists of a narrow collimated beam

incident on the parallel plates at an angle that can be varied in a smooth manner. The

reported accuracy of the flatness variation is l=400, bul, as has been rightly claimed,

the potential limit is much higher.

Again, one advantage of this method is that the plates under test do not have to be

pressed together so closely as to endanger the surfaces. [An important virtue of this

short paper of Benedetti-Michelangeli (1968) is that it describes briefly but

succinctly all the important factors that influence the fringe qualities of the

Fabry–Perot]. A more accurate method is to exploit the steep slope of an Airy

transmission curve and use a narrow collimated illumination that is orthogonal to the

parallel plates. The regional defects are obtained by changing the position of the

narrow collimated beam. An accuracy of l=1000 can be obtained by this method

(Koppelmann and Krebs, 1961). A major defect of either of these methods is that the

minimum area for which the average defect can be determined is limited by the

spatial size of the collimated scanning beam, which can be scarcely smaller than a

millimeter. Methods for determining point-by-point defects of surfaces are described

in the following paragraphs.

It appears that Hodgkinson (1969) was the first one to exploit the full potentiality

of the Fabry–Perot interferometer for the study of surface defects. Most multiple-

beam interferometric tests for surface topography suffer from the general

disadvantage that they do not record the complete topography of the entire surface

at a time; rather, they sample it only along the narrow fringes, leaving most of the

surface without any available information, as mentioned before. Techniques to

reduce the fringe interval (Section 6.5) alleviate the problem only partially.

Hodgkinson (1969) developed a method of recording an integrated interferogram

with the transmitted wavefront by slowly moving one of the mirrors of the

Fabry–Perot parallel to itself. The illuminating beam being an orthogonal collimated

monochromatic radiation, the transmission of the interferometer at every point is

proportional to the local plate separation. All the topographic information as well as

the defect distribution function (Chabbal, 1958) can be obtained from the

transmission characteristics of this integrated interferogram when it is properly

developed (Hodgkinson, 1969). The exposure and the development are such as to

produce a transmission characteristic that is almost linearly proportional to the

surface defects. Because of the limits on the precision obtainable from photographic
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work, the measurement of surface defects by this method has a precision of around

l=500.
It is possible to dispense with the intermediate record of an integrated interfer-

ogram if the transmitted wavefront is sensed by a spatially scanning photo detector

(or a high-resolution vidicon camera) and the information is stored for detailed

analysis (Fig. 6.13). The reference mirror can be mounted with pi-ezoelectrical

scanning devices, and the separation between the mirrors adjusted precisely so

that the detector records half the peak transmission, say, from a small central area.

Then the transmission from this central spot can be used as the reference signal to

measure the deviation from planeness of the other points. For a direct graphical

computation, the transmission curve along any diameter of the test surface is

compared against the ‘‘ideal’’ Airy curve, recorded through the reference central

spot as an oscilloscopic trace while scanning one of the mirrors. This is illustrated in

Figure 6.14. The half-width of the ‘‘ideal’’ Airy curve is given by

pp0 ¼ 2p

NR

 l

2NR

ð6:12Þ

Also, the abscissa [Fig. 6.14(a)] is linear in phase, and the finesse N is known either

by measurement from the actual Airy curve obtained from a small central reference

region or from the value of the reflection coating (Fig. 6.15). Then any fluctuation in

the transmission, AQ or BR, that corresponds to an optical path change of pq or pr,

respectively, can be directly transformed into fractions of a wavelength using Eq.

(6.12). The precision of the method depends on the minimum detectable signal like

pq that is controlled by the slope of the Airy curve (Polster, 1969). This precision is

limited by the noise inherent in the photodetection. Nevertheless, the measurement

precision good to l=2300 for surface flatness and roughness has been achieved by

Itoh et al. (2001). This paper demonstrates the extreme precision achievable by using

the principle of multiple-beam Fabry–Perot interferometer.

FIGURE 6.13. A Fabry–Perot interferometric arrangement for evaluating the surface defects of all the

points of a pair of mirrors. The entire interferometer is illuminated by a collimated beam. Defects are

determined from the change in transmission.One of themirrors ismounted on piezoelectricmaterial (PZ) to

choose the desired value of transmission.
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We conclude this section by mentioning another advantage of Fabry–Perot

interferometry. So far, we have discussed the problem of determining the positions

and sizes of local defects of surfaces. However in most optical testing, the approx-

imate overall (average) quality, l=m, of the entire surface is also of interest. This is

FIGURE 6.14. Determination of the surface defects every point of a pair of mirrors by Fabry–Pcrot

interferometry. (a) Reference (or ideal) Airy transmission curve for a Fabry–Perot with calibrated axes, (b)

Transmission curve along a particular diameter of the Fabry–Perot when the transmission from the small

central reference region was adjusted (using the PZ) to exactly half the peak transmission.

FIGURE 6.15. Effective surface finesse N plotted against reflectance R for a Fabry–Perot with mirrors

having a surface defect of residual spherical curvature. Curves for four different cases of surface flatness are

shown.
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most readily obtained by assembling a master plate and the plate under test to form a

Fabry–Perot of known ideal reflective finesse and comparing this quantity with the

experimental finesse given by the interferometer. Presented in Figures 6.15 and 6.16

are two sets of curves for effective finesse against surface reflectivity; the first one is

for pure residual spherical curvature and the second one is for Gaussian random

deviation from perfect flatness. These curves were computed (Roychoudhuri, 1973b)

using Chabbal’s analysis (1958). The usefulness of the curves is illustrated by a

simple example. Suppose that the reference flat and the flat under test have 98%

reflectivity, giving an ideal reflectivity finesse close to 155, but the experimental

finesse is, say, 80 then with a careful look at the curves of Figures 6.15 and 6.16, one

can conclude that if the surface under test has a pure residual spherical curvature, the

magnitude of the mean deviation from flatness is somewhat below l=200; or if

the deviation is of Gaussian nature or is a combination of both regular and Gaussian,

the mean deviation must certainly be less than l=400. Furthermore, one can use the

value of the peak transmission (Chabbal, 1958; Jacquinot, 1960; Hodgkinson, 1969)

or the nature of the broadened Fabry–Perot fringes (Hill 1963; Bhatnagar et al.,

1974) to discern and characterize the surface deviation more precisely.

FIGURE 6.16. Effective surface finesse N plotted against reflectance R for a Fabry–Perot with mirrors

having a surface defect of the Gaussian type. Curves for four different cases of surface flatness are shown

[Roychoudhuri and Hercher, 1978].
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6.7. TOLANSKY FRINGES WITH FABRY–PEROT INTERFEROMETER

When a pair of highly reflecting plane parallel surfaces is illuminated by a point

source, a characteristic series of composite circular fringes (with decaying secondary

maxima) can be observed at any distance from the surfaces. Such nonlocalized

fringes appearing on diverging conical surfaces were first noted and used for the

study of thin crystal plates by Tolansky (1943, 1946). Therefore, we shall call these

nonlocalized multiple-beam fringes Tolansky fringes.

Tolansky fringes can be used for localized precision testing by imaging a point

source between the mirror surfaces. For this method to be effective, the mirrors must

be fairly close. The observation can be carried out without the use of any microscope

or similar device by simply intercepting the fringes with a distant wall (Fig. 6.17).

Tolansky (1948a) gave a simplified analysis. The angular diameters of the fringes are

approximately given by 2yn, where yn follows the Fabry–Perot formula,

2t cos yn ¼ nl: ð6:13Þ
A detailed computation of the characteristics of these fringes was made by

Aebischer(1971).

Tolansky fringes also find useful application in the quick alignment of a laser

cavity (Bergman and Thompson, 1968) and the Fabry–Perot interferometer (Ford

and Shaw, 1969; Roychoudhuri, 1973b). For this purpose, if transmission fringes are

used, the secondary maxima should be aligned to be perfectly concentric with the

primary maxima; a clear residual tilt in the alignment is indicated when the

secondary maxima cross the primary maxima [Figure 6.18(a,b)]. However, when

FIGURE 6.17. Formation of nonlocalized Tolansky fringes at plane ðOT Þ by a Fabry–Perot (M1–M2)

when it is illuminated by a point source S.
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the fringes in reflection are used for alignment (the weak secondary, dark fringes are

almost invisible), the fringe system should be made concentric with the axis of the

cone of fringes (or the illuminating point source).

Another application of Tolansky fringes involves measurements of the long-term

stability of high-quality Fabry–Perot interferometers (or a laser cavity). As

mentioned before, the fringes formed by the Fabry–Perot under test can be

intercepted with a distant wall, and the contraction (expansion) of the fringes

measured in millimeters to obtain the longitudinal expansion (contraction) of the

Fabry–Perot separation in fractions of a wavelength. The tilt of the plates can also be

measured by observing the crossing of the secondary fringes over the primary ones.

We have used this technque to measure the long-term stability of a commercial

FIGURE 6.18. Some nonlocalized Tolansky fringes, (a) Fabry–Perot plates were ‘‘perfectly’’ parallel

and (b) the plates were tilted.

242 MULTIPLE-BEAM INTERFEROMETERS



Fabry–Perot (all Invar structure) and one of our own constructions (all Cervit

structure with thermally compensated mounts) (Roychoudhuri, 1973a, 1973b).

The latter Fabry–Perot shows better stability.

6.8. MULTIPLE-BEAM INTERFEROMETER FOR CURVED SURFACES

As mentioned in the introduction, multiple-beam interferometers to test curved

surfaces were developed independently by Herriott (1966), by Heintze et al.

(1967), and by Biddles (1969). Such interferometers are very useful for precision-

testing of various surfaces of different curvatures against a suitable master surface

when they are arranged as a concentric system. A similar interferometric setup can

also be adapted to other possible precision measurements, such as thermal, pressure,

or composition gradients in wind tunnels, shock tubes, and so on (Herriott, 1966).

The generic natures of interference fringes formed by multiple spherical wave fronts

have been developed by Zerbino et al. (1984).

The essential elements of the interferometer are portrayed in Figure 6.19, where a

master aplanatic M1 and a surface under test M2 form a concentric system. The point

source S is imaged at C, the common center, by the lens L1. With the precise

concentric arrangement, one finds at the observation plane (OT or OR) a uniform

wavefront with perfectly spherical surfaces. To produce contour fringes, one

displaces one of the mirrors by a short distance either laterally (to obtain straight

fringes) or longitudinally (to obtain circular fringes). [The latter technique is also

used with a confocal spherical Fabry–Perot to produce high-dispersion spectral

fringes (Persin and Vukicevic, 1973).] Since such displacement introduces

walk-off of the beams, Herriott (1966; see Fig. 5) introduced a compensating lens

at the common center to image one mirror to the other in such a way that the reflected

rays are deviated back to the same points on the mirrors, thus preserving the localized

surface testing capability. For various modifications of this basic interferometer see

the original references (Herriott, 1966, Heintze et al., 1967; Biddies, 1969). See

Rafalowski (1988, 1990) for testing coma of decentration and asymmetric

wavefronts with confocal Fabry–Perot interferometers.

FIGURE 6.19. Multiple-beam interferometric arrangement for testing curved surfaces. Mirrors M1 and

M2 are set almost concentric with point C. Lens L1 images point source S at common center C. Observation

can be carried out both in transmission ðOT Þ and reflection ðORÞ. Lens L2 images surfaceM1 onM2 and vice

versa to correct the walk-off defect.
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Such spherical interferometers can also be used with multiple (say, n) wavelength

illumination (Herriott, 1966) to reduce the fringe interval from l=2 to some l=2n and
thus increase the precision of testing, discussed in Section 6.5. Since such

interferometers normally have large separation, one can use regular multilongitudi-

nal mode lasers to advantage by appropriately matching the lengths of the laser and

the interferometer cavities. In matching the cavities, one should carefully take into

account the separation of the laser modes (laser cavity length), the free spectral range

of the interferometer (interferometric cavity length), and the finesse of the

interferometer. Here matching does not imply equality of the cavity lengths; they

can be integral or fractional multiples of each other as the situation demands

(Herriott, 1966). In using a regular multilongitudinal laser for long-path interferom-

eters, one must be aware of the difficulties in obtaining stable high-contrast fringes

(Batishko and Shannon, 1972).

6.9. COUPLED AND SERIES INTERFEROMETERS

In this section, we describe two interesting and useful modifications of

multiple-beam Fizeau interferometers. The first one consists in coupling a Fizeau

interferometer into a Twyman-Green interferometer as the dual interferometric

arrangement shown in Figure 6.20 (Pastor and Lee, 1968: Langenbeck, 1968;

Aebischer, 1970). For more details on such interferometers, see Cagnet (1954) and

Candler (1951). The second modification uses three plates in series instead of two

(see Fig. 6.22), as in conventional Fizeau interferometers (Post, 1954; Saunders,

1954; Roberts and Langenbeck, 1969).

FIGURE6.20. Acoupled interferometric arrangement between a Twyman-Green and a Fizeau to control

the contrast and exploit the dynamic moire technique in Fizeau interferometry.
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6.9.1. Coupled Interferometer

The coupled interferometer, which consists of a Twyman-Green interferometer with

one of its mirrors replaced by a Fizeau interferometer, combines several advantages

in a single setup. Studying opaque optical flats in a Fizeau setup poses a general

drawback because the fringes in reflection are sharp black lines against a bright

background. This in itself does not create the main problem, although the contrast is

poor with absorbing reflection coatings like silver film (Tolansky, 1948a; Schulz,

1951b). The Tolansky condition [Eq. (6.9)] for good-quality Fizeau fringes forces

one to have low-frequency fringes in the field of view, and since the fringes are very

sharp, most of the area does not produce any information, as has already been

mentioned. (Several solutions to this problem were discussed in Sections 6.4 and

6.5.) The use of white-light (Section 6.4) or multiple-wavelength illumination

(Section 6.5) is ruled out for reflection fringes since the large bright background

due to one wavelength will wash out the sharp dark fringes due to another

wavelength. This problem, which is inherent in studying opaque surfaces by

reflection Fizeau, can be eliminated by the use of this dual interferometer

(Fig. 6.20) to reverse the contrast and obtain transmission-like fringes in reflection

Fizeau interferometry (Pastor and Lee, 1968). However, in such a coupled

interferometer the reference surface (of the Fizeau arm), the Twyman mirror surface,

the beam splitter, and the light collimation must be of very good optical quality.

The other advantages of this coupled interferometer have been described in detail

by Langenbeck (1968), and we shall mention only the major points. It is well known

that the Moiré interferometry increases the sensitivity of the test under proper

conditions (see Chapter 12 for detailed background), where one superposes the

test interferogram against a suitable master reference pattern. A Moiré pattern

displaying only the absolute error will be presented, provided that the master

reference pattern has been made to include the inherent aberrations of the

interferometer itself (e.g., the errors introduced by the beam splitter in a

Twyman-Green). Such a master reference can be obtained ‘‘live’’ from the Fizeau

wedge in one arm of the dual interferometer. Such ‘‘live’’ fringes also have another

very useful advantage: The absolute direction of a surface deviation (‘‘hills’’ and

‘‘valleys’’) can be read directly from the resultant interferogram, especially if the

Fizeau fringes are used as the reference Moiré grid (because of the direct knowledge

of the order of the reference fringes). This is illustrated by the photograph in

Figure 6.21, taken from Langenbeck (1968).

Recently Gillen and Guha (2005) have demonstrated the use of the principle of the

coupled interferometers, a Michelson and an FP, to independently measure the

thickness and the refractive index of a substrate when available as a parallel plate.

Schwider (1968) has demonstrated a superposition fringe shear interferometer

(SFSI), which is a combination of an FP etalon and a shear plate to measure all

the complex aberrations of a microscope objective in a single and very stable set up.

Later Schwider (1997) developed this concept into a white light Fizeau

interferometer where the illumination passes through an FP etalon. When the air

gap (spacing) between the FP etalon plates and the Fizeau plates are equalized, one
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can take advantage of the order number of the fringes with reference to the OPD¼0

fringe.

6.9.2. Series Interferometer

In this second modification of a Fizeau interferometer, introduced to measure the

homogeneity of optical plates, the plate under test is inserted between two reference

Fizeau mirrors (Figure 6.22). Such a device is necessary for testing high-quality beam

splitters whose function is not only to reflect but also to transmit wavefronts without

distortion. Hence, a simple surface flatness test of the reflecting surface of the beam

splitter is not sufficient. The Fizeau fringes alone in reflection, with the plate under test

on the side of the observer, cannot directly map the index variation when there is a

simultaneous surface variation. Since the interfering light beams in such a three-plate

interferometer (Fig. 6.22) pass through the plate under test many times, the sensitivity

of the measurement of the index variation or homogeneity increases by a large factor.

FIGURE6.22. A series interferometer with threemirrors for precision testing of the homogeneity of aflat

(M2).

FIGURE6.21. (a) Twyman-Green interferogramof a deformedmirror. Concentric fringesmaybe high or

low areas. Dynamic observation is needed to determine the direction of order or interference. (b) Same, but

with superimposedwedgefield, permitting determination of the directionof the order of interference. (From

Langenbeck 1968.)
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Such interferometers have been named by their independent discoverers as the ‘‘in-line

interferometer’’ (Saunders, 1954) and the ‘‘series interferometer’’ (Post, 1954).

The various different conditions and reflectances for the plates of such

interferometers have been described in the references cited. Of the more recent

papers along similar lines by Ashton and Marchant (1967) and by Roberts and

Lan-genbeck (1969), the latter describes how to evaluate and obtain a contour map of

fractional index variation better than 10�6.

6.10. HOLOGRAPHIC MULTIPLE-BEAM INTERFEROMETERS

The advantages of holographic interferometric tests of optical components are

described in Chapter 12. When the choice has been made in favor of holographic

interferometry, one can introduce the precision associated with multiple-beam

interferometry by employing the hologram to reconstruct many wave-fronts that

can be combined to produce sharp multiple-beam fringes. This is achieved by the

hologram, nonlinearly recorded, that produces several higher order reconstructed

beams. Matsumoto (1969) and Bryngdahl (1969) described such techniques, by

which they recorded single-exposure holograms with single-wavelength

illumination. An obvious advantage of this method is that one can obtain

multiple-beam Fizeau type fringes from diffuse surfaces under test.

Burch et al. (1966) described a different method that uses linear holographic

recording, but has multiple exposures made while bending the object. Multiple

exposures can also be obtained by changing the direction of illumination or by using

multiple-wavelength illumination, instead of bending the object. But before

undertaking multiple-beam holographic testing (Shaalan and Jonathan, 1978) with

its attendant difficulties, one should make reasonably certain that simple two-beam

interferometry with a good-quality fringe detecting device is insufficient for the

precision necessary.

6.11. TEMPORAL EVOLUTION OF FP FRINGES

AND ITS MODERN APPLICATIONS

With the advancement of sophisticated mirror coatings, polishing, and alignment

technologies, people have been able to achieve reflectance exceeding 0.9999 and

effective finesses exceeding 10,000. Such super finesse FPs are becoming critically

important tools for various specialized applications such as gravitational wave

detection [LIGO], trace amount of gas detection by methods called CRDS (cavity

ring down spectroscopy) (Casaes et al., 2002), and study of micro cavity quantum

electrodynamics (Kimble, 1994; Blais et al., 2004). Optical testing of the surface

quality and/or alignment of such mirrors is a daunting task, but the principle of

operation of FP itself comes to rescue (Herbelin, 1980; Itoh, 2001). In fact, Herbelin

et al. exploited the long photon life time of super finesse FP to measure the high

reflectance, low absorption, and scattering losses using amodulated laser beam. Then
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this basic concept has been reinvented (O’Keefe and Deacon, 1988) for ultra

sensitive measurement of very low concentration of gases inside the FP cavity.

In Section 6.3.1, we have underscored that the multiply reflected infinite FP series

can be effectively terminated at n ¼ N, the finesse number [Eq. (6.3)], because the

energy carried by the beams after the Nth reflection become very small and hence

negligible. Here we justify it numerically. The relative reduction in intensity, b, of the

nth transmitted beam compared to the first one can be given by

b ¼ In=I1 ¼ T2R2n=T2 or lnb ¼ 2n lnR ð6:14Þ

For a range of moderate to high finesse FPwithR ¼ 0:9000 to 0.9999, the intensity of
the Nth beam will be reduced approximately by the same factor of b ¼ 1:87� 10�3.

So, one can safely terminate the infinite FP series by a finite sum of N terms, and the

normalized intensity can be reformulated as a series by complex conjugate

multiplication of the transmitted amplitude from Eq. (6.1),

Icwðn; tÞ ffi
XN�1

n¼0

TRmei2pnnt

 !
XN�1

m¼0

TRne�i2pmnt

 !

¼
XN�1

n¼0

T2R2n þ 2
XN�1

n 6¼m

T2Rnþm cos½2pðn� mÞnt�
ð6:15Þ

We have numerically verified that this Eq. (6.5) quite accurately represents the

traditional FP Eq. (6.1) as the superposition of a finite number of cosine fringes of

varying contrast (fringe visibility). We can now appreciate that for a high finesses FP,

the quantitative representation of FP fringes would require one to wait for a time t0
till the FP has been able to generate N transmitted beams. Thus, we define a very

important parameter for an FP; its characteristic time constant as [Kastler, 1974;

Roychoudhuri, 1975],

t0 ¼ Nt ð6:16Þ

This time duration t0 is required for the FP to establish its steady state fringe pattern

if a light beam is suddenly turned on. With the routine availability of light sources of

very short duration and very high speed detectors, the use of super finesses FP (large

t0) requires a simple classical understanding of the evolution of the FP fringes. If the

incident light beam, aðtÞ exp½i2pnt�, is a pulse of finite duration, dt, then following the
model of Eq. (6.15), the time varying, transmitted intensity can be given by

(Roychoudhuri et al., 2003; Roychoudhuri, 2004),

I0plsðt; n; tÞ ¼
XN�1

n¼0

aðt � ntÞTRnei2pnðt�ntÞ













2

¼
XN�1

n¼m¼0

T2R2na2ðt � ntÞ þ 2
X

n>m

T2Rnþmaðt � ntÞaðt � mtÞ cos½2pðn� mÞnt�

ð6:17Þ
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After integration over the entire train of the NR replicated pulses,

Iplsðn; tÞ ¼
XN�1

n¼0

T2R2n þ 2
XN�1

n6¼m

T2Rnþmgðjn� mjtÞ cos½2pðn� mÞnt� ð6:18Þ

Here, gðtÞ is the normalized autocorrelation function between the mth and the nth

replicated pulses that reduce to unity when the width of the pulse aðtÞ is theoretically
infinite. We have found that numerically it only needs to exceed t0 ¼ Nt.

Lt
dt!t0¼Nt

½Iplsðn; tÞ� ffi Icwðn; tÞ ð6:19Þ

This is a very important result because it shows by very simple mathematics that the

generalized time integrated fringe pattern for a pulse converges to the standard CW

fringe pattern (from Eq. (6.15) to Eq. (6.18); this recognizes that an FP is a pair of

beam splitters that replicates an incident pulse into a train of NR effective pulses with

the periodic delay of t. One does not need to complicate this simple physical picture

by introducing time-frequency Fourier transformations that tend to bring confusion

between the actual carrier frequency of the incident radiation and the mathematical

Fourier frequencies of a transformed pulse. Thus, if the width of the incident pulse

exceeds the characteristic time constant of the FP, it produces CW-like fringes;

otherwise the fringe becomes broader than the CW situation due to the factor gðtÞ.
This gðtÞ represents the reduction in the fringe contrast due to physical superposition
of unequal amplitudes (translated pulses). In the extreme case where dt < t, a fast

detector can only detect an exponentially dying train of pulses for lack of

superposition, irrespective of whether the carrier frequency of the pulse is in

resonance or antiresonance with FP spacing. This last case of nonoverlapping pulses

(Fig. 6.23c) can be represented by after using Eq. (6.7) and neglecting the cross terms

due to absence of overlapping,

Iplsðt; nÞ ¼ T2
X

n

R2na2ðtÞ ð6:20Þ

If one considers only the peak intensity, then a2 at the peak is a fixed number and the

time envelope of the intensity fall can be represented by

ln jIplsðt ¼ ntÞjpeak ¼ ln ½a2T2R2n� ¼ ð2 lnRÞnþ 2 ln ðaTÞ ð6:21Þ

If one plots the log of the transmitted peak intensities against the pulse number, n, this

will give a straight line with a slope of ð2 ln RÞ and an intercept of (2 ln ðaTÞ). Since
T þ Rþ A ¼ 1 ð6:22Þ

where A represents the absorption and scattering losses, one can use a single short

pulse to characterize the FP mirror properties or the absorption loss of trace gases if

its absorption frequency matches with the carrier frequency of the incident pulse.

Conceptually, this is the foundation behind characterizing FP mirrors with a

modulated laser (Herbelin et al., 1980) and the success of CRDS (O’Keefe and

Deacon, 1988). Readers should note that our t0 ¼ NRt, although closely similar, is
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not the photon life time for an FP, as is popularly defined in the literature using FP

with short pulses.We have defined it as the FP time constant that represents the actual

physical time period during which useful NR pulses are generated by the FP mirror

pair.

6.12. FINAL COMMENTS

Multiple-beam interferometry provides very high precision surface measurements

compared to two-beam interferometry under comparable data processing

environments. However, the requirements on source coherence and the basic
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FIGURE 6.23. A pair of beam splitters create a train of delayed, identical pulses of reduced amplitudes

from a single incident pulse. Thewidth of the pulse, dt, relative to the FP transit time, t ¼ 2d=c, determines

the degree of real physical superposition of the folded pulse inside the FP. For dt � t, the partial

superposition of the amplitudes is depicted in (a), and the corresponding, resultant intensity transmittance

is depicted in (b) at theFP resonance ð2d ¼ mlÞ.When the pulse is verymuch longer than t,wehavea steady

state condition, or CW interference. When dt � t, there is no physical overlap between the train of pulses.

This is depicted in (c). In the absenceof superposition, the transmitted intensitypeaks aregiven by the square

modulus of the individual replicated pulses; the roundtrip phase shift is no longer operative and the

resonance enhanced higher transmittance is also absent (Lee, 2005).
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experimental setup are more expensive and time consuming, so multiple-beam

interferometry is less useful in routine shop floor testing, where l=10 precision is

adequate. Measuring surface quality to much better than l=50 is more efficient using

various forms of multiple-beam interferometry exploiting principles of Fabry-Perot

interferometry and multiple-beam Fizeau interferometers including fringes of equal

chromatic order (FECO). There are many unique niches where multiple-beam

interferometers are ideally suited. The first historic example is the characterization

of surface microtopography using multiple-beam Fizeau interferometer (Bennett and

Bennett, 1967). However, readers interested in measuring surface roughness to a root

mean square (rms) accuracy of 20 Å using two-beam Fizeau interferometer may see

Eastman (1980), where he uses a piezoelectrically scanned interferometer. A natural

application of Fabry-Perot interferometry is to test the component Fabry-Perot plates

or solid etalons requiring a precision of l=200 or better (Hariharan et al., 1984;

Hernandez, 1988). Measurements of parallelism of optically contacted etalons have

been described by Killeen et al. (1981). Modern electronic industry requires bonding

optically flat, large silicon crystal wafers with precision micrometric spacing. Rhee

et al. (1990) have successfully exploited the principle of Fabry-Perot interferometry.

Multiple-beam interferometry using grating as one of the two conventional

mirrors has been developed for special applications. Useful examples can be found

from Bates and Li (1986) and also from Rodriguez-Zurita et al. (1998) and from

references there. A combination of a Fabry-Perot interferometer and a two-beam

interferometer has been cleverly used to very accurately measure the thickness of air

layers by Schwider (1979). Precision associated with multiple-beam fringes can also

be generated using holography that is suitable for realtime testing of deformation of

microobjects (Shaalan and Jonathan, 1978).

Sometimes, four-beam and three-beam interferometry are also useful. Ma kosch

and Jaerisch (1978) have described four-beam Fizeau interferometry for contactless

surface testing using a grating as the reference flat. Lin and Cowley (1986) have

described the advantages of using three-beam Ronchigram in measuring primary

aberrations. Strains of curved surfaces that are coated with photosensitive material

have been measured by Chiang and Kim (1984) by three-beam holographic

interferometeric techniques.

It is worth mentioning that there have been rapid technological advancements in

the diverse use of the principle of multiple-beam Fabry–Perot interferometry that are

beyond the domain of this book. Miniaturization of all instruments has become the

general technological drive. With the advancements in fiber Bragg gratings,

micro-opto-electromechanics (MOEMs) and nano photonics, Fabry–Perot interfe-

rometers are also getting integrated into miniature and micro-optical systems.

Testing such micro Fabry–Perots will become the next challenge.
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Acbischer N., ‘‘Etudes d’Interférences en OndesMultiples par Diagramme Coplexe Visualiser

les Franges en Réflexion.’’ Nouv. Rev. Opte. Appl., 1, 233 (1970).

REFERENCES 251



Aebischer N., ‘‘Calculs de Profils Dissymetriques Observables sur des Figures d’lnterférences
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7

Multiple-Pass Interferometers

P. Hariharan

This chapter discusses some variants of the conventional interferometers used for

optical testing in which one (or more) of thewavefronts is sent back andmakes two or

more traverses of either the whole system or a part of it. Such double- or multiple-

pass interferometers offer definite advantages for some testing applications.

7.1. DOUBLE-PASS INTERFEROMETERS

7.1.1. Separation of Aberrations

The interference pattern obtained with a lens in a Twyman–Green interferometer

gives a contour map of the wavefront leaving the lens aperture; however, when many

aberrations are present, estimation of the individual aberrations becomes difficult.

This problem can be simplified if the Twyman-Green interferometer is used in a

double-pass configuration (Hariharan and Sen, 1961d) so that the symmetrical and

the antisymmetrical parts of the wave aberration (see Chapter 13) are displayed in

separate interferograms.

As shown in Figure 7.1, the beams emerging from the interferometer through the

lens L2 are reflected back through it by the plane mirror M3 placed at its focus, and

the double-pass beams emerging from L1 are brought to a focus at the eye stop by the

auxiliary beam divider S2. If the source is shifted very slightly sideways, the two

images formed at the eye stop move off the axis in opposite directions, and it is

possible to view either the fringes produced by the double-pass beams or the normal

interference pattern.

The four double-pass rays derived from a ray incident on the beam divider S1 at O

can be identified as the AA0 ray (SOAOM3O
0A0O0S), the AB0 ray (SOAOM3O

0B0O0S),
the BA0 ray (SOBOM3O

0A0O0S), and the BB0 ray (SOBOM3O
0B0O0S), corresponding

to the paths they follow on the outward and return journeys. Since the wavefronts

emerging from the interferometer are inverted before they are sent back, it is easily

seen that if on the first pass the BB0 ray traverses the pupil of the lens under test at a
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point P(r, f), it traverses the pupil on the second pass at the diametrically opposite

point P0(r; pþ f). In the same manner, while the BA0 ray traverses the pupil at P, the
AB0 ray traverses it at P0.

At these two points, the terms in the expressions for the total wavefront aberration

(Hopkins, 1950) involving even powers of cos f (i.e., the defocusing, spherical

aberration, and astigmatism terms) have the same value, whereas the terms involving

odd powers of cos f (i.e., the distortion and coma terms) are of equal magnitude but

have opposite signs. The total paths of the four double-pass rays can therefore be

written as follows:

DAA0 ¼ D ðsayÞ
DBA0 ¼ Dþ 2Weven þ 2Wodd þ�D

DAB0 ¼ Dþ 2Weven � 2Wodd þ�D

DBB0 ¼ Dþ 2Weven þ 2Wodd þ�Dþ 2Weven � 2Wodd þ�D

¼ Dþ 4Weven þ 2�D

ð7:1Þ

whereWeven is the sum of the terms involving even powers of cosfWodd is the sum of

the terms involving odd powers of cos f (see Appendix 3), and�D is the difference

in the lengths of the A and B paths for the principal ray.

To select the required combinations of double-pass beams, the beam from the

collimator is polarized in the vertical plane, and a quarter-wave plate is introduced in

the A path. The plane of polarization of the AB0 and BA0 beams is then rotated

through 90�, while the plane of polarization of the AA0 and BB0 beams remains

unchanged. Hence, when the analyzer is set with its axis vertical, the AB0 and BA0

beams are extinguished, and interference takes place between the AA0 and BB0

FIGURE 7.1. Double-pass Twyman–Green interferometer for separation of symmetrical and antisym-

metrical wavefront aberrations. (From Hariharan and Sen, 1961d.)
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beams. The path difference between these is

DBB0 � DAA0 ¼ 4Weven þ 2�D: ð7:2Þ

Accordingly, symmetric errors such as change of focus, spherical aberration, and

astigmatism are shown in this interferogram with doubled sensitivity, whereas

features that depend on odd powers of cos f are eliminated.

When the analyzer is rotated so that its axis is horizontal, the AB0 and BA0 rays are
isolated and made to interfere. The path difference between these rays is

DBA0 � DAB0 ¼ 4Wodd ð7:3Þ

Only antisymmetric aberrations such as distortion and coma are shown in this

interferogram, along with any tilt of the reference mirror (which is equivalent to

the introduction of an additional ‘‘odd’’ term).

A typical set of interferograms obtained with an uncorrected lens is shown in

Figure 7.2. Figure 7.2(a) is a normal Twyman–Green interferogram, and

Figures 7.2(b, c) are double-pass interferograms, which show the ‘‘even’’ and

‘‘odd’’ components of the wavefront aberration. The patterns obtained by plotting

the expressions for the most important aberration terms are shown below each

interferogram.

FIGURE 7.2. Interferograms obtained with the double-pass Twyman interferometer. The patterns

obtained by plotting the expressions for the most important aberration terms are shown below each

interferogram. (a) Normal interferogram: 2W ¼ 0:25þ 1:85r cos f� 3:99r2 � 2:75r2 cos2 f�
1:57r3 cosf þ 4:33r4 þ 1:72r4 cos2 f: (b) Double-pass interferogram showing only the ‘‘even’’ terms:

4Weven ¼ 0:50� 7:98r2 � 5:50r2 cos2 fþ 8:66r4 þ 3:44r4 cos2 f: (c) Double-pass interferogram

showing only the ‘‘odd’’ terms: 4Wodd ¼ 3:70r cosf� 3:14r3 cosf: (From Hariharan and Sen, 1961d.)
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7.1.2. Reduction of Coherence Requirements

Residual wedge errors in plane parallel plates are commonly measured with the

Fizeau interferometer. This has the disadvantage that the path difference between the

interfering wavefronts is twice the optical thickness of the plate under test. It is

therefore essential to use a well-collimated beam of monochromatic light when

testing thick plates. Evenwith a laser source, a well-corrected objectivemust be used.

However, this problem can be eliminated if the interferometer is double passed, so

that superposition fringes are formed between the plate under test and its inverted

image.

One method (Cagnet, 1954) is to use the wavefronts transmitted through the plate

under test and reflect them back by means of an auxiliary afocal system. In this case,

it is necessary to coat the surfaces of the plate so that their reflectivity R is fairly

high. With a broadband source such as a high-pressure mercury vapor lamp, the

fringes then have the same intensity distribution as those obtained with strictly

monochromatic light in a conventional Fizeau interferometer with surfaces having

reflectivity R2.

An alternative that does not require the surfaces to be coated and involves very

little in the way of additional optics is to use a doubly reflected system of fringes (Sen

and Puntambekar, 1965). The optical arrangement shown in Figure 7.3 is the same as

that in a conventional Fizeau interferometer, except that the pinhole source is on the

reflecting surface of a plane mirror. If this pinhole is shifted slightly off axis, the rays

reflected back from the plate under test are brought to a focus at a point on this mirror

on the other side of the axis, so that they are reflected back once more through the

system. The double-pass rays are finally brought to a focus at the eye stop by a beam

divider.

A ray traversing the plate under test at a point P(x; y) on the first pass traverses

it at P0ð�x; �yÞ on the second pass. Let tðx; yÞ be the optical thickness of the plate
at P, � ¼ ð2p=lÞ½tðx; yÞ þ tð�x; �yÞ�, and c ¼ ð2p=lÞ½tðx; yÞ � tð�x; �yÞ�, and
assume that the spectral bandwidth of the source is such that no interference can take

place for a phase difference of �, while the variation of c over this bandwidth can be

FIGURE 7.3. Double-pass Fizeau interferometer for testing plane parallel plates. (From Sen and

Puntambekar, 1965.)
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neglected. With an uncoated glass plate whose reflectivity R is small, the fringe

irradiance at any point is then

Iðx; yÞ ¼ 2I0R
2ð2þ cos 2cÞ ð7:4Þ

where I0 is the irradiance of the original incident ray. This corresponds to the

irradiance distribution in two-beam fringes with a visibility of 0.5, which is adequate

for most measurements. The interferogram shows only the antisymmetrical (wedge)

errors in the plate under test, for which its sensitivity is twice that of the normal

Fizeau interferometer.

The double-pass Fizeau interferometer can also be used for testing right-angle

prisms and cube corners (Sen and Puntambekar, 1966). The setup for this is shown in

Figure 7.4. One half of the diagonal face of the prism is covered to isolate two

reflected wavefronts, one formed by reflection from the uncovered half of the

diagonal face and the other transmitted through the prism and reflected back by

the covered half of the diagonal face. The angle between these wavefronts is doubled

on the second pass, so that the sensitivity to angular errors is twice that obtainable

with a Twyman–Green interferometer.

Another version of this interferometer, shown schematically in Figure 7.5, can be

used to test concave surfaces (Puntambekar and Sen, 1971). With a thermal source,

the distance between the reference surface and the concave mirror in a conventional

Fizeau interferometer cannot be very large, so that only a limited range of curvatures

can be tested with a given reference surface. This problem can be overcome if a laser

source is used, but unwanted fringes due to reflection at other surfaces then appear.

Double passing permits a wide range of curvatures to be tested with a single reference

surface, using a thermal source.

In this case also, when the ray paths during the first and second passes are

symmetrical about the optical axis of the system under test, only antisymmetrical

errors appear in the interferogram. However, an additional shear can be introduced

between the inverted wavefronts if the pinhole mirror is rotated about an axis on its

surface passing through the common center of curvature; the symmetrical errors can

FIGURE 7.4. Double-pass Fizeau interferometer for testing reflecting prisms. (From Sen and Puntam-

bekar, 1966.)
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then be evaluated from the resulting interferograms. Different parts of the reference

surface are used for the sheared and unsheared interference patterns, but if the

reference surface is accurately spherical, this does not introduce any error.

7.1.3. Double Passing for Increased Accuracy

The accuracy with which measurements can be made with a conventional two-beam

interferometer is determined by the precision with which a local fringe displacement

�Q can be estimated as a fraction ofQ, the average interfringe spacing. This precision

is limited by the sinusoidal irradiance distribution in two-beam fringes. One method

to obtain greater accuracy, which was discussed in Chapter 6, is multiple-beam

interferometry. Double-pass interferometry (Hariharan and Sen, 1960a, 1961b) can

also be used to advantage in some cases.

Consider the double-pass Twyman-Green interferometer shown in Figure 7.6, and

assume that the end mirrors M1 and M2 are normal to the original incident beams in

the vertical plane, but make an angle equal to ðp=2Þ þ a with them in the horizontal

plane, so that M1 andM
0
2, the virtual image of M2 in the beam divider, make an angle

2a with each other. In this case, the only aberration term present is the ‘‘odd’’ tilt

term, and from Eq. (7.1) the total optical paths of the four double-pass rays emerging

from the interferometer at a distance x from the center of the field in the horizontal

plane are as follows:

DAA0 ¼ D ðsayÞ
DAB0 ¼ Dþ 4xaþ 2d

DBA0 ¼ D� 4xaþ 2d

DBB0 ¼ Dþ 4d

ð7:5Þ

where d is the distance between M1 and M0
2 at the center of the field. If all the

four beams are made to interfere, the complex amplitude Ap at this point can be

FIGURE 7.5. Double-pass Fizeau interferometer for testing concave surfaces. (From Puntambekar and

Sen, 1974.)

264 MULTIPLE-PASS INTERFEROMETERS



written as

Ap ¼ A exp � 2piD

l

� �

½1þ exp �2iðZ� xÞ

þ exp � 2iðZþ xÞ þ exp � 4iZ�
ð7:6Þ

where x ¼ ð2p=lÞ2xa; Z ¼ ð2p=lÞd, and A is the amplitude corresponding to a

single beam. The irradiance Ip at this point, obtained by multiplying Ap by its

complex conjugate, is then

IP ¼ 4I0ðcos 2xþ cos 2ZÞ2 ð7:7Þ

where I0 is the irradiance due to a single beam.

The irradiance distribution in the fringe system given by Eq. (7.7) is shown in

Figure 7.7 for three different values of the phase difference Z between the two paths at

the center of the field. A change in Z does not result in a displacement of the fringes

but causes only a change in the irradiance distribution. When Z ¼ 0 or np, where n is

an integer, alternate fringes are suppressed, whereas when Z ¼ ð2nþ 1Þp=2, all the
fringes have the same irradiance. At the latter point, a very small change in the value

of Z results in an appreciable difference in irradiance between adjacent fringes. This

effect can be used with a suitable compensator to achieve an accurate null setting,

permitting measurements of the changes in the optical path of l=500.
This technique is well adapted to measurement of the refractive index and

thickness of thin films (Hariharan and Sen, 1961c). Even higher accuracy is possible

by double passing a Fizeau interferometer (Hariharan and Sen, 1960b, 1961a).

FIGURE 7.6. Twyman-Green interferometer double passed to obtain modulated fringes. (From

Hariharan and Sen, 1960a.)
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7.2. MULTIPASS INTERFEROMETRY

Direct visual presentation of wavefront errors with increased accuracy is obtained in

multipass interferometry. In this technique, the fact that the total deformation of the

wavefront is proportional to the number of times it is reflected from or transmitted

through the optical system under test is utilized to increase the ratio of the fringe

displacement �Q to the average interfringe spacing Q.

The optical system of the multipass Twyman–Green interferometer (Langenbeck,

1967) is shown schematically in Figure 7.8. An additional beam divider is inserted in

one arm of the interferometer. If this makes a slight wedge angle with respect to the

mirror under test, the multiply reflected beams formed between them give rise to a

series of laterally separated images of the light source in the rear focal plane of lens

L2. This permits selecting a beam that has undergone any desired number of

reflections at the mirror under test by an aperture in the focal plane of L2. If the

reference mirror is tilted so that the light reflected by it also passes through the same

aperture, two-beam interference fringes are obtained between the reference wave-

front and a wavefront that has undergone n reflections at the mirror under test and

FIGURE 7.7. Irradiance distribution in the fringe pattern obtained with the double-pass Twyman–Green

interferometer for various values of Z, the phase difference between the two paths. (From Hariharan and

Sen, 1960a.)
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therefore exhibits a deformation of 2n �t, where �t is the deviation of its surface

from flatness.

In the resulting interferogram, �Q=Q ¼ 2n �t=l. Hence, the sensitivity is n

times greater than that obtained with a normal Twyman–Green interferometer.

The irradiances of the two interfering beams can be made approximately equal

and the visibility of the fringes optimized, if the auxiliary beam divider has a high

transmittance and an uncoated glass surface is used for the reference mirror. A better

solution (Langenbeck, 1969a) is to use a modified optical system in which the

reference beam is reflected off an uncoated glass surface at Brewster’s angle.

Rotation of the plane of polarization of the illuminating beam by a l=2 plate makes

it possible to control the attenuation of the reference beam.

A typical series of multipass interferograms of a flat surface with a square, l=8
deep step at its center is shown in Figure 7.9. Figure 7.9(a) is the normal

FIGURE 7.8. Multipass Twyman–Green interferometer. (From Langenbeck, 1969a.)

FIGURE 7.9. Interferograms obtained with the multipass Twyman–Green interferometer from a flat

surface with a square, l=8 deep step at its center. (a) Normal interferogram (first order) (b) Second order.

(c) Third order. (d) Fourth order. (e) Fifth order. (From Langenbeck, 1967.)
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Twyman–Green interferogram of the first-order reflection, and Figure 7.9 (b–e) are the

second-, third-, fourth-, and fifth-order multipass interferograms, respectively, showing

the increase in the relative fringe displacement�Q=Q with the order of the reflection.

A modified multipass interferometer for testing large concave surfaces has been

described by Bubis (1972). This is essentially an unequal-path interferometer using a

laser source in which an auxiliary concave mirror is introduced in the measuring arm.

As can be seen from Figure 7.10, the converging beam from the laser is split at the

beam divider into two beams, one of which is reflected back from a small concave

mirror to form the reference wavefront. The other beam undergoes a predetermined

number of reflections in the system comprising the mirror under test, and the

auxiliary concave mirror before it is reflected back to the beam divider to interfere

with the reference wavefront. (The number of reflections that the beam undergoes

can be controlled by the relative offsets of the centers of curvature of the mirror under

test and the auxiliary mirror.) A mica l=4 plate in the comparison arm and a Polaroid

analyzer are used to equalize the amplitudes of the interfering beams. A fivefold

increase in sensitivity has been obtained.

The Fizeau interferometer can also be operated in a multipass configuration

(Langenbeck 1969a, 1969b) if the zero-order reflected beam and one of the higher

order reflected beams are made to interfere. For this purpose, the wedge angle

between the surfaces is made large enough that the individual orders of reflection

can be separated in the focal plane. As shown in Figure 7.11, a stop with two

openings is then used to select the zero-order and a suitable higher-order beam.

An auxiliary lens whose front focal plane coincides with the stop gives interference

fringes between nominally plane wavefronts.

The relative amplitudes of the interfering beams are equalized by a simple

polarizing system. The zero-order beam is reflected from the uncoated part of a

partially coated mirror at the Brewster angle, while the higher order beams are

reflected from the adjacent metal-coated part. Rotation of the plane of polarization of

FIGURE 7.10. Multipass interferometer for testing large concave surfaces. (From Bubis, 1972).
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the illuminating beam with a l=2 plate then permits attenuating the zero-order beam

to any required degree.

Because of the relatively large angle between the zero-order beam and the nth-

order beam, the resulting interference fringes are too narrow to be viewed directly,

and the inteference pattern is best observed by a moiré technique. For this, a grating

with a line spacing equal to the average fringe spacing is introduced into the image

plane. The moiré fringes seen have the same spacing; their spacing can be controlled

by rotating the grating with respect to the interferogram.

Higher order moiré fringes can also be obtained by using a grating with a line

spacing equal to 1=m the average fringe spacing. This gives m times as many moiré

fringes across the field and a relative sensitivity m times as high, though at the

expense of fringe contrast.

The most serious problem in multipass interferometry is beam ‘‘walk-off.’’ This

integrates the errors over a finite region of the surface under test and can lead to fringe

shifts even in areas where there is no deformation of the test surface. The extent of

this walk-off is determined by the distance separating the multipass mirrors and by

the wedge angle. It can be minimized by tilting the interferometer with respect to the

incoming beam so that the beam, which is initially reflected toward the apex of the

wedge in the test path, is finally reflected at normal incidence by the auxiliary beam

divider and returns along the same path. However, in most cases, the order of

reflection must be chosen so that the walk-off is small compared to the lateral

dimensions of the defects under examination.1

FIGURE 7.11. Multipass Fizeau interferometer. (From Langenbeck, 1969a.)

1This limitation does not apply in some cases, such as thickness measurements of uniform thin films, for

which specialized optical systems using a narrow beam and permitting as many as 50 passes have been

described by Dupoisot and Lostis (1973).
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Misinterpretation of multipass interferograms can also result from misalignment

of the stop in the focal plane. If this stop accidentally cuts off low spatial frequencies

in the image, strong diffraction effects are observed, as in the Foucault test.

Applications where multipass interferometry is useful include measurements of

the homogeneity of glass plates and the precise determination of 90� or 45� angles on
roof prisms and cube corners, where high accuracy is required (Langenbeck, 1969b).

Another interesting application is in grazing incidence interferometry. Grazing

incidence interferometry (Linnik, 1941; Saunders and Gross, 1959) makes it possible

to test large surfaces with a system of relatively small aperture. In addition, it is

possible to test many nonoptical surfaces, such as fine-ground glass and metal, from

which a specular reflection of adequate intensity can be obtained at low angles of

incidence (Birch, 1973; Hariharan, 1975; Murty, 1976).

With incidence at an angle a, a beam of diameter d covers a strip of length

L ¼ d

cos a
ð7:8Þ

However, a deviation�t of the test surface from flatness results in a deviation of the

fringes from straightness given by the relation

�Q

Q
¼ 4�t cos a

l
ð7:9Þ

where �Q is the local fringe displacement and Q is the average spacing of the

fringes. As a result, the sensitivity of the interferometer is decreased by a factor

proportional to the cosine of the angle of incidence. The sensitivity can be increased

by a factor of 2, even with ground surfaces having a low reflectance, by using a

double-pass system in which the reflectance of the beam splitter is adjusted to

equalize the intensity of the two beams (Wilson, 1983). If the reflectivity of the

test surface is adequate, it is even possible to use the multiple pass arrangement

shown in Figure 7.12 (Langenbeck, 1969a). In this case, for an angle of incidence a,

the deviation of the fringes from straightness in the fringe pattern obtained with the

nth-order reflected beam is

�Q

Q

� �

n

¼ 4n �t cos a

l
; ð7:10Þ

so that the loss in sensitivity due to the high angle of incidence can be regained by

choosing a suitable higher-order beam.

Another interesting application of multiple-pass interferometry is accurate mea-

surement of the radius of curvature of a concave surface with a very long radius of

curvature, where the working distance available is limited (Gerchman and Hunter,

1979).

In this procedure, a reference plane surface and the test concave surface are set up

to form a confocal cavity. Collimated light entering such a cavity through the plane
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surface is brought to a focus as shown in Figure 7.13, on one or the other of the

surfaces. In such a confocal configuration, a collimated beam that has undergone the

appropriate number of reflections is reflected back as a collimated beam. The focus

setting can therefore be determined accurately by observing the interference fringes

formed by the reflected beam from the plane surface and the reflected beam from the

confocal cavity, using a setup similar to a Fizeau interferometer.

Configurations in which the order number n is even bring the light to a focus on the

plane surface, while configurations in which n is odd focus the light on the concave

surface. The equations relating zn, the separation of the surfaces in the nth-order

configuration, and R, the radius of curvature of the concave surface, can be obtained

from a paraxial analysis. This analysis shows that the expressions for the odd

configurations are similar to the even-order Chebyshev polynomials of the first

FIGURE 7.12. Grazing incidencemultipass interferometer used for testing large surfaces with an optical

system of small aperture. (From Langenbeck, 1969a.)

FIGURE 7.13. Ray paths in confocal cavities of orders 1, 2, and 3. (From Gerchman and Hunter, 1979.)
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kind, Tnþ1ðxÞ; ðn ¼ 1; 3; 5; . . .Þ, where x ¼ zn=R. Similarly, the expressions for the

even configuration are similar to the even-order Chebyshev polynomials of the

second kind, UnðxÞ; ðn ¼ 2; 4; 6; . . .Þ. In both the cases, the solutions of interest

are the first positive root.

Accordingly, if the change in the separation of the mirrors between two succes-

sive confocal configurations is measured, it is possible to calculate the radius of

the concave surface. Table 7.1 lists the values of zn, the cavity length for successive

confocal configurations, as a function of R, the radius of curvature of the concave

surface, while Table 7.2 lists zn � znþ1; the corresponding differences in the cavity

length between successive configurations.

As can be seen, the separation of the surfaces in the higher order configurations is

much smaller than the radius of curvature of the concave surface, while the distance

through which it has to be moved between successive configurations is even smaller.

As a result, surfaces with very long radii can be measured in a limited working space

using a short measuring slide.

The accuracy with which measurements can be made is limited by two factors.

One is the accuracy with which the position of best focus can be estimated; the other

is the accuracy with which the movement of the mirror can be measured. A limit is

also imposed on the highest order test configuration by the drop in the visibility of the

fringes. To optimize the visibility for higher order configurations, the plane surface

TABLE 7.1. Cavity length and radius of curvature

zn ¼ CnR.

n Cn

1 0.5

2 0.25

3 0.146,446,6

4 0.095,491,5

5 0.066,987,3

6 0.049,515,6

7 0.038,060,3

8 0.030,153,7

9 0.024,471,7

TABLE 7.2. Difference in cavity lengths

and radius of curvature.

R ¼ 4ðz1 � z2Þ
R ¼ 9:656;85ðz2 � z3Þ
R ¼ 19:625;12ðz3 � z4Þ
R ¼ 35:082;55ðz4 � z5Þ
R ¼ 57:235;25ðz5 � z6Þ
R ¼ 87:295;84ðz6 � z7Þ
R ¼ 126:477;41ðz7 � z8Þ
R ¼ 175:994;37ðz8 � z9Þ
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should have a reflectivity of about 0.6, while the concave surface should have a

highly reflecting coating. Acceptable fringe visibility can then be obtained even with

an n ¼ 9 configuration, and measurements of the radius of curvature can be made

with an accuracy better than 0.01%.
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8

Foucault, Wire, and Phase Modulation Tests

J. Ojeda-Castañeda

8.1. INTRODUCTION

The knife-edge method, introduced by Foucault (1858, 1859), and, in general, all the

Schlieren techniques—Töpler (1864, 1866, 1868), Ritchey (1904), Hart-mann

(1908), Platzeck and Gaviola (1939), Wolter (1949 and 1956)—have proved to be

extremely useful for testing optical surfaces. Rays may bemoved from their expected

trajectories (or wavefronts may be deformed) by optical aberrations, by diffraction,

or by a deformed, unfinished surface. The basic idea behind the Schlieren techniques

is to detect lateral displacements of rays by blocking out or modifying these

displaced rays. The blocking or modification can be accomplished by placing screens

in any of the planes of convergence of the light passing through, or being reflected

from, the optical surface under test.

The main advantages of the Schlieren techniques are their high sensitivity and

their simplicity, both in apparatus and in qualitative interpretation (at least from the

geometrical point of view). Of course, to appreciate the relative merits of one method

over others in this class, it is necessary to study its characteristics when it is used to

detect the presence of (a) aberrations greater than the wavelength of the illuminating

radiation (geometrical theory of image formation) and (b) aberrations smaller than

the wavelength (physical theory of image formation).

The choice of test depends on the circumstances.

8.2. FOUCAULT OR KNIFE-EDGE TEST

8.2.1. Description

The knife-edge test may be considered, in general, as a method for detecting the

presence of transversal aberrations. This is done by blocking out one part of a plane

traversed by rays or diffracted light so that a shadow appears over the aberrated

region as shown in Figure 8.1. This high simplicity of operation and interpretation
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makes the Foucault test unique among optical testing methods. This test may be well

considered as the first optical shop test, from which many other optical tests were

developed.

The Foucault test consists in placing an illuminated pinhole size source at one side

of the center of curvature of a spherical concave mirror as shown in Figure 8.2. The

image of this illuminated pinhole size source has the shape of a point source,

localized on the other side of the center of curvature of the spherical mirror.

When a knife edge is introduced, cutting the illuminating beam that forms the

image, an observer (placed behind the image) sees a shadow pattern appearing over

the otherwise uniformly illuminated surface of the mirror (see Figures 8.1 and 8.3).

In the case of a ‘‘perfect’’ spherical mirror, when the knife edge is introduced inside

the focus (toward the mirror), the shadow pattern consists of a dark region and a

bright region, sharply separated as shown in Figures 8.4 and 8.5. As the knife is

moved, the dark region appears to move across the mirror in the same direction in

which the knife edge moves. On the contrary, when the knife edge is introduced

outside the focus (away from the mirror), the dark region of the shadow pattern

FIGURE 8.1. Foucault method for testing a lens.

FIGURE 8.2. Knife-edge setup when testing a concave mirror.
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moves across the mirror in a direction opposite to that in which the knife edge moves.

When the knife edge is introduced precisely at the focus, the mirror appears to darken

suddenly, without any apparent motion of the shadow pattern. This is a very accurate

way of finding the center of curvature.

Moreover, if the concave mirror is not spherical, each zone over the mirror has a

different radius of curvature. In this case, when the knife edge is introduced, the

corresponding zone darkens for different positions of the knife edge along the optical

axis.

FIGURE 8.3. Foucault graphs of a parabolic mirror, (a) Before introducing the knife edge (b) After

introducing the knife edge.

FIGURE 8.4. Knife-edge testing of an aberration-free lens.
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For an irregular concave mirror there are many zones with different radii of

curvature and different centers of curvature. In this case, when the knife edge is

introduced, many different zones all over the mirror are darkened. An intuitiveway to

visualize how this shadow pattern is formed (given by Porter, 1953) is to imagine an

illuminating source at one side of the mirror, at the opposite side of the knife edge, as

shown in Figure 8.6. With this kind of illumination, it follows that the regions with

positive slope are illuminated and those with negative slope are not illuminated or

vice versa as shown in Figure 8.7.

To summarize, the Foucault test can be used (1) to measure the radius of curvature

of each zone over the mirror and (2) as a null test, for checking that all the zones of a

supposedly spherical wavefront have the same radius of curvature.

It has been found in practice that the Foucault test may be done perfectly by

employing an illuminating slit instead of a point source as shown in Figures 8.8(b

and c). The reason is that each point of the slit source produces an image with the

same shape and at the same distance from the knife edge. Therefore, all of the points

produce identical Foucault patterns, resulting in a tremendous gain in the brightness

of the observed pattern. The patterns, however, must be exactly identical if the

accuracy is to be preserved. This means that the slit and the knife edge must be

exactly parallel. To avoid the problem of setting the knife edge exactly parallel to the

slit, the arrangement in Figure 8.8d was suggested by Dakin (1967).

The use of an extended source, in the form of a slit, was previously used in flow

visualization (Wolter, 1956; Stolzenburg, 1965) rather than in optical testing. In the

previous field, it is also common to employ white-light sources for encoding optical

path differences in terms of color variations; see for example Banerji (1918),

Schardin (1942a, 1942b), North (1954), Wolter (1956), Weinberg (1961), and

O’Hare (1969). The Foucault test in white light has been analyzed by Bescos and

Berriel-Valdos (1986).

FIGURE 8.5. Foucalut graphs of an aberration-free mirror with focus errors. (a) Inside of focus. (b)

Outside of focus. Knife introduced from below.
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FIGURE8.6. Visualization of the shadow patterns formedwhen using the knife-edge test. Notice that the

imaginary light source and the knife edge are at opposite sides of the optical axis.

FIGURE 8.7. Foucault graph of an irregular mirror.
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Figures 8.9 and 8.10 show an instrument to perform the Foucault test. The

instrument is mounted in a carriage capable of translating it, along the optical axis

or perpendicularly to the optical axis, laterally or up and down.

8.2.2. Geometrical Theory

The border of the knife in the Foucault test is placed at a distance r1 from the chief ray

intersection (the origin of the X1-Y1 plane), and an angle f1 is subtended between the

Y1 axis and the knife edge as shown in Figure 8.11. The angle f1 will be defined as

positive if the slope of the knife edge is positive. The following equation defines the

border:

x1 cosf1 � y1 sinf1 ¼ r1 ð8:1Þ

The transmittance over this plane may be expressed as

Tðx1; y1Þ ¼
1 if x1 cosf1 � y1 sinf1 < r1
0 ifx1 cosf1 � y1 sinf1 � r1

�

ð8:2Þ

But since the X1-Y1 plane defines the paraxial plane of convergence of the ideal

wavefrontW, any point (x1, y1) over this plane satisfies, approximately, the following

property (Rayces, 1964):

ðx1; y1Þ ¼ �R
@W

@x
;�R

@W

@y

� �

ð8:3Þ

where R is the distance between the X ¼ Y and the X1 ¼ Y1 plane.

FIGURE 8.8. Different arrangements for the source and the knife edge.
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FIGURE 8.9. Photograph of the Foucault apparatus.

FIGURE 8.10. Diagrams of the Foucault apparatus.
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Using this result in Eq. (8.2), the transmittance function becomes

T
@W

@x
;
@W

@y

� �

¼
1 if � @W

@x
cosf1 þ

@W

@y
sinf1 <

r1

R

0 if � @W

@x
cosf1 þ

@W

@y
sinf1 �

r1

R

8

>>><

>>>:

ð8:4Þ

For the particular case of aberrations with rotational symmetry, any axis over the

X1-Y1 plane may be used as reference to specify the position of the knife edge. It

proves convenient, for our purposes, to choose the X axis, so that f1 ¼ 90�. Thus
Eq. (8.4) is reduced to

T
@W

@y

� �

¼
1 if

@W

@y
<

r1

R

0 if
@W

@y
� r1

R

8

>>><

>>>:

ð8:5Þ

Focus Error. Let us consider our first example, where we have an aberration-

free optical surface, but the knife is placed at some distance from the converging

FIGURE 8.11. Knife-edge position projected over the entrance pupil plane of the viewing system.
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X1-Y1 plane. In other words, only focus error is present in the wavefront aberration

function, that is,

Wðx; yÞ ¼ Dðx2 þ y2Þ ð8:6Þ

From Eq. (8.5) it follows that the boundary between dark and bright regions (bright

region, T ¼ 1 if y1 < r1 may be expressed as

y1 ¼
r1

2DR
ð8:7Þ

when D 6¼ 0. Hence, depending on whether the knife is placed inside the focus (D

negative) or outside the focus (D positive), the shadow along the Y axis (i.e., parallel

to the X axis) will change sides as shown in Figure 8.5, from the negative side of the Y

axis to the positive side of the Y axis.

This situation is precisely the one described before when indicating on which side

of a ‘‘perfect’’ spherical mirror the dark region appears when the knife edge is

introduced.

A particular case occurs when the knife edge touches the optical axis. The shadow

pattern will be a dark half-circle, the other half-circle will be bright. In other words,

the boundary between the bright and the dark regions is at y1 ¼ 0 when r1 ¼ 0 for any

D 6¼ 0.

Primary Spherical Aberration. When both primary spherical aberration and focus

errors are present, the aberration function is given by

Wðx; yÞ ¼ Aðx2 þ y2Þ2 þ Dðx2 þ y2Þ

Thus, using Eq. (8.5), the equation of the borders of the shadow pattern may be

written as

y3 þ D

2A
þ y2

� �

y� r1

4AR
¼ 0 ð8:8Þ

It is to be noted that since the equation has dependence on x, the boundary of the

shadow will not, in general, be limited by straight lines.

The boundaries of the shadow pattern along the Y axis for this case may be found

by letting x ¼ 0 in Eq. (8.8), which may then be written as

y3 þ D

2A
y� r1

4AR
¼ 0 ð8:9Þ

Being a cubic equation, it has three roots. Of course, we are interested only in the

roots that are real numbers. Defining the parameter � as

� ¼ r1

8AR

� �2

þ D

6A

� �3

ð8:10Þ
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we have, from a known result from algebra, the following:

1. If � < 0, there will be three real and unequal roots.

2. If � ¼ 0, there will be three real roots of which at least two are equal.

3. If � > 0, there will be only one real root and two conjugate imaginary roots.

Consequently, the shadow pattern will show more than one dark region if condi-

tions 1 and 2 are satisfied. This happens when the defocusing coefficient and the

primary aberration coefficient have different signs. In other words, by letting� � 0,

we can find from Eq. (8.10) that

r1

R

� �2

�
� 2

3
D

� �3

A
ð8:11Þ

Now, since the left-hand term is always positive, it follows that when the knife is

inside the focus (D negative) and there is positive primary aberration, or, equiva-

lently, when the knife is outside the focus and there is negative primary aberration,

the shadow pattern will show two dark regions.

Again, a particular case of this result occurs when the knife edge is touching the

optical axis. In this case r1 ¼ 0 and Eq. (8.9) becomes

y y2 þ D

2A

� �

¼ 0 ð8:12Þ

solutions of which are

y ¼ 0 ð8:13aÞ

and

y ¼ 

ffiffiffiffiffiffiffiffiffiffi

� D

2A

r

ð8:13bÞ

It is, indeed, clear that D and A must have different signs in order to obtain real

numbers as solutions of Eq. (8.13b). In Figures 8.1, 8.12, and 8.13, Foucault graphs

for spherical aberration are shown. For different treatments for spherical aberration,

the reader can refer to Conrady (1924) and Kingslake (1937).

Primary Coma. In the case of primary coma and focus error, the aberration

function is given by

Wðx; yÞ ¼ Byðx2 þ y2Þ þ Dðx2 þ y2Þ ð8:14Þ

Since primary coma does not have radial symmetry, we will consider the two cases

in which the knife edge is being displaced along the X1 axis and the Y1 axis,
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respectively. Using the same procedure employed in the preceding examples, we

have, in the case in which the knife edge is placed at a point on the X1 axis at a

distance r1 from the origin (parallel to the Y1 axis, f1 ¼ 0) that the shadow pattern

satisfies the following equation:

2Bxyþ 2Dx ¼ �r1

R
ð8:15Þ

which may usefully be written as

yþ D

B

� �

x ¼ �r1

2RB
ð8:16Þ

FIGURE 8.12. Knife-edge testing of a lens with spherical aberration.

FIGURE 8.13. Foucault graphs of an aspherical mirror.
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It is clear, then, that the shadow pattern consists of rectangular hyperbolas,

centered at the point ½O;�ðD=BÞ�. See Figure 8.14(a).
On the contrary, when the knife edge is introduced at a point on the Y1 axis

(parallel to the X1 axis, f1 ¼ 90�), the partial derivative of the wavefront aberration
function with respect to y is

@W

@y
¼ Bðx2 þ 3y2Þ þ 2yD ð8:17Þ

Hence the borders of the shadow pattern may be obtained from the following

equation:

x2 þ 3 yþ D

3B

� �

¼ r1

RB
þ 1

3

D

B

� �2

ð8:18Þ

which is the equation for an ellipse centered at point ½O;�ðD=3BÞ�. The major axis

of the ellipse will be parallel to the X axis and the minor axis will be along the Y

axis. See Figure 8.14(b).

The common procedure employed in the knife-edge test is to place the knife in

the paraxial plane. Thus, the shadow patterns will be centered at the origin of the

optical surface under test. Under this condition, a scale is placed over the shadow

pattern, and either the parameters of the rectangular hyperbola or the ellipse may be

readily obtained. In other words, the knife edge is located at the paraxial plane,

FIGURE 8.14. Diagrams showing the patterns associated with comatic aberrations. (a) Knife edge

parallel to the y1 axis. (b) Knife edge parallel to the x1 axis.
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D ¼ 0. Hence, when the knife is oriented parallel to the Y1 axis, in the Gaussian

plane, we know from Eq. (8.16) that the shadow pattern will be described by

yx ¼ �r1

2RB
ð8:19Þ

and since r1, the knife-edge position along the X1 axis, and the distance R between

the optical surface under test and the paraxial plane are known parameters, the value

of B may be immediately obtained by measuring the ratio r1=2RB.
In a similar manner, when the knife edge is oriented parallel to the X1 axis, in the

Gaussian plane, the shadow pattern in Eq. (8.18) may be written as

x2 þ 3y2 ¼ r1

RB
ð8:20Þ

Here, again, by knowing the parameters r1 and R, and measuring the ratio r1=RB, the
amount of coma present may be determined.

Astigmatism. If the optical surface under test has astigmatism, and (in order to

incorporate the position of the knife edge in any plane) we add focus error to the

wavefront aberration function, we have

Wðx; yÞ ¼ Cðx2 þ 3y2Þ þ Dðx2 þ y2Þ ð8:21Þ

As in the case of coma, since astigmatism does not have radial symmetry, we need

to consider the effect of introducing the knife edge in a particular direction. In

what follows, we consider the cases in which the knife edge is introduced along an

axis that subtends an angle f1 with the Y1 axis. Since the partial derivative of the

wavefront aberration function with respect to x is

@W

@x
¼ 2Cxþ 2Dx ð8:22aÞ

and with respect to y is

@W

@y
¼ 6Cyþ 2Dy ð8:22bÞ

the border of the shadow pattern can be obtained from Eq. (8.4) to give

�ðC þ DÞ x cos f1 þ ð3 C þ DÞy sinf1 ¼
r1

2R
ð8:23Þ

It is clear, then, that an optical surface with astigmatism will have a straight line with

slope c, given by

tanc ¼ 3 C þ D

C þ D
tan y1 ð8:24Þ
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From Eq. (8.24) it follows that, if the knife edge (oriented parallel to the Y1 axis, i.e.,

f1 ¼ 0�) is introduced along the X1 axis, the boundary of the shadow pattern consists

of a straight line parallel to the Y axis as seen in Figure 8.15(a), namely,

x ¼ �r

2 R ðC þ DÞ ð8:25Þ

and c ¼ 90�. On the contrary, when the knife edge (oriented parallel to the X1 axis,

i.e., f1 ¼ 90�) is introduced along the Y1 axis, the boundary of the shadow pattern

consitss also of a straight line parallel to the X1 axis, as seen in Figure 8.15(b) namely,

y ¼ r1

2R ð3C þ DÞ ð8:26Þ

and c ¼ 90�. Employing Eq. (8.24), it proves convenient to write the slope asso-

ciated with the angle subtended between the knife edge and the boundary of the

shadow pattern as in the Ronchi test (see Chapter 9), that is,

tan ðc� f1Þ ¼
C sin 2f1

Dþ Cð2� cos 2f1Þ
ð8:27Þ

FIGURE 8.15. Diagrams showing the shadow patterns associated with astigmatism. (a) Knife edge

parallel to the y1 axis. (b) Knife edge parallel to the x1 axis. (c) Knife edge along an axis making an anglef

with the y1 axis.
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From this it follows that in the paraxial plane ðD ¼ 0Þ, the angle between the knife

edge and the boundary of the shadow pattern is independent of the amount of

astigmatism present in the wavefront, leaving the optical surface under test.

Moreover, as the knife is displaced along the optical axis (i.e., a variation in D),

the slope of the boundary of the shadow pattern varies whenf1 is different from 0� or
90�. Consequently, a rotation of the shadow pattern, as shown in Figure 8.15, is

observed when the optical surface under test suffers from astigmatism.

It is worth noting that, when a concave mirror with a small f number is tested with

a pinhole size source placed off axis (as shown in Figure 8.2), the mirror, even when

perfect, appears to give rise to an astigmatic wavefront (see Chapter 18). To avoid this

effect of false astigmatic error, the mirror can be tested on axis using a beam splitter

as shown in Figure 8.16.

8.2.3. Physical Theory

As indicated in the introduction of this chapter, we restrict in terms of the diffraction

theory to the case in which the aberrations of the illuminating radiation. A reader

interested in a more general treatment is referred to the publications by Rayleigh

(1917), Banerji (1918), Zernike (1934a, 1934b, 1942), Gascoine (1944), Linfoot

(1945a, 1945b, 1946a, 1946b, 1946c, 1955), and Barakat (1969).

To find the observed Foucault pattern, let us first define the pupil function Aðx; yÞ
describing the complex amplitude at the exit pupil of the system under test as

Aðx; yÞ ¼ A0ðx; yÞ exp i
2p

l
Wðx; yÞ

	 


� A0ðx; yÞ 1þ i
2p

l
Wðx; yÞ

� �

ð8:28Þ

where, assuming uniform illumination of the exit pupil of the system under test

A0ðx; yÞ ¼ 1 if x2 þ y2 � S2max

¼ 0 if x2 þ y2 > S2max

ð8:29Þ

Smax is the semidiameter of the exit pupil and the wavefront deformations Wðx; yÞ are
measured with respect to a reference sphere with the center at the intersection

FIGURE 8.16. Foucault setup for testing on the optical axis.
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of the optical axis with the selected image plane (any selected plane near the paraxial

image). We can see that if the wavefront deformations Wðx; yÞ are smaller than the

wavelength of the light, the complex amplitude can be considered as the superposition

of two wavefronts, (a) one with amplitude equal to one and phase zero as in a perfect

aberration free system and (b) a wavefront with a variable amplitude directly propor-

tional to Wðx; yÞ and a constant phase equal to p=2.
Let us now calculate the complex amplitude Bðfx; fyÞ at the observation plane, loca-

ted at the center of curvature of the reference sphere, without the presence of the knife

for the time being, which is given by the Fourier transform of the pupil function, as

Bðfx; fyÞ ¼ =fAðx; yÞg ¼
Z1

�1

Z1

�1

Aðx; yÞ exp½i2pðfxxþ fyyÞ�dxdy ð8:30Þ

where r is the radius of curvature of the reference sphere and fx and fy are the spatial

frequencies in the Fourier plane located at the center of curvature of the reference

sphere. These spatial frequencies are related to the coordinates x1 and y1 in this plane by

fx ¼
x1

lr
and fy ¼

y1

lr
ð8:31Þ

The inverse Fourier transform of this complex amplitude will retrieve back the

complex amplitude at the exit pupil of the system, which can be written as

Aðx; yÞ ¼ =�1fBðfx; fyÞg ¼ =�1f=fAðx; yÞgg

¼
Z1

�1

Z1

�1

Bðfx; fyÞ exp½�i2pðfxxþ fyyÞ�dfxdfy
ð8:32Þ

However, if we introduce at the plane ðx1; y1Þ a phase and amplitude modulator

(filter) defined by a complex transmittanceMðfx; fyÞ; the filtered complex amplitude

A0ðx; yÞ at the exit pupil plane is
A0ðx; yÞ ¼ =�1 Mðfx; fyÞBðfx; fyÞg ð8:33Þ

Another method to calculate A0ðx; yÞ is by the convolution of the pupil function

Aðx; yÞ which is the Fourier transform of Bðfx; fyÞ with the Fourier transform Gðx; yÞ
of the filtering function Mðfx; fyÞ, which is given by

Gðx; yÞ ¼ =�1fMðfx; fyÞg ð8:34Þ

Thus, by using the convolution theorem

A0ðx; yÞ ¼ Aðx; yÞ 	 Gðx; yÞ ¼
Z1

�1

Z1

�1

Aðu; vÞGðu� x; v� yÞdudv ð8:35Þ

where the symbol * represents the convolution. This expression as well as Eq. (8.33)

are valid to obtain the complex amplitude at the image of the pupil of the system
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under test, for any magnitude of the wavefront deformation and for any kind of filter

at the plane of the Fourier transform of the pupil function.

In the Foucault test the filtering object is a knife edge, which is parallel to the x1
axis. Thus, we may write the filtering function as

Mðx1; y1Þ ¼ 1 y1 > �d

0 y1 > �d
ð8:36Þ

and hence Gðx; yÞ is given by

Gðx; yÞ ¼ 1

2
dðx; yÞ � i

1

xy
dðxÞ exp �i

2p yd

lr

� �	 


ð8:37Þ

With these general tools we will now describe two particular interesting cases:

(a) There are no aberrations and the knife edge is at the center of the Airy disc

ðd ¼ 0Þ.

In this case, using Eqs. (8.28) and (8.37) in Eq. (8.35), the complex amplitude at

the observation plane can be written as

A0ðx; yÞ ¼ 1

2

Z1

�1

Z1

�1

A0ðu; vÞ d u� x; v� yð Þ � i
1

pðy� vÞ dðu� xÞ
	 


dudv ð8:38Þ

Using the properties of the Dirac function this expression reduces to

A0ðx; yÞ ¼ 1

2
A0ðx; yÞ �

i

2p

Z1

�1

A0ðx; vÞ
1

ðy� vÞ dv ð8:39Þ

The second term, which is Hilbert transform, contains the desired information, since

A0ðx; yÞ is equal to one inside of the pupil; after integration of this term,

A0ðx; yÞ ¼ Const ln
yþ ðS2max � x2Þ1=2

y� ðS2max � x2Þ1=2













ð8:40Þ

where ln indicates the natural logarithm. From this expression we can conclude that a

bright ring should be observed around the pupil of the system under test, known as the

Rayleigh diffracting ring, which should not be interpreted as a turned edge or to be

confused with any other real error. In practice, the brightness of this ring is attenuated

by the finite size of the pupil of the observing system as shown by Welford (1970).

(b) The aberrations are small, but sufficiently large so that the knife edge covers

part of the image, although it is far from the optical axis so that the Airy disc size is

not covered.

8.2. FOUCAULT OR KNIFE-EDGE TEST 291



If the wavefront is not spherical as assumed in the preceding section, but aberrated

and the wavefront aberrationWðx; yÞ is small compared with the wavelength, then by

using the approximation in Eq. (8.28) in Eq. (8.30), we can obtain Bðfx; fyÞ as

Bðfx; fyÞ ¼ =fA0ðx; yÞg þ i
2p

l
=fA0ðx; yÞWðx; yÞg

¼ =fA0ðx; yÞg þ iB2ðfx; fyÞ
ð8:41Þ

where

B2ðfx; fyÞ ¼
2p

l
=fA0ðx; yÞWðx; yÞg ð8:42Þ

Thus, from Eq.(8.33) and taking into account that the knife edge is not covering the

central part of the image with a diameter equal to the Airy disc

A0ðx; yÞ ¼ A0ðx; yÞ þ i=�1fMðfx; fyÞB2ðfx; fyÞg ð8:43Þ

If we write this expression as

A0ðx; yÞ ¼ A0ðx; yÞ þ iðW 0
realðx; yÞ þ iW 0

imagðx; yÞÞ ð8:44Þ

since the observed intensity over the Foucault pattern is given by

Iðx; yÞ ¼ A0ðx; yÞA0 	ðx; yÞ ð8:45Þ

the observed intensity becomes

Iðx; yÞ ¼ A2
0ðx; yÞ þW 02

imagðx; yÞ þW 02
realðx; yÞ � 2A0ðx; yÞW 0

imagðx; yÞ ð8:46Þ

but since the values of W 0
imag and W 0

real are very small, we can approximate this

expression by

Iðx; yÞ � Const� 2A0ðx; yÞW 0
imagðx; yÞ ð8:47Þ

It is clear, the, that the intensity variations in the image plane show the presence of

aberrations, provided that a modification is done over the Fourier spectrum of pupil

function in the image plane, filtering with the knife edge, in order to obtain

W 0
imagðx; yÞ 6¼ 0. The contrast of the image intensity variations over the uniform

background is

g ¼ 4p

l
W 0

imagðx; yÞ ð8:48Þ
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The minimum contrast that the naked eye can detect is g ¼ 2%, so it is possible to see

that the theoretical limit to the sensitivity of the Foucault test is

l

200p
¼ W 0

imagðx; yÞ ð8:49Þ

which is in good agreement with l=600, as reported by Texereau (1957) when he

checked the sensitivity of the method by comparing it with the Lyot (1946) phase

contrast technique.

A detailed mathematical interpretation of how the image irradiance is related to

the aberration over the wavefront under test has been published by Ojeda-Castañda

(1978, 1979, 1980a, 1980b).

8.3. WIRE TEST

From Section 8.2, it is clear that the knife-edge method is very sensitive in detecting

zonal errors; however, the Foucault test is less sensitive in measuring the errors.

Moreover, Foucault graphs are not very useful in testing nonspherical mirrors, since

small details are lost, immersed on the mirror asphericity.

To measure the mirror asphericity, Ritchey (1904) suggested using a screen with

zonal slots over any aspherical surface, when testing mirrors by the Fourcault

method. In this way it is possible to calculate the amount of transversal ray aberration

of each zone, when it just becomes dark for a given position of the knife edge along

the optical axis; see Figure 8.16. It is also possible to compare the illumination of the

two slots of the zone, which are localized at opposite sides of the optical axis, to

check whether the regions behind the slots are regular and to match between them.

Because parabolic surfaces were the most commonly used mirrors, a screen for

testing these optical surfaces was designed to allow illumination in only the zones

over the mirror: the central (paraxial) region, the rim (marginal region), and an

intermediate region between them, which are associated with the two ends and the

center of the caustic (see Appendix 1), respectively Figure 8.17(a). Once the screen

FIGURE 8.17. (a) Zonal and (b) Couder screens for zonal Foucault testing.
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has been placed over the mirror, the knife edge can be used to find the places along

the optical axis in which the rays, coming from two opposite ends of a given zone,

converge (Gaviola, 1936). In other words, by finding each of the places where the

three zones darken, we can localize the two extremes of the interval of the caustic as

well as its center (Simon, 1976).

Since the amount of transverse aberration of the normals (associated with the

presence of spherical aberration in a paraboloid tested at the center of curvature) is

given by cS2, assuming that the light source and the knife move together, where again

S2 ¼ x2 þ y2 is the radius of any zone over the mirror and c ¼ 1/radius of curvature

of the paraxial region of the paraxial region of the mirror, the radius of the inter-

mediate region in the mask has to be S ¼ 0:707 Smax if we want the ideal transverse

aberration of the zone to be half the ideal transverse aberration at the edge, in order to

intersect the optical axis at the center of the caustic.

The width of the slots over the screen must be found experimentally. The slots

must be narrow enough to increase local precision but wide enough to avoid

diffraction effects.

Couder (1932) designed a more versatile screen [see Figure 8.17(b)] in which only

the width of the exterior zone (marginal region) has to be experimentally found; the

radii and the width of the inner zones can be obtained from the facts that the zones

immediately adjoin each other, and that the difference between the square of the radii

of successive zones is a constant. In other words, if the experimental value of the

radial width for the rim is dS, the difference between the outside and inside radii of

this n-fold zone is

S2n � S2n�1 ¼ ðdSÞ2 ð8:50Þ

since the inside radius of the n-fold slot is the outside radius of the ðn� 1Þ-fold
region. Consequently, the inside radius of the ðn� 1Þ-fold region, or the out-side

radius of the ðn� 2Þ-fold region, is given by

S2n�1 � S2n�2 ¼ ðdSÞ2 ð8:51Þ

and in this way the radii of all the zones can be determined.

The advantage of this screen is that the whole mirror is observed and the overall

shape of a surface can be tested. On the contrary, the disadvantage of any screen test

is that the error in the measurement is the order of magnitude of the tolerance to

which the optical surface is to be polished (Schroader 1953; Simon 1976). Therefore,

a finer test for aspherical surfaces is required, and it is in these cases that the wire

test and the Platzeck–Gaviola test (Section 8.4) can be usefully employed. The wire

test is applicable only to aspherical surfaces, conical or not, and works in a manner

similar to that of the zonal knife-edge test, by blocking out the deviated rays (or

diffracted light) across a very narrow region. For this purpose, a thin opaque wire is

placed sequentially near the intersections of the normals of various annular zones

with the optical axis of the mirror or surface under test (see Fig. 8.18). In this way, a

particular intersection of the normals to a particular annulus on the optical surface is
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found when the annulus in question appears dark against a uniformly bright back-

ground. In practice, this is done by displacing the wire together with the pinhole size

source (i.e., displacing the plane in which both the wire and the pinhole size source

are contained). The pinhole size source does not need to be monochromatic.

The main advantage of the wire test over the zonal knife-edge method, used when

masking the optical surface under test, is the ability of the former to restrict the

blocking-out action to a very narrow region at the annulus being tested. In addition,

diffraction effects are symmetrical with respect to the annulus. As a result, measure-

ment of the intersection of the normals with the optical axis is more precise, and in

this way the deviations between the experimental values of the intersections and the

theoretical values can be measured. In other words, the aberrations of the normals are

determined (see Fig. 8.19).

Moreover, the wire test has the advantage that the measurements of the intersec-

tions of the normals with the optical axis are referred to the theoretical value of the

intersection of the first or paraxial annulus. This feature can prove to be extremely

useful when testing an optical blank with a central hole.

Since the region covered by the wire corresponds only to the edge of the knife in

the Foucault test, the shadow patterns obtained with the wire test consist only of thin,

dark contours as shown in Figure 8.20. Compare these wire patterns with the

corresponding Foucault patterns in Figure 8.21.

The wire test proves to be a good technique for testing an aspherical optical

surface that is being figured; that is, it is an effective method of checking the

longitudinal ray aberration, from which it is possible to obtain the wavefront

aberration by using a numerical integration technique (Smith, 1966; Fell, 1968;

Loomis, 1968; Buchroader et al., 1972a, 1972b). The main disadvantage of the wire

test is that the width of the shadow pattern sometimes masks small displacement of

the whole shadow while the wire is displaced along the optical axis.

FIGURE 8.18. Wire setup for testing a lens.
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FIGURE 8.19. Diagram showing the wire method.

FIGURE 8.20. Shadow patterns obtained with the wire test.
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Meinel (1968) indicated that the wire test can also be used for testing astigmatism

by determining whether or not the annular shadows are circular.

8.3.1. Geometrical Theory

If the position of the central part of the wire is denoted by r1 and the thickness of the

wire by 2dr, the amplitude transmittance in the paraxial plane is given by

Tðx1; y1Þ ¼
1 if jx1 cosf1 � y1 sinf1j > dr

0 if jx1 cosf1 � y1 sinf1j < dr

�

ð8:52Þ

The center of the dark contour obtained with the wire test coincides with the

boundary between the dark and bright regions of the shadow pattern obtained with

the Foucault test. Of course, since the wire does not have the covering extension of

the knife, the dark areas are reduced to dark lines along the bounary positions.

In this section, we describe the procedure used for obtaining the wavefront

aberration of the optical surface under test from the experimental measurement of

the intersection of the normals with the optical axis. Let us denote the experimental

FIGURE 8.21. Shadow patterns obtained with the knife-edge test. Notice the similarity to the patterns in

Figure 8.20.
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and theoretical values of the intersection of the normal of the optical surface under

test with the optical axis by Z 0
n and Zn, respectively. The transverse ray aberrations are

then given by

TA ¼ ðZ 0
n � ZnÞSc ð8:53Þ

where c is the inverse of the radius of curvature of the central zone and S2 ¼ x2 þ y2.

The wavefront aberration is obtained from

W ¼ c2
Z s

s¼o

ðZ 0
n � ZnÞS dS: ð8:54Þ

This integral may be solved numerically by employing the trapezoidal rule (dividing

the region of integration into M subintervals) to give

WM ¼ c2

2

XM�1

m¼1

½ðZ 0
n � ZnÞmþ1Smþ1 þ ðZ 0

n � ZnÞmSm�

� ðSmþ1 � SmÞ:
ð8:55Þ

This formula can then be used to calculate the wavefront aberration from the

experimental values Z 0
n; Sm; Sm þ 1, and from the theoretical value Zn.

The procedure is as follows:

1. The theoretical value for the intersection of the normal with the optical axis is

(see chap. 18)

Zn ¼
1

c
� Kz ð8:56Þ

where K ¼ e2 (e is the eccentricity of the conic surface) and z is found by

calculating Eq. (18.1) for the experimental values of Sm.

2. The terms ðZ 0
n � ZnÞmSm can then be evaluated to obtain finally the wavefront

aberration WM over the optical surface under test.

8.4. PLATZECK–GAVIOLA TEST

The so-called caustic test, introduced by Platzeck and Gaviola (1939), is based on the

fact that the center of curvature of any off-axis segment over a ‘‘perfect’’ parabolic

mirror lies not on the optical axis but off-center on a curve termed the caustic, as was

pointed out by Wadsworth (1902). To prove this point Platzeck and Gaviola per-

formed a beautiful experiment, masking a parabolic mirror except in two symme-

trical zones of elliptical shape. The mirror was then illuminated by a slit source and

the images formed with this optical system were recorded for different positions of

the illuminating slit.
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A series of photographs (showing the images of the illuminating slit) taken from

different positions inside and outside of the focus of the mirror clearly indicated (see

Fig. 8.22), which is a sketch of the photographs taken by Platzeck and Gaviola) that

when both beams cross the optical axis, the image is not sharp. But it shows the

diffraction structure associated with the images obtained when the optical system has

focus errors. Furthermore, in the same series of photographs it appears that behind

the region where the two images cross the optical axis, the focal plane for these

images is found.

Hence, Platzeck and Gaviola concluded that to obtain accurate measurements, it

was necessary to use this focal plane with the images outside the optical axis as the

modifying plane. Also, a thin opaque wire would be more suitable as the modifying

screen since the wire would coincide with the image of the illuminating slit.

The method itself has proved to be useful and accurate. As Schroader (1953) has

pointed out, it has the following main advantages:

1. It is possible to observe one hole of the mask at a time.

2. Holes considerably wider than those used in testing zonal errors with the

amplitude knife-edge test may be perforated in the mask.

3. The criteria for knowing the center of curvature of the portion of a mirror

exposed by one hole in the mask, that is, the minimum of illumination that

passes an opaque wire or strip are more reliable than the criteria for matching

the irradiance distribution within the two holes, when using the knife edge on

axis.

8.4.1. Geometrical Theory

In this section, we first show how to calculate the theoretical center of curvature for a

section of any conic of revolution (Cornejo andMalacara, 1978) and then indicate the

procedure employed in measuring the shape of the mirror from the experimental and

theoretical data for the centers of curvature of the several sections over the optical

surface under test.

We define a new set of coordinates ðZ; xÞ, also called caustic coordinates,

such that the origin of the plane is at the center of curvature of the central zone,

FIGURE 8.22. Sketch showing the appearance of the photographs taken by Platzeck–Gaviola using two

slits over the mirror.
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as shown in Figure 8.23. The center of curvature of any zone will be referred to

this origin.

The coordinates ðZ; xÞ for the center of curvature of any conic of revolution can be
found from the following formula:

x

2ðZþ KzÞ ¼
S

ð1=cÞ � ðK þ 1Þz ð8:57Þ

for the triangles in dashed lines in Figure 8.23. From the same figure, the distance

R between a point on the mirror with coordinates ðz; SÞ and the center of curvature

at ð1=cþ Z; x=2Þ can be obtained from

R2 ¼ Sþ x

2

� �2

þ 1

c
þ Z� z

� �2

ð8:58Þ

Of course, R is the radius of curvature, which can also be found by using a well-

known formula of calculus for the radius of curvature of any function S, that is,

R ¼ ½1þ ðdz=dSÞ2�3=2

d2z=dS2
ð8:59Þ

Now, the first derivative of z with respect to S is given by (see chap. 18)

dz

dS
¼ cS½1� ðK þ 1Þc2S2��1=2 ð8:60Þ

FIGURE 8.23. Geometry of the caustic.

300 FOUCAULT, WIRE, AND PHASE MODULATION TESTS



from which the second derivative can be calculated to give

d2z

dS2
¼ c½1� ðK þ 1Þc2S2��3=2 ð8:61Þ

If these two results are employed in Eq. (8.59), we have

R ¼ 1

c
ð1� Kc2S2Þ3=2 ð8:62Þ

If, however, the value of x=2 in Eq. (8.57) is used in Eq. (8.58), we have

R2 ¼ 1

c
þ Z� z

� �2

1þ S2

½ð1=cÞ � ðK þ 1Þz�2

( )

ð8:63Þ

Now, from formulas (8.62) and (8.63) we can obtain the value of Z, namely,

Z ¼ ð1=cÞð1� Kc2S2Þ3=2

1þ S2

½ð1=cÞ � ðK þ 1Þz�2

( )1=2
þ z� 1

c
ð8:64Þ

which, to eliminate the dependence on S, can be rewritten by using the expression for

z as

Z ¼ �Kzf3þ czðK þ 1Þ ½czðK þ 1Þ � 3�g ð8:65Þ

This value can be used in Eq. (8.57) to obtain the value of x, that is,

x ¼ �2ScKz
2þ czðK þ 1Þ½czðK þ 1Þ � 3�

1� czðK þ 1Þ

� �

ð8:66Þ

From Eq. (8.66), it is possible to calculate the theoretical position of the center of

curvature ðZ; x=2Þ of a particular zone of the mirror with coordinates ðz; SÞ.
The usual procedure when employing the caustic method is as follows (Schroader,

1953):

1. Measure c from the radius of curvature of the central zone of the mirror.

2. Cut a mask with an odd number of zones in order to have a zone at the center.

3. Determine the center of curvature of the central zone, with the shadow pattern

over the mirror while the wire is displaced along the optical axis.

4. Calculate the theoretical value of ðZ; xÞ and the experimental values of ðZ0; x0Þ
for the center of curvature of a particular zone, as the wire blocks out the light

coming from each slot.
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It is to be noted that only in this method each slot is, for a particular zone,

tested separately. Consequently, the method may be particularly useful for

testing errors that are not symmetrically distributed.

5. Calculate the theoretical minus the experimental values. If the difference is

positive, the particular zone is overcorrected and vice versa.

The diffraction theory of this test has been considered by Simon (1971), Platzeck

and Simon (1974), and Simon et al. (1979). An interesting variation of this method is

considered by Teocaris and Gdoutos (1976).

8.5. PHASE MODULATION TESTS

Zernike (1934a) analyzed the Foucault test in terms of diffraction theory. At the same

time he suggested an improved form of the knife-edge test, which he named ‘‘phase

contrast’’ (Linfoot, 1946b). Essentially the same method was discovered quite

independently by Lyot (1946). A further application of the phase modulation

technique was later developed by Wolter (1956).

8.5.1. Zernike Test and its Relation to the Smartt Interferometer

The point diffraction interferometer has been previously described in Chapter 3.

The aberrated wave to be measured is focused to produce an image, at a diffract-

ing plat. This diffracting plate has a small central circular zone of radius a, with a

smaller amplitude transmission than the surrounding annular zone as illustrated in

Figure 8.24.
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FIGURE 8.24. Transmission in diffracting plate of a Smartt Interferometer. (a) Total transmission and

(b) transmission separated into two components.
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The annular region is coated with an amplitude transmission Text, typically

smaller than one, while the central disc is made with an amplitude transmission

Tdisc, typically equal to one. To produce the desired 90
� phase difference between the

two interfering wavefronts, the central zone is coated with a film with optical

thickness f, so that the phase optical path through the center is greater than the

phase optical path through the annular region. It has been shown in Section 3.8 that

the phase difference g between the wavefront under test and the reference wavefront

generated by diffraction on the central zone is given by

tan g ¼ Tdisc sinðfÞ
Tdisc cosf� Text

ð8:67Þ

but since we need g ¼ p=2 we require that

cosf ¼ Text

Tdisc
ð8:68Þ

To produce an interferogram with good contrast, the two interfering wavefronts

should have the same amplitudes at the observing plane. This is controlled by means

of the transmittances Ta and Tb as well as by the central disk diameter as described by

Golden (1977a and 1977b).

The phase contrast method has the following advantages for testing an optical

surface with aberrations smaller than the wavelength of the illuminating radiation:

1. The aberrations appear as a linear superposition term ove r a uniform back-

ground intensity.

2. The contrast of the aberrations, over this uniform background intensity can

be increased by decreasing the intensity in the background illumination, that

is, by decreasing the optical transmittance over the l=4 region. The math-

ematical formulation associated with this method is given in the following

discussion.

The modifying function employed in the phase contrast test may be described as a

disk with a complex amplitude transmittance equal to TAdisc exp ðifÞ and a radius a
nearly equal to the radius of the Airy disk. Outside this disk the complex amplitude

transmittance is equal to Text. Thus, the filtering plate has an amplitude transmission

MðsÞ ¼ Tdisc expðifÞ if s <
a

lr

MðsÞ ¼ Text if s >
a

lr

ð8:69Þ

with

V >
a

lr
ð8:70Þ
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Equivalently, as illustrated in Figure 8.25, we can write MðsÞ ¼ M1ðsÞ þM2ðsÞ,
where

M1ðsÞ ¼ Tdisc expðifÞ � Text for 0 < s <
a

lr

M2ðsÞ ¼ Text for 0 < s < 1
ð8:71Þ

The observed complex amplitude at the image of the observed pupil of the system

under test, after being filtered by the diffraction plate is given by

A0ðx; yÞ ¼ =�1ðM1ðfx; fyÞ=ðAðx; yÞÞÞ þ =�1ðM2ðfx; fyÞ=ðAðx; yÞÞÞ ð8:72Þ

which, after using the value of the filter functions in Eq. (8.55)

A0ðx; yÞ ¼ TextAðx; yÞ þ =�1ðM2ðfx; fyÞ=ðAðx; yÞÞÞ ð8:73Þ

The phase contrast method is frequently presented as the result of two-beam or

multiple-beam interference (Françon, 1952; Françon and Nomarski, 1952; Golden,

1977a; Smartt, 1975) The first term represents the wavefront under test with an

amplitude Text and the second term represents the reference wavefront. The complex

amplitude B0 at the center of the image (optical axis) given by the central ordinate

theorem is

B0 ¼
Z1

�1

Z1

�1

Aðx; yÞdxdy ð8:74Þ

If we assume that the central disk is small enough so that the amplitude and phase

of the image over this disk is a constant equal to B0, the second term in Eq. (8.56) can

be written as

2pa2ðTdisc expðifÞ � TextÞB0

J1ð2praÞ
ð2praÞ ð8:75Þ

Wavefront
under test

Diffracting
plate

Imaging
lens

FIGURE 8.25. Testing a lens with a Smartt interferometer.
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so that the amplitude of the reference wavefront at the optical axis is equal to

2pa2ðTdisc expðifÞ � TextÞB0 ð8:76Þ

The condition for maximum visibility of the fringes is that the wavefront under test

and the reference wavefront should have the same intensity. Hence,

2pa2ðTdisc expðifÞ � TextÞB0 ¼ Text ð8:77Þ

If the wavefront aberrations are small compared with the wavelength and the phase

difference between the two interfering wavefronts is p=2, the image intensity

variations are proportional to the aberration function. Of course, if the aberration

is a smoothly varying function fairly distributed over the object, its diffraction pattern

may be passing by the central disk. Therefore, it will remain invisible in the image

intensity distribution. The contrast can be increased by decreasing the background of

the image intensity, that is, by increasing the absorption of the central disk, as it was

pointed out before.

To make more clear how the two interfering waves interact in this interferometer,

let us represent the complex amplitude leaving the surface under test by

Aðx; yÞ ¼ A0ðx; yÞ exp i
2p

l
Wðx; yÞ

� �

ð8:78Þ

where again Wðx; yÞ is the wavefront deformation. The complex amplitude after

passing the diffracting plate, as described in Figure 3.23 in chapter 3, may con-

veniently be written as

A0ðx; yÞ ¼ TextA0ðx; yÞ exp i
2p

l
Wðx; yÞ

� �

þ KðTdisc expðifÞ � TextÞA0ðx; yÞ
ð8:79Þ

where the first term is the wavefront under test and the second term is the ‘‘ideal’’

spherical reference wavefront. From Eq. (8.75), the factor K is

K ¼ 2pa2B0

J1ð2praÞ
ð2praÞ ð8:80Þ

8.5.2. Lyot Test

Finally, as Texereau (1957) pointed out, although the phase contrast technique has

proved to be extremely useful in microscopy, its value in optical testing seems to be

limited. The problem is that the test is photometric, that is, it is based on irradiance

variations, and the interpretation and application of the results obtained are not
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straightforward tasks. This is especially true when a clear understanding, in terms of

physical optics, of the properties of the test is lacking. The most common application

in optical testing of the phase contrast method involves the detection of surface

defects that are small in area and amplitude.

As mentioned before, the Zernike test usually is performed using a point source

(white or monochromatic) and a phase plate with a small circular disk, smaller than

or equal to the Airy disk. Another alternative, used with modern phase contrast

microscopes, is to employ a circular, or annular, extended light source and a phase

plate whose retarding zone exactly coincides with the geometrical image of the

source. The advantages of this procedure are that more light is used and that it is

easier to manufacture a larger phase plate. Using this principle, Lyot (1946),

independently of Zernike, developed a techinque in which he used a relatively

wide slit (100–200 mm) as an illuminating light source. This slit is imaged by the

optical surface under test upon a phase-retarding slit with an optical thickness of l=4.
To increase the contrast, the transmittance of the retarding slit is reduced to about

T ¼ 10�D, with D being the optical density, which ranges from 1.5 to 3.0. See for

example Françon and Nomarski (1952).

Since the light source is a slit and not circular, the light diffracted in the direction

of the slit will not alter its phase relative to the undiffracted light and thus, the

corresponding errors will not be detected. This means that only errors with variations

in the direction perpendicular to the slit will be detected. This preferential orien-

tation of the errors is shown in Figure 8.26, taken with a vertical slit. This detected

pseudo-orientation of the error can be ignored, assuming that the real errors are

randomly oriented.

The Lyot version of the phase contrast method is so sensitive that it is possible to

see defects that deviate from the mean surface by 1 Å with a contrast equal to 15%.

FIGURE 8.26. Lyotgraph taken with avertical phase slit. (From Françon, 1963.)
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When a polychromatic light source is employed, the phase-modulating screen can

have different optical thicknesses for the different wavelengths present, and the

image irradiance variations can appear in color.

Information about the experimental procedures for making phase disks or phase

slits can be found in the articles of Burch (1934), Zernike (1942), Françon and

Nomarski (1952), and Golden (1977b). This test can also be implemented in

polarized light (Kastler and Momtarnal, 1948).

8.5.3. Wolter Test

The l=2 phase-edge or phase-knife test, proposed by Wolter (1949), and indepen-

dently by Kastler (1950), can be regarded as an improvement of the wire test or the

zonal Foucault method. The idea is to employ usefully the diffracted light at one side,

instead of blocking it out as when the knife edge is used.

The method is based on reversing the sign of the complex amplitude across a half-

plane, while the other half remains unaltered. This is achieved by introducing a

transparent half-plane with an optical thickness equal to l=2. This method is also

known as the Hilbert transform method (Lowenthal and Belvaux, 1967; Belvaux and

Vareille, 1970, 1971) because mathematically the image is obtained as the Hilbert

transform of the object.

Since in this test more diffracted light is collected by the eye of the observer, this

method would be expected to produce a shadow pattern of higher contrast. Therefore,

the l=2 phase-edge test is expected to be more sensitive and accurate, in locating on

the aspherical surface under test the projected shadow of the phase edge, than the

normal knife-edge test. Here, again, as in the phase contrast method, it is not possible

to explain in terms of geometrical optics the irradiance variations over the image

plane when a l=2 phase edge is introduced near the paraxial focal plane. However,

Landgrave (1974) made the additional assumption that only the rays passing through

the border of the l=2 phase edge interfere destructively.

Although the later approach may appear primitive, it is in accordance with the fact

that the Fresnel diffraction images of a l=2 phase edge have zero irradiance values of
the image at the border (Kastler, 1950; Hopkins, 1952; Ojeda-Castañeda, 1976), as

shown in Figure. 8.27. Indeed, theWolter test proves to be extremely useful since the

l=2 phase edge is considered to be equivalent to the wire test. In other words, the

FIGURE 8.27. Fresnel diffraction image of a l=2 phase edge observed over the surface under test.
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border of the l=2 phase edge may be thought of as the border of the opaque knife

edge, and the ‘‘reversal’’ side of the l=2 phase edge may be considered to have a

transmittance equal to unity, as on its ‘‘clear’’ side. Therefore, the shadow patterns

associated with the l=2 phase edge are, from the point of view of geometrical optics,

considered to be identical with the shadow patterns associated with the wire test.

Upon analysis the boundaries of the shadow patterns are, then, identical to those

presented in Section 8.2.2. Notice the similarity between the Foucault test drawings

in Figure 8.9 and the phase-edge photographs of a comatic lens (kindly provided by

Landgrave, 1974) in Figure 8.28.

It has been reported (Vasil’ev, 1971; Landgrave, 1974) that the dark lines of the

shadow pattern associated with the l=2 phase edge are better contrasted against

the background irradiance intensity than the dark lines associated with both the

knife-edge test and the wire test. Thus, the sensitivity of the l=2 phase-edge test is

greater than the sensitivity obtained when using an opaque knife edge or the wire test.

Thewire test photographs in Figures 8.29(a,b) should be comparedwith the phase-edge

photographs, Figures 8.31(c,d), respectively, taken with the same aspherical mirror.

Obviously, a formal analysis of the sensitivity is, indeed, more complicated, and it

is not considered here. However, it is possible to show (Ojeda-Castañeda, 1976,

1979) that for aberrations smaller than the wavelength of the incident radiation, the

l=2 phase edge will produce images with higher contrast than the images produced

with the opaque knife edge. The treatment is repeated here.

The modulating function for the phase-edge method is

Mðx1; y1Þ ¼ �1; x1 < �r1
1; x1 > �r1

�

ð8:81Þ

The complex amplitude leaving the plane of modulation and traveling toward the

image plane, after being modulated by function (8.81), is again obtained by

Mðx1; y1Þaðx1; y1Þ: The complex amplitude distribution over the image plane can

be calculated by taking the inverse Fourier transform, giving

A0ðx2; y2Þ ¼ 1þ i
2p

l
W 0ðx2; y2Þ ð8:82Þ

FIGURE 8.28. Shadow patterns obtained when using a l=2 phase edge for testing a lens with comatic

aberrations.
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where againW 0ðx2; y2Þ denotes the inverse Fourier transform ofMðx1; y1Þw1ðx1; y1Þ:
When calculating the image intensity, the same approximation, neglecting second-

order terms in l�1;may be made. Under this approximation, as was pointed out in the

sections dealing with the diffraction theory of the knife-edge and wire tests, only

the real-odd component of the modulating function gives rise to the visible term in

the image irradiance variations. Since in this case the function is

gðx1; y1Þ ¼
�1; x1 < �r1

0; jx1j < r1

1; x1 > r1

8

><

>:

ð8:83Þ

we do not have to calculate the image irradiance, for we know that the result will be

the same as that obtained when the image irradiance is calculated using the knife

edge. The only exception to this statement that should be noted is that function (8.83)

has double amplitude transmittance. Therefore, the contrast of the image irradiance

FIGURE8.29. Shadow patterns of a hyperbolicmirror. (a) Off-axis wire. (b) Off-axis phase edge. (c) On-

axis wire. (d) On-axis phase edge.
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variations when the phase edge is used is twice that obtained with the knife edge,

that is,

gpe ¼ 2gke ¼
8p

l
Wiðx2; y2Þ ð8:84Þ

The other characteristics associated with the Wolter test are the same as those

listed for the knife-edge and the wire tests.

8.6. RITCHEY–COMMON TEST

According to Ritchey (1904), this test was suggested by a Mr. Common as a way of

testing large optical flats (Shu, 1983). For this purpose a good spherical mirror is

used, with the flat acting also as a mirror, to obtain an apparatus similar to the one

used for the knife-edge test. See Figure 8.30.

Any small spherical concavity or convexity of the surface under test appears as an

astigmatic aberration in the image of the illuminating point source. The two focal

planes associated with the sagittal and tangential foci can be accurately found (by

employing the knife-edge test as indicated in Section 8.1), and with this information

the radius of curvature of the surface under test can be calculated. Of course, any

localized deformation or deviation from flatness can also be observed.

The advantage of the Ritchey–Common test over other methods is that a reference

flat is not needed as in the Newton or Fizeau interferometer. The autocollimation

method requires a paraboloid as large as the largest dimension of the flat under test.

On the contrary, the auxiliary mirror used in the Ritchey–Common test has a

spherical shape, which is the easiest to make and test. An additional advantage is

that the spherical mirror needs to be only as large as the minor diameter, if it is

elliptical, like many diagonal mirrors used in telescopes or other instruments.

If we measure the astigmatism, we can obtain the magnitude of the concavity or

convexity of the ‘‘flat’’ mirror, but it is assumed that this mirror is spherical, not

FIGURE 8.30. Geometry of the Ritchey–Common test.
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toroidal, in shape. If the mirror is not circular but elliptical, the possibility that it will

develop a toroidal shape while being polished is very high. This toroidal shape

introduces an additional astigmatism that complicates the analysis. Interested readers

can consult the work of Tatian (1967), Silvernail (1973), and Shu (1983).

The mathematical description given here assumes that the mirror under test is not

toroidal and follows the approach used by Couder (1932) and Strong (1938), that is,

finding the curvature from the Coddington equations for astigmatism. In what

follows, it is assumed that the pinhole size source and the wire travel together in

the same plane. Hence, when evaluating the transversal ray aberrations, it is neces-

sary to multiply the value obtained in this way by a factor of 0.5 to get the real value

of the transverse ray aberrations. However, since the aberrations of the wavefront are

duplicated in the Ritchey–Common test because of the double reflection on the

optical flat under test, we can conveniently omit the double reflection factor of 2 and

factor 0.5 when calculating the value of the transversal ray aberrations.

Applying the well-known Coddington equations for astigmatism to a reflecting

surface, we find that the sagittal focus of a converging beam incident on an optical

reflecting surface is given (see Figure 8.31) by

1

s0
¼ 1

s
þ 2 cos y

r
ð8:85Þ

and the tangential focus by

cos2 y

t0
¼ cos2 y

t
þ 2 cos y

r
ð8:86Þ

FIGURE 8.31. An astigmatic wavefront and its associated focal images. It is to be noted that the

orientations of the images are changed when the setup in Figure 8.30 is used. That is, the sagittal image

is a horizontal line and the tangential image is a vertical one.
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where y is the angle of incidence at the surface under test and r is the radius of

curvature of the optical surface under test.

If we assume that the incident beam is free from astigmatism, that is, s = t, Eqs.

(8.85) and (8.86) can be used to obtain

s0 � t0

s0t0
¼ 2

r

sin2 y

cos y
ð8:87Þ

Now, by denoting s0 ¼ L0 þ dL0 and t0 ¼ L0, and substituting these values in

Eq. (8.87), we have

r ¼ 2L0 1þ L0

dL0

� �
sin2 y

cos y
: ð8:88Þ

Since jL0=dL0j > 1, it follows from Eq. (8.88) that, when the sagittal focus is longer

than the tangential focus ðdL0 > 0Þ, the surface under test has a positive radius of

curvature, that is, the surface is convex. On the contrary, when the sagittal focus

is shorter than the tangential focus ðdL0 < 0Þ, the surface has a negative radius of

curvature and is concave. The sagitta h of a surface with a diameter D and a radius of

curvature r can be approximated by

h ¼ D2

8r
ð8:89Þ

Using Eq. (8.88) in (8.81) we have

h ¼ D2 cos y

16L0ð1þ L0=dL0Þ sin2 y
ð8:90Þ

For L0 � dL0ðjL0=dL0j � 1Þ; Eq. (8.90) reduces to

h ¼ D2dL0 cos y

16L02 sin2 y
ð8:91Þ

which gives the value for the sagitta of the optical surface under test for any angle

of incidence y. For the particular case of y ¼ 45�, the sagitta is given by

h ¼ D2dL0

11:3L02
ð8:92Þ

Couder (1932 in Texereau 1957) has indicated that an optimum angle for testing

optical flats is y ¼ 54�450. Of course, in practice it is more convenient to set y ¼ 60�.
It is also common practice to use any eyepiece, instead of the knife edge, to deter-

mine visually the positions of the sagittal and tangential foci, by locating the

positions of the patterns shown to the right of Figure 8.31.
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8.7. CONCLUSIONS

As mentioned in the introduction of this chapter, the examples examined demon-

strate the versatility and usefulness of the Schlieren techniques and the related

phase modulation tests. Of course, the choice of any particular test depends on the

circumstances.
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Ojeda-Castañeda J., ‘‘Nota Sobre el Microscopio de Contraste de Modulación,’’ Bol. Inst.

Tonantzintla, 2, 293 (1978).
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9

Ronchi Test

A. Cornejo-Rodriguez

9.1. INTRODUCTION

Since its discovery and application to the testing of optical surfaces, the Ronchi test

has been used widely either in a qualitative or in a quantitative way. Also, because it

is simple to accomplish and easy to interpret the experimental observations, the

Ronchi test has almost always been conceptually interpreted from the point of view

of geometrical optics. Sections 9.2 and 9.5 reflect this point of view. However,

the author believed that a more comprehensive presentation of the two aspects of

the Ronchi test would provide a fuller view of the subject. These two aspects are

(a) the need for a quantitative analysis of the data and (b) the development of the

test from the point of view of the principles of physical optics and a comparison to

the geometrical approach (Toraldo di Francia, 1941a). Sections 9.3 and 9.4 are

devoted to these areas of study, respectively, and the need for mathematical treatment

in these two sections was unavoidable. Perhaps some readers would like to skip these

two sections (as can be done without losing continuity); others seeking a more

comprehensive treatment of the test will find this material interesting. Section 9.6 is

a brief review of some tests that can be related to the classical Ronchi test in

various ways.

With respect to the previous editions of this book, in the present one, the author

has added some corrections to the original equations, figures, and additional applica-

tions and new references have been included.

9.1.1. Historical Introduction

The Ronchi test is one of the simplest and most powerful methods to evaluate and

measure the aberrations of an optical system. The Italian physicist Ronchi (1923a)

discovered that when a ruling was placed near the center of curvature of a mirror, the

image of the grating was superimposed on the grating itself, producing a kind of

Moiré pattern that he called combination fringes. Since the shape of these combina-

tion fringes depended on the aberrations of the mirror, he immediately thought of
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applying the phenomenon to the quality testing of mirrors. However, the combination

fringes proved extremely difficult to interpret. The Ronchi test in the form that we

now know appeared when Ronchi (1923b) published his thesis in order to obtain his

final diploma at the Scuola Normale Superiore di Pisa.

One of the first applications of the method was to measure the aberrations of the

telescope made by Galileo (Ronchi, 1923c) and a lens made by Toricelli (Ronchi,

1923d). The first serious application of this test to astronomical telescopes was made

by Anderson and Porter (1929), and since then it has been very widely used by

professional and amateur astronomers (King, 1934; Strong, 1938; Kirk-ham, 1953;

Porter, 1953; Phillips, 1963).

A few months after Ronchi’s invention, Lenouvel (1924a, 1924b, 1925a, 1925b)

published an extensive study of this test in France, along the same lines as those

followed by Ronchi.

General descriptions of the Ronchi method can be found in many review articles

(Ronchi, 1925; Morais, 1958; Adachi, 1962a; Wehn, 1962; Murty, 1967; Briers,

1972; Briers, 1979; Briers and Cochrane, 1979; Cornejo-Rodriguez, 1983 and

Rosenbruch, 1985). The history of the test has been wonderfully described by Ronchi

(1962a, 1962b, 1964) himself.

The name Ronchigrams for the patterns observed with a Ronchi ruling was coined

by Schulz (1948). It is interesting that an attempt has been made to use this method

for the measurement of the optical transfer function of lenses (Adachi, 1962b) and

even their chromatic aberration (Toraldo di Francia, 1942b; Malacara and Cornejo,

1971;). Salzmann (1970) used it to evaluate the quality of laser rods. Stoltsmann

(1978) has applied this test to evaluate the quality of large-aperture flat mirrors, Assa

et al. (1977) measured slope and curvature contours of flexed plates, Brookman et al.

(1983) measured Gaussian beam diameters, and Kasana et al. (1984) have measured

glass constants. Ronchi rulings have also been used in nontraditional configurations

to evaluate optical components; for example, Patorski (1979) measured the wave-

front curvature of small-diameter laser beams, using the Fourier imaging phenom-

ena, and Kessler and Shack (1981) performed dynamic optical tests of a high-speed

polygon. More recently, Hegeman et al. (2001) applied this test for testing compo-

nents for EUV lithography; Xu et al. (2004) performed measurements of cylinders

and Agureev (1995) studied gradient index profiles.

New analysis and proposals to improve the sensitivity and range of applications of

the Ronchi test have recently been done by several authors; for example, Patorski

(1984) described the reversed path Ronchi test, Patorski (1986) described a method

using spatial filtering techniques, and Lin et al. (1990) described a quantitative three-

beam Ronchi test.

9.2. GEOMETRICAL THEORY

The Ronchi test has two equivalent models; one is geometrical, interpreting the

fringes as shadows of the ruling bands, and the other is physical, interpreting the

fringes as shadows due to diffraction and interference. It will be shown in this chapter
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that, when the frequency of the ruling is not very high, the two models arrive at the

same result. Both the geometrical and physical models were described by Ronchi in

his original paper. A good treatment of the geometrical model was developed by

Jentzsch (1928), and it is briefly explained by Martin (1960).

As explained by Malacara (1965c), the Ronchi test really measures the transverse

aberration TA in a direct way as shown in Figure 9.1. In this figure both the object and

the image are on the optic axis, so the transverse aberration is measured from the axis

and can be seen to include defocusing as well as other aberrations.

The wave aberration is defined at the exit pupil of the optical system under test,

using a formula given by Rayces (1964), as

@W

@x
¼ � TAx

r �W
;

@W

@y
¼ � TAy

r �W
ð9:1Þ

For all practical purposes very accurate results can be obtained if we write formula

(9.1) as equal to

@W

@x
¼ � TAx

r
;

@W

@y
¼ � TAy

r
ð9:2Þ

where r is the distance from the exit pupil or surface under test to the Ronchi ruling. If

the ruling defocusing is small, this distance can be approximated by the radius of

TAx

TAy

x

y

C

L

r

d

S

FIGURE 9.1. Geometry of the Ronchi test.
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curvature of the wavefront. Thus, if we assume a Ronchi ruling with spacing d

between the slits for a point (x, y) on the mth fringe, we may write, in general,

@W

@x
cosj� @W

@y
sinj ¼ �md

r
ð9:3Þ

where it is assumed that the ruling lines are inclined at an anglejwith respect to the y

axis, as shown in Figure 9.2. This is the basic formula for the geometrical model of

the Ronchi test.

9.2.1. Ronchi Patterns for Primary Aberrations

Ronchi patterns obtained with primary aberrations have been stuided bymay authors,

as we will see later on. General treatments of them have been published by Schulz

(1928), Crino (1933), Toraldo di Francia (1947, 1954) and Adachi (1960a, 1960b).

Thewavefront of a systemwith primary aberrations can bewritten (seeAppendix 3) as

W ¼ Aðx2 þ y2Þ2 þ Byðx2 þ y2Þ þ Cðx2 þ 3y2Þ þ Dðx2 þ y2Þ ð9:4Þ

where A, B, and C are the spherical aberration, coma, and astigmatism coefficients,

respectively. The last coefficientD is the defocusing, given by the distance l’ from the

Ronchi ruling to the paraxial center of curvature, as

D ¼ l0

2r2
ð9:5Þ

No tilt terms are included since the Ronchi test is insensitive to them. If we substitute

Eq. (9.4) in Eq. (9.3), we obtain

4Aðx2 þ y2Þðx cosj� y sinjÞ þ B½2xy cosj� ð3y2 þ x2Þ sinj�

þ 2Cðx cosj� 3y sinjÞ þ 2Dðx cosj� y sinjÞ ¼ �md

r

ð9:6Þ

h

x
0

mdd

0

(x, y) 
x

y

Wavefront  W(x, y)

j

j

FIGURE 9.2. Wavefront and ruling orientation.
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In the study of each of the aberrations, it will often be convenient to apply a rotationc

to this expression by means of the relations

x ¼ Z coscþ x sinc

y ¼ �Z sincþ x cosc
ð9:7Þ

where Z and x are the new coordinate axes.

Defocusing. By applying the rotation c ¼ j to the defocusing term, we obtian

2DZ ¼ �md

r
ð9:8Þ

Hence we obtain straight, equidistant bands, which are parallel to each other and to the

ruling slits. The separation S between these bands on the wavefront under study is

S ¼ d

2Dr
ð9:9Þ

These bands are illustrated in Figure 9.3; an interesting reference is the work byWan

and Chang (1993).

Spherical Aberration with Defocusing. Spherical aberration patterns were first

studied by Bocchino (1943) and Scandone (1933). By applying the rotation c ¼ j,

we obtain for the spherical aberration and defocusign terms

4AðZ2 þ x2ÞZþ 2DZ ¼ �md

r
ð9:10Þ

wherewe can see that the axis of symmetry of the patterns is parallel to the ruling slits, as

shown in Figure 9.4. The lines are cubics in Z. This Ronchi pattern without defocusing is

identical to the Twyman–Green interferogram for coma. Adding defocusing in this

Ronchigram is equivalent to adding tilt in the Twyman–Green interferogram.

In the absence of defocusing, the central fringe is very broad and for this reason

the paraxial focus is called the ‘‘fusiform’’ or uniform focus (Crino, 1939; Di Jorio,

1939a; Ricci 1939).

FIGURE 9.3. Ronchigrams with defocusing. (a) Outside of focus. (b) In focus. (c) Inside of focus.
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Fifth-order spherical aberration Ronchigrams were studied by Bocchino (1940),

Erdös (1959), and Scandone (1930).

Coma. Ronchigrams for coma were studied by Bruscaglioni (1932b), Villani

(1930), and Villani and Bruscaglioni (1932). Applying a rotation c ¼ j=2þ p=4
to the coma term in Eq. (9.6), we obtain

B½�Z2ð1þ 2 sinjÞ þ x2ð1� 2 sinjÞ� ¼ �md

r
ð9:11Þ

Different figures are obtained depending on the value of j (ruling inclination with

respect to the meridional plane) as follows (see Fig. 9.5):

j ¼ 0� Hyperbolas

j ¼ 90� Ellipses with semiaxes in the ratio
ffiffiffi
3

p
to1

0� < j < 30� Hyperbolas inclined at an angle c

j ¼ 30� Straight bands

30� < j < 90� Ellipses inclined at an angle c

If we rewrite Eq. (9.11) as

B½�2ð1þ sinjÞðZ2 þ x2Þ þ ðZ2 þ 3x2Þ� ¼ �md

r
ð9:12Þ

FIGURE 9.4. Ronchigrams with spherical aberration (A ¼ �20). (a) Paraxial focus. (b) Medium focus.

(c) Marginal focus. (d) Outside of focus.
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FIGURE 9.5. Ronchigrams with coma (B ¼ �30).
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we can see that this pattern is identical to that of a Twyman-Green interferogram for

astigmatism with defocusing, where the magnitude of this apparent defocusing is

given by the angle j.

Astigmatism with Defocusing. Astigmatism Ronchigrams were extensively

studied by Villani (1930), Scandone (1931a), Villani and Bruscaglioni (1932),

Bruscaglioni (1932b), and Calamai (1938). By applying a rotation c ¼ j to the

corresponding terms in Eq. (9.6), we obtain

2C½Zð2� cos 2jÞ � x sin 2j� þ 2DZ ¼ �md

r
ð9:13Þ

We can see that the Ronchigram is formed by straight, equidistant, parallel bands

whose inclination a with respect to the ruling slits is given (see Fig. 9.6) by

tan a ¼ C sin 2j

Dþ Cð2� cos 2jÞ ð9:14Þ

The intersections of the bands with the x axis are fixed, independently of the focusing

term D, at equally separated points whose separation �x is

�x ¼ d

2rC sin 2j
ð9:15Þ

The value of a changes with the focus term D (ruling position the optical axis),

making the bands rotate as the ruling is moved along the optical axis. The effect,

called ‘‘capriola,’’ was studied in detail by Bruscaglioni (1932a) and Scandone

(1931b). The bands become perpendicular to the ruling slits when

Dþ Cð2� cos 2jÞ ¼ 0: ð9:16Þ

a condition that occurs for a value of D / C between �1 (at the sagittal focus,

when j ¼ 0�) and �3 (at the tangential focus, when j ¼ 90�). The precise values

of D / C equal to �1 and �3 are excluded because at those points sin 2j ¼ 0 and

hence �x ! 1, rendering the test insensitive to astigmatism. The maximum

sensitivity is obtained when �x is as small as possible with respect to the

wavefront diameter. Thus the optimum angle for measuring the astigmatism is

j ¼ 45�, and then the bands become perpendicular to the ruling slits (a ¼ 90�)
when D=C ¼ �2.

Spherical Aberration with Astigmatism and Defocusing. The patterns obtained

with this combination of aberrations were studied by Scandone (1931a, 1931b).

Applying a rotation c ¼ j to the corresponding terms in Eq. (9.6), we obtain

4AZðZ2 þ x2Þ þ 2Z½Dþ Cð2� cos 2jÞ� � 2Cx sin 2j ¼ �md

r
ð9:17Þ
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This combination of aberrations produces the serpentine fringes described by

Scandone and shown in Figure 9.7. The first term comes from the spherical aberra-

tion and is identical to the Twyman–Green coma term. The second term comes from

the defocusingD (ruling position) and the astigmatismC and is identical to a tilt term

about the x axis in a Twyman–Green interferometer. The third term comes from the

astigmatism and is identical to a tilt term about the Z axis in a Twyman–Green

interferometer.

FIGURE 9.6. Ronchigrams with astigmatism (C ¼ �20).
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Using this analogy between astigmatism in the Ronchi test and tilt in the

Twyman–Green, Murty (1971) suggested adding an apparent tilt about the Z axis to

the Ronchi test by introducing astigmatism by means of a cylindrical lens in the

beam, with its axis at 45� with respect to the ruling slits. To have apparent tilt only

about the Z axis, we need
Dþ Cð2� cos 2jÞ ¼ 0

C sin 2j 6¼ 0
ð9:18Þ

for the particular case of j ¼ 45�,

D ¼ �2C ð9:19Þ

Expression (9.19) assumes that the defocusing term is just enough to cancel the effect

of the astigmatism in producing zero tilt about the x axis. To produce an apparent tilt

about the Z axis of the Ronchigram at the marginal focus, we must introduce an

additional defocusing equal to �2A, thus obtaining

D ¼ �2ðC þ AÞ: ð9:20Þ

FIGURE 9.7. Ronchigrams with spherical aberration (A ¼ �10) alone top combined with astigmatism

(C ¼ �10) (bottom).

326 RONCHI TEST



9.2.2. Ronchi Patterns for Aspherical Surfaces

The Ronchi test is very useful for testing aspherical surfaces, including large mirrors

for astronomical telescopes (Popov, 1972). Using Eq. (9.3) with j ¼ 0�, we can

compute the ideal Ronchigram for any aspherical surface, as defined in Appendix 1,

by assuming valid the approximate relation

zðx; yÞ � z0ðx; yÞ ¼ 2Wðx; yÞ ð9:21Þ

where z is the sagitta for the aspheric surface and z0 is for the osculating sphere. This

method is, however, only approximate, not exact. An alternative and more accurate

procedure is to trace rays by using the law of reflection. It is interesting that two early

attempts to use the Ronchi test for aspherical surfaces were made by Waland (1938)

and Schulz (1948).

Sherwood (1958) and Malacara (1965a, 1965b) independently showed (by two

different methods) that, when the configuration in Figure 9.1 is used, the transverse

aberration TA at the Ronchi ruling plane is given by

TAðSÞ ¼
ðlþ L� 2zÞ 1� dz

dS

� �2
" #

þ 2
dz

dS
S� ðl� zÞðL� zÞ

S

	 


l�z
S

1� dz

dS

� �2
" #

þ 2
dz

dS

ð9:22Þ

where S is the distance from the optical axis to the point on the mirror. In Figure 9.1,

we can also see that

TA ¼ md

sin y
ð9:23Þ

The Ronchigram is obtained by assigning many values of S and then calculating y for

different values of m. In general, one wishes to obtain the Ronchigram over a flat

surface, parallel to and near the mirror, since this is what is obtained when a

photograph is taken. In most cases the error introduced by considering the fringes

over the mirror surface is very small; but when the radius of curvature of the mirror is

small with respect to its diameter, the error becomes important.

The error is compensated for if, when plotting the Ronchigram, Sp, which is given

by

Sp ¼ S 1� zðSmaxÞ � zðSÞ
l� zðSÞ

	 


1� TA

S

� �� �

ð9:24Þ

is used instead of the calculated S (Malacara, 1965b) as shown in Figure 9.8.

Ideal Ronchigrams for paraboloids have been computed for the use of amateur

astronomers by Lumley (1960, 1961) and Sherwood (1960). Recently Cordero-

Dávila et al. (2002), developed a computer program for arbitrary optical systems.

For easy interpretation of the Ronchigram, it is desirable to avoid any closed-loop

fringes. This is possible only outside the caustic limits described in Appendix 1 as
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shown in Figure 9.9, where it is evident that when the ruling is at the marginal focus,

the only closed-loop fringes are inside the mirror and the outer one closes near the

edge of the mirror.

It is also interesting to see that much information about the center of the mirror is

lost when the fringes are curved, as at the paraxial focus. Therefore, to obtain the

maximum information, the Ronchigram should be taken at the paraxial focus if

K > 0 or at the end of the caustic if K < 0.

9.2.3. Null Ronchi Rulings

We have shown that, when the surface under test is aspherical, the Ronchi fringes are

not straight but curved. The surface errors can then be computed from the deviations

of the fringes from the desired shape. This procedure can give very good results when

the data are processed in a computer, as will be shown in Section 9.3. If a computer is

not used, it is easier for a technician to detect deviations from a straight line than from

a curved line. Also, when the fringes are curved, the diffraction effects tend to diffuse

the fringes, making the measurements even more difficult.

These disadvantages can be overcome by means of a special kind of Ronchi

ruling with curved lines, the curvature of which compensates for the asphericity of

the surface in order to produce straight fringes of constant widths. This idea was

first qualitatively suggested by Pastor (1969) and was later developed quantita-

tively by Popov (1972) and independentely by Malacara and Cornejo (1974c)

using a ray-tracing program an then solving five linear equations. An approximate

method to produced these null Ronchi rulings for paraboloids was devised by

FIGURE 9.8. Projection of fringes over a plane.
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Mobsby (1973, 1974). More recently Hopkins and Shagan (1977) used spot

diagrams for designing the null gratings.

An alternative exact procedure uses Eq. (9.22) to compute TAðSÞ for different
values of S from the center to the edge of the mirror. Then we take the intersections of

the desired straight fringe on the aspheric mirror with the circles on which the TAðSÞ
was computed. For each of those intersections there is an angle y, which is the same

on the ruling to be computed. The radial coordinate on the ruling is computed TAðSÞ
for that circle with radius S on the mirror.

Still another alternative and approximate method is based on the computation of

the third-order transverse spherical aberration (Malacara and Cornejo, 1976b). If �x

and �r are the x and radial coordinates of a point over a fringe in the null Ronchi

ruling, respectively, the ruling is computed with

r2 � r2x3

Km3ð�xÞ3
� r�rx2

Km2ð�xÞ2
ð9:25Þ

where r is the vertex radius of curvature of the mirror,K is the conic constant,m is the

fringe order number, �x is the fringe separation on the mirror, and �r is the

displacement of the ruling from the paraxial focus, being positive if it is desplaced

outside the focus.

FIGURE9.9. Ronchigramof an aspherical surface at different ruling positions on the caustic. (a) Paraxial

focus. (b) Marginal focus. (c) Between marginal focus and end of caustic. (d) End of caustic.
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The ruling is computed by assigning values of �x and then computing �r, starting in

�xmin, given by

xmin ¼ �Km3ð�xÞ3
r2

� mð�xÞð�rÞ
r

ð9:26Þ

Here it is assumed that the light source is at the center of curvature. This approximate

method has proved to be very accurate for most practical purposes.

Examples of computed null Ronchi rulings are given in Figure 9.10. Figure 9.11

shows a normal and a null Ronchigram. It is evident that the fringes, in addition to

being straight, are much better defined in the null test [Fig. 9.11(b)].

A disadvantage of the null test, as compared to the normal test, is that the ruling

must be positioned very precisely on the calculated place along the optical axis when

the test is made. The reason is that the asphericity compensation depends very

critically on that position. To draw a circle on the ruling so that its projection on

the mirror coincides with the outer edge of that surface is of great help.

FIGURE 9.10. Two null Ronchi rulings, (a) At paraxial focus, (b) Inside paraxial focus.

FIGURE 9.11. Normal and null Ronchigrams of an aspheric surface. (From Malacara and Cornejo,

1974c.)
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Another important restriction is that the light source cannot be extended with a

ruling covering it, as in the normal Ronchi test, but must be a point source. An

interesting application of null rulings are the papers by Diaz-Uribe and Campos

(2000), applied in a different configuration for convex surfaces, and Diaz-Uribe

(2000) for off-axis parabolic mirrors as it will be described in Chapter 10.

9.3. WAVEFRONT SHAPE DETERMINATION

The wavefronts or mirror deformations can be determined from the Ronchigram.

Probably Pacella (1927) was the first to attempt this and to identify the type of

aberration. A qualitative idea about the mirror deformations can be very easily

obtained (De Vany, 1965, 1970) just by observing the pattern. Figure 9.12 shows

some possible patterns and their coresponding surface deviations are shown in

Figure 9.13. Table 9.1 indicates the relationship between the Ronchigrams and the

deformations. The identification and measurement of the parimary aberration was

treated in detail by Adachi (1960a, 1960b).

Following a combination of shearing diffraction interferometer theory and some

geometrical equations of the Ronchi test, Briers did a thorough study about the theory

and experiment of the Ronchi test in order to have semiquantitative results (Briers,

1979; Briers and Cochrane, 1979). Also De Vany extended his previous work and

established a relation between observed patterns and surface defects (De Vany, 1978,

1980, 1981).

A more general treatment for surface with any kind of deformations is given in the

following section.

TABLE 9.1. Relation between the ronchigrams of Figure 9.12 and the surface profile

deformations shown in Figure 9.13.

Surface

Reflecting Refracting

Ruling outside Ruling inside Ruling outside Ruling inside

Ronchigram of focus of focus of focus of focus

1 B A A B

2 A B B A

3 D C C D

4 C D D C

5 F E E F

6 E F F E

7 H G G H

8 G H H G

9 J I I J

10 I J J I
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FIGURE 9.12. Ronchigrams for some typical surface deformations. (From Malacara and Cornejo, 1974a.)

3
3
2



9.3.1. General Case

The only assumption we make in considering a surface without any symmetry is that

it is smooth enough to be represented by the following two–dimensional polynomial

of kth degree (Cornejo-Rodgriguez and Malacara, 1976):

Wðx; yÞ ¼
Xk

i¼0

Xi

j¼0

Bijx
jyi�j ð9:27Þ

Then it can be shown that the partial derivatives ofWðx; yÞwith respect to x and y are

@W

@x
¼
Xk�1

i¼0

Xi

j¼0

ðjþ 1ÞBiþ1;jþ1x
jyi�j ð9:28Þ

and

@W

@y
¼
Xk�1

i¼0

Xi

j¼0

ði� jþ 1ÞBiþ1;jx
jyi�j ð9:29Þ

FIGURE 9.13. Surface deformations corresponding to Ronchigrams in Figure 9.12.
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But from the fundamental relation for the Ronchi test in Eq. (9.3), we can write

@W

@x
cosj� @W

@y
sinj ¼ � ½mðx; yÞ � m0ðx; yÞ�

r
d ð9:30Þ

where mðx; yÞ is the measured value of m at point (x; y) in the real Ronchigram and

m0ðx; yÞ is the computed value of m at point (x; y) in the perfect theoretical Ronchi-

gram using Eqs. (9.22) and (9.23).

We now define mxðx; yÞ and myðx; yÞ as the values of mðx; yÞ when the ruling

orientationsj ¼ 0� andj ¼ 90�, respectively, are used. These are obtained with two
Ronchigrams having mutually perpendicular rulings. Then, for these two patterns we

may write

@W

@x
¼ � ½mxðx; yÞ � m0ðx; yÞ�

r
d ðj ¼ 0�Þ ð9:31Þ

and

@W

@y
¼ � ½myðx; yÞ � m0ðx; yÞ�

r
d ðj ¼ 90�Þ ð9:32Þ

The difference function (my � m0) can be fitted to a two-dimensional polynomial of

(k � 1)th degree by means of a least-squares procedure to find

@W

@x
¼
Xk�1

i¼0

Xi

j¼0

Cijx
jyi�j ð9:33Þ

and

@W

@y
¼
Xk�1

i¼0

Xi

j¼0

Dijx
jyi�j ð9:34Þ

If we compute Eqs. (9.28) and (9.29) with these two relations, we can see that

Bij ¼
Ci�1; j�1

j
for

i ¼ 1; 2; 3; . . . ; k
j ¼ 1; 2; 3; . . . ; i

�

ð9:35Þ

and

Bij ¼
Di�1; j

i� j
for

i ¼ 1; 2; 3; . . . ; k
j ¼ 0; 1; 2; . . . ; ði� 1Þ

�

ð9:36Þ

For the value of m ¼ 0 only Eq. (9.36) can be used; therefore,

Bi0 ¼
Di�1;0

i
for i ¼ 1; 2; 3; . . . ; k ð9:37Þ
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For the value m ¼ n only Eq. (9.35) can be used; therefore,

Bii ¼
Ci�1;i�1

i
for i ¼ 1; 2; 3; . . . ; k ð9:38Þ

For all other combinations of n and m, either Eq. (9.35) or Eq. (9.36) can be used.

Therefore, to increase the accuracy, we take the average of both values:

Bij ¼
1

2

Ci�1; j�1

j
þ Di�1; j�1

i� j

� �

for
i ¼ 2; 3; . . . ; k
j ¼ 1; 2; 3; . . . ; ði� 1Þ

�

ð9:39Þ

Once the coefficients Bi;j have been found, the wavefront deviations Wðx; yÞ can be

computed with Eq. (9.27) and then the mirror surface deviations can be found with

Eq. (9.21).

Given the developments of PC and software in many respects, different ways for

the analysis of the Ronchi test as a lateral shearing interferometer have been done

more recently, for example byWan and Lin (1990), Harbers et al. (1996), Seiichi and

Nomura (2000), Elster andWeingartner (1999), Elster (2000), Van Brug (1997), Páez

et al. (2000), Fischer and Stahl (1994), Servin et al. (1994), and Lei et al. (1993).

9.3.2. Surfaces with Rotational Symmetry

If we assume that the surface has a rotational symmetry, one Ronchigram with

j ¼ 0� is enough to completely determine the shape of the surface. One approach is

to measure the fringe intersections with the x axis (Malacara, 1965a, 1965b) to

determine the transverse aberration TA(S) at those points. The value of S is the

distance from the center of the pattern to the fringe intersection with the x axis and TA

is equal to md. Then, these measurements are fitted to a polynomial with only odd

powers of S, using a least-squares procedure, and the wavefront is computed by a

simple integration of TA(S).

This method, however, does not provide enough data because no information is

obtained for zones between the fringe intersections, and for this reason a polynomial

interpolation is used. Unfortunately, with this procedure the surface profile is some-

times smoothed more than is desired.

Using a procedure byMalacara and Cornejo (1975), we may assume that the ideal

fringes on the mirror are not necessarily straight but can be curved as shown in

Figure 9.14. The solid lines are the actual shape of the fringes on an imperfect mirror,

while the dotted lines show the ideal shape for a perfect surface. The residual

transverse aberration TA(S) can be defined by

TAðSÞ ¼ TAAðSÞ � TA0ðSÞ ð9:40Þ

where TAAðSÞ is the actual total transverse aberration for the imperfect surface and

TA0ðSÞ is the computed ideal transverse aberration. It can be seen in Figure 9.14 that

S0

x0
¼ S

x
¼ TAAðSÞ

TAx

ð9:41Þ
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Since the points on the actual and ideal fringes are considered to be aligned with the

center of the surface, theymust correspond to the same point on the ruling. Therefore,

TA0ðS0Þ ¼ TAðSÞ ð9:42Þ

Now, since the lines on the ruling are straight, we can write TAx ¼ md, which is

obtained from Eq. (9.41)

TAðSÞ ¼ md

x
S ð9:43Þ

which, substituted in Eq. (9.40), gives

TAðSÞ ¼ md

x
S� TA0ðSÞ ð9:44Þ

To determine TAðSÞ, we need to measure one value of x for each value of S. There are,

however, in general, several values of x, one for each fringe, for a given value of S. An

average value of x=m can be shown to be

x

m

� �

average
¼

PN

i¼1

ximi

PN

i¼1

m2
i

ð9:45Þ

FIGURE 9.14 Ronchigram formation in a surface with rotational symmetry.
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where N is the number of data points on the circle with radius S. The actual shape of

the mirror is then found by numerical integration without the need for a polynomial

fitting to the data.

9.4. PHYSICAL THEORY

As Ronchi (1923b) pointed out in his first paper, the Ronchi test can be considered

from a physical point of view as an interferometer. At the beginning, many attempts

were made to make a good physical theory model (Ronchi, 1924a, 1924b, 1926a,

1926b, 1927, 1928), from which a reasonably good explanation was produced that

assumed that the Ronchi ruling really acted as a diffraction grating, producing many

diffracted orders, each one giving a laterally sheared image of the pupil as shown in

Figure 9.15. The theory was further developed by Di Jorio (1939a, 1939b, 1939c,

1939d, 1942, 1943), Pallotino (1941), and Toraldo di Francia (1941a, 1941b, 1942a,

1943a, 1943b, 1946), who obtained the exact shape of the fringes with the physical

theory and demonstrated their similarity to the shadow fringes. They also investi-

gated many small details related to this theory. A good account of the history of these

developments has been given by Ronchi (1962a, 1962b, 1964).

9.4.1. Mathematical Treatment

A mathematical treatment using Fourier theory was originally developed by Adachi

(1963) and later extended by Barakat (1969). It is assumed that the wavefront at the

exit pupil in the plane x0 � y0 is represented by a complex function F0ðx0; y0Þ, which
is zero outside the limits imposed by the aperture. If the system is evenly illuminated,

FIGURE 9.15. A physical model for the Ronchi test.

9.4. PHYSICAL THEORY 337



this function F0ðx0; y0Þ inside the free portions of the exit pupil is given by exp

½i2pWðx0; y0Þ=l�, whereWðx0; y0Þ is the wavefront deformation function. The phase

deviations (wavefront deformations) given by F0ðx0; y0Þ are measured with respect to

a sphere with its center at the Ronchi ruling, in the plane xr � yr. If r is the radius of

curvature of the reference wavefront, the field Uðxr; yrÞ at the ruling plane will be

Uðxr; yrÞ ¼
Z1

�1

Z

F0ðx0; y0Þ exp �i
2p

lr
ðxrx0 þ yry0Þ

	 


dx0dy0 ð9:46Þ

As suggested by Barakat (1969), we can use the concept of spatial filtering to treat the

effect of the Ronchi ruling and thus, consider it as a flitering mask in the Fourier

transform plane xr � yr. Then, if the observation plane x1 � y1 is an image of the

pupil plane x0 � y0, the amplitude in that plane will be given by

Gðx1; y1Þ
Z1

�1

Z

Uðxr; yrÞMðxr; yrÞ exp i
2p

lr
ðxrx1 þ yry1Þ

	 
� �

dxrdyr ð9:47Þ

whereMðxr; yrÞ is the ruling function acting as a filtering or modulating device. If we

substitute the value of Uðxr; yrÞ from Eq. (9.46) in Eq. (9.47), we obtain

Gðx1; y1Þ ¼
Z1

�1

Z

F0ðx0; y0Þ dx0dy0
Z1

�1

Z

Mðxr; yrÞ

� exp i
2p

lr
½ðx1 � x0Þxr þ ðy1 � y0Þyr�

� �	 


dxrdyr

ð9:48Þ

This expression is valid for any kind of modulating function. Now, however, we

assume that the ruling is formed by straight, parallel, equidistant bands, and sowe have

MðxrÞ ¼
X1

n¼�1
Bn exp i

2pn

d
xr

� �

ð9:49Þ

where d is the ruling period, as usual. Then, substituting this expression in Eq. (9.48),

we obtain

Gðx1; y1Þ ¼
X1

n¼�1
Bn

Z1

�1

Z

F0ðx0; y0Þ dx0dy0

�
Z 1

�1
exp i

2p

lr
x1 � x0 þ

lrn

d

� �

xr

	 


dxr

� �

�
Z 1

�1
exp i

2p

lr
ðy1 � y0Þyr

	 


dyr

� �

ð9:50Þ
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which, when the definition for the Dirac d function,

Z 1

�1
exp½iðk � k0Þx�dx ¼ dðk � k0Þ ð9:51Þ

is used, it becomes

Gðx1; y1Þ ¼
X1

n¼�1
Bn

Z1

�1

Z

F0ðx0; y0Þd x1 � x0 þ
lrn

d

� �

dðy1 � y0Þ dx0dy0 ð9:52Þ

This can be shown to be equal to

Gðx1; y1Þ ¼
X1

n¼�1
BnF0 x1 þ

lrn

d
; y1

� �

ð9:53Þ

If the ruling is of the form

MðxrÞ ¼ 1þ cos
2pnxr

d

� �

ð9:54Þ

we have B0 ¼ B1 ¼ B�1 ¼ 1, and thus we have three laterally sheared images of the

pupil. In general, however, we have many image laterally sheared by an amount

lrn=d as in Figures 9.15 and 9.16. If the ruling has a periodic squarewave profile as in
Figure 9.17, we can show, using Fourier theory, that the coefficients Bn are given by

Bn ¼ ð�1Þn sin npk0
np

ð9:55Þ

FIGURE 9.16. Interference fringes between different diffracted orders in a Ronchi ruling.
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where k0 is the ratio between the width of the clear slits in the ruling and its period d

as shown in Figure 9.17. If the width of the clear and dark bands is the same (k0 ¼ 1
2
),

all even orders are found missing. Substituting Eq. (9.55) into (9.53) gives

Gðx1; y1Þ ¼
X1

n¼�1
ð�1Þn sin npk0

np
F0 x1 þ

lrn

d
; y1

� �

ð9:56Þ

Let us now consider the case of a perfect wavefront with a radius of curvature R,

different from the reference wavefront with radius r. The defocusing�r is then equal

to R� r. Then F0ðx1; y1Þ may be represented by

F0ðx1; y1Þ ¼
exp i

p

lrR
ðx21 þ y21Þ

h i

�r for x21 þ y21 < S2max

0; for x21 þ y21 > S2max

(

ð9:57Þ

where Smax is the semidiameter of the aperture. Let us assume that the lateral shear

lrn=d is very small compared with the semiaperture Smax, so that the summation can

be extended to large values of n. To find the amplitude profile of the fringes, we also

take y1 ¼ 0; then we can show that

Gðx1Þ ¼ k0 þ 2
XN

n¼�1
ð�1Þn sin npk0

np
cos

2pn�r

Rd
x1

� �"

� exp i
pn2lr�r

Rd2

� �


� exp i
p�r

lRr
x21

� �	 
 ð9:58Þ

where N is the number of wavefronts that overlap in the region under study

9.4.2. Fringe Contrast and Sharpness

Expression (9.58) explains quantitatively the lack of sharpness of the Ronchi fringes,

which is identical outside and inside the focus. It has been shown byMalacara (1990)

FIGURE 9.17. Square-wave profile in a Ronchi ruling.

340 RONCHI TEST



that for small defocusings, which are the ones we may find in practical arrangements,

the bright fringes become sharper as the defocusing is increased. This means that the

closer the fringes are, the sharper they appear. Thus, for the case of a parabolic mirror,

the fringes are sharper around the edge of the pattern for inside of focus patterns and

near the center for outside of focus patterns.

The fringes become very sharp when the phase shift between the first and zero

orders in Eq. (9.58) is a multiple M of 2p, yielding

M
2Rd2

lrðR� rÞ ¼ 1 ð9:59Þ

This is the Talbot effect (1836) appearing in the Ronchi test, which has been reported

by Malacara and Cornejo (1974b). The defocusing �r given by this condition is

extremely large even when M is 1. This condition is equivalent to having a fringe

spacing equal to half the lateral shear S, which is as follows:

a ¼ ys

2M
ð9:60Þ

where ys is the angular lateral shear between any two consecutive orders and a is the

angular separation between the fringes. This effect is illustrated in Figure 9.18.

We have another autoimaging condition, but with the contrast reversed, when

M ¼ 1
2
, that is, at half the Talbot defocusing. When M ¼ 1

4
and M ¼ 3

4
, the fringe

contrast disappears. This fringe blurring occurs when the fringe spaceing is equal to

twice the lateral shear.

Usually, the Ronchi test is interpreted using the geometrical approximation. This

is valid as long as the lateral shear is small compared with thewavefront diameter. On

the contrary, the number of fringes over Ronchi pattern cannot be very large. This

means that the fringe spacing cannot become extremely small compared with the

lateral shear.

FIGURE 9.18. Talbot effect in the Ronchi test, (a) Ruling at the Talbot effect position, (b) Outside it.

(From Malacara and Cornejo, 1974b.)
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Lau (1948) showed that the autoimaging of gratings and rulings, or Talbot effect,

also appears if an extended, incoherent, and periodical modulated light source with

the proper period is used. This is done in practice by covering the extended light

source with a ruling. In the Ronchi test, this type of illumination is frequently used as

shown later in this chapter.

Numerous interferometers, based on both the Talbot and the Lau effects using

gratings, have been invented. Lohmann and Silva (1971, 1972), Yokoseki and Susuki

(1971a, 1971b), Silva (1972), Mallick and Roblin (1972), Hariharan et al. (1974),

Patorski (1982), and Patorski (1984). These interferometers have been so successful

because many applications have been found for them, for example, for measuring

focal lengths (Nakano and Murata, 1985; Bernardo and Soares, 1988). Some inter-

ferometers have used a combination of the Talbot effeet with Moiré patterns (Glatt

and Kafri, 1987; Keren et al., 1988).

Experimental attempts have been made to enhance the sharpness of the bands by

changing the relative width k0 of the slits as shown in Figure 9.17. Some improve-

ments have been obtained (Murty and Cornejo, 1973; Cornejo-Rodriguez et al.,

1978). Studies about the contrast and sharpness of the observed fringes have also

been carried out by Patorski and Cornejo-Rodriguez (1986a), Malacara (1990), and

recently by Luna-Zayas et al. (2006).

The phase ruling is one in which, instead of dark and clear bands, there is a

periodic change in the optical thickness. Such rulings can be made in many ways as

described by Vogl (1964) and Ronchi (1965) or by any other of the conventional

methods to make phase plates. This kind of grating is especially useful when the

period is high enough such that no more than two wavefronts overlap (Fig. 9.19).

FIGURE 9.19. Ronchigram with a phase grating.
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It is interesting that Pallotino (1941) shows experimentally that, with phase

gratings, patterns placed symmetrically with the zero order are complementary; in

other words, a dark fringe in one pattern corresponds to clear fringe in the other as in

Figure 9.19. Later, Toraldo di Francia (1941a, 1941b) theoretically proved this effect.

The explanation uses the fact that all diffracted orders in a phase ruling have a phase

shift of magnitude ml=4 with respect to the zero-order beam.

The sensitivity of the Ronchi test has been a subject of research almost since its

invention by Ronchi (1930, 1940) himself and Bruscaglioni (1933, 1939). More

recently, Cornejo and Malacara (1970) studied the subject.

9.4.3. Physical versus Geometrical Theory

If the irradiance distribution over the exit pupil is a constant, we can write the pupil

function F0ðx0; y0Þ as

F0ðx0; y0Þ ¼ exp i
2p

l
Wðx0; y0Þ

	 


ð9:61Þ

where Wðx0; y0Þ for the primary aberrations is given by Eq. (9.4).

Let us now assume that the ruling has a period d small enough to produce inter-

ference patterns of no more than two overlapping beams as shown in Figure 9.19.

Then, from Eq. (9.48), the interference pattern between two consecutive orders n1 and

n2 can be shown to be given by

Gðx1; y1Þ2




 ¼B2

n1 þ B2
n2 þ 2Bn1Bn2

� cos
2p

l
W x1 þ

lrn1

d
; y1

� �

�W x1 þ
lrn2

d
; y1

� �	 
� � ð9:62Þ

It can be seen here that a bright fringe appears whenever

W x1 þ
lrn2

d
; y1

� �

�W x1 þ
lrn1

d
; y1

� �

¼ �ml ð9:63Þ

where m is any positive or negative integer, including zero. If we now take the center

between the two shears of the wavefront as a new origin, we find

W x1 þ
lrðn2 � n1Þ

2d
; y1

	 


�W x1 �
lrðn2 � n1Þ

2d
; y1

	 


¼ �ml ð9:64Þ

Expanding now in a Taylor series about the origin and taking n2 � n1 ¼ 1, we have

@Wðx1; y1Þ
@x1

þ 1

6

lr

2d

� �2 @3Wðx1; y1Þ
@x31

¼ �md

r
ð9:65Þ
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When the third derivative term disappears, this expression becomes identical to

Eq. (9.3) (with j ¼ 0�), which was the basis of the geometrical theory of the Ronchi

test. Therefore, in such cases the physical and geometrical patterns coincide. This

result was derived by Toraldo di Francia (1947, 1954) who pointed out that the third

derivative cancels out when the focus shifts and third-order astigmatism and coma

cancel out when no power of x higher than the second appears [see Eq. (9.4)].

With regard to spherical aberration, we find substituting the expression for

spherical aberration with defocusing from Eq. (9.4) in Eq. (9.65),

4Aðx21 þ y21Þx1 þ 2 A
l2r2

2D2
þ D

� �

x1 ¼ �md

r
ð9:66Þ

which is identical to Eq. (9.10) for the geometrical pattern, except for a difference in

the focus shift coefficient. The fusiform of uniform focus is obtained when the

apparent focus shift is zero, giving

D ¼ �A
l2r2

2d2
ð9:67Þ

but lr=2d is the distance rc from the center of one of the wavefronts to the center of

the pattern. Therefore D ¼ �2Ar2c , which is the condition necessary to place the

focus of the zone with radius rc at the ruling. This effect was studied by Di Jorio

(1939d).

9.5. PRACTICAL ASPECTS OF THE RONCHI TEST

The experimental apparatus used to perform the Ronchi test is of many types, as

described, for example, by Kirkham (1953). The basic arrangement is shown in

Figure 9.20(a). The light source is a white-light tungsten lamp illuminating a pinhole

or a slit parallel to the ruling lines. However, De Vany (1974) used a ball bearing as a

source, and Patorski and Cornejo-Rodriguez (1986b) used sunlight. Recently, a light

emitting diode (LED) has been used by Nuñez et al. (2001). The advantage of a slit is

that more light is used, producing a brighter pattern. The justification for using a slit

light source is that any point source on the slit produces the same pattern because the

corresponding images fall on the ruling displaced only along the grating lines, with

no lateral shifts. In the beginning a slit source was used for the test, but a little later

Anderson and Porter (1929) suggested allowing the grating to extend over the lamp,

as shown in Figure 9.20(b), instead of employing a slit source. A significant

advantage, in addition to the greater luminosity of the pattern, is that there is no

need to worry about the parallelism between the ruling lines and the slit. The light

source is then a multiple slit and the images of the slits are separated by a distance

equal to the ruling period. This property justifies the use of the ruling over the light

source, which may also be justified, however, in a more formal way as follows.
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The well-known Van Cittert–Zernike theorem establishes that the coherence

function of a source is given by the Fourier transform of the intensity distribution

at the light source. Since the light source in this case is a ruling, the Fourier transform

is as shown in Figure 9.21. Then, if two points over thewavefront are separated by the

distance �x between any two peaks in the wavefront, they are capable of producing

interference fringes with good contrast. If the ruling on the light source and the

examining Ronchi ruling are in the same plane, the distance between the peaks on the

coherence function is just the lateral shear length between the diffracted wavefronts.

This result completely justifies the use of the Ronchi ruling covering the extended

light source.

Tungsten
lamp

Ronchi
ruling

Observing eye
or camera

Ground
surface

Tungsten
lamp

Condenser
lenses

Ronchi
ruling

(a)

(b)

Center of
curvature

FIGURE 9.20. Diagram of an instrument to observe Ronchi patterns.

FIGURE 9.21. Ronchi ruling and its coherence function over the mirror being examined.
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It is interesting that, when the dark and clear bands on the ruling have the same

width (k0 ¼ 1
2
), there is no coherence between points on the wavefront separated by a

distance�x equal to 2lr=d. Therefore, both first-order wavefronts interfere with the
zero order but do not interfere between themselves. However, when using a point

source or slit, all overlapping wavefronts interfere with each other (Braat and Janssen

1999).

The null Ronchi ruling described in Section 9.2.3 does not produce the same

lateral shear for all points of the wavefront; therefore, the illuminating wavefront

must have coherence between any two points at any distance between them. This is

possible only if a point source is used. It must be kept in mind that a gas laser is the

optimum light source because of its very high coherence.

Some Ronchigrams taken with the instrument in Figure 9.22 are shown in

Figure 9.23. Although obvious from all past discussions, it should be pointed out

FIGURE 9.22. Instrument to observe Ronchi patterns.

FIGURE 9.23. Ronchigrams taken with the instrument in Fig. 9.22
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once more that the shape of the Ronchi fringes is not directly related to the shape

of the surface but rather is related to the transverse aberration function. The

photographs were taken with a normal photographic camera focused on the surface

plane because the fringes we want to study are precisely in that plane. Nowadays a

CCD detector with a lens system can be used, and the Ronchigram can be stored in a

computer, for further fast processing, sometimes combined with the use of a liquid

crystal device (Luna-Zayas et al. 2006).

When testing an aspheric mirror, care should be taken that the transverse dimen-

sions of the caustic (see Appendix I) are small enough so that all the light goes

through the observing eye or camera. Many a times the waist of the caustic is so big

(i.e., in large telescope mirrors) that it cannot pass through the pupil of the eye,

although it can pass through the lens of a camera.

Another point of great practical interest is that the light passing through each slit

on the Ronchi ruling interferes with that passing through the other slits, producing an

effect of many laterally sheared pupils. This effect reduces the accuracy of the test

since the Ronchi pattern cannot be precisely located over the pupil, simply because

there are many interfering images of it (Malacara, et al. 1990). An alternative method

for improving the accuracy is to use a wire instead of the Ronchi ruling. The wire

position is laterally displaced from the optical axis, and such displacement is

analogous to the ruling period. The distance of the wire from the optical axis should

be accurately measured.

If the Ronchi test is done with care and the patterns are correctly interpreted, the

test is a very powerful tool to measure quantitatively or qualitatively the degree of

corrections needed in an optical surface or lens.

New instruments to perform the Ronchi test and grating continuously developed.

For example, an instrument based on Ronchi test was reported by Kamalov et al.

(1980). The manufacturing of Ronchi gratings has been treated by Kuindzhi et al.

(1980), Patorski (1980), Thompson (1987) and Steig (1987). Other interesting

applications are those developed by Royo et al. (2000), Schreiber and Schrider

(1997), Sirohi et al. (1995), and Blakley (1994).

9.6. SOME RELATED TESTS

9.6.1. Concentric Circular Grid

Instead of straight lines on the ruling, it is also possible to use a grid with circular

lines. This modification was studied originally by Scandone (1931c, 1932) and more

recently by Murty and Shoemaker (1966), whose treatment is presented here.

Patterns with this kind of ruling differ from the normal Ronchi patterns. In this

case, the equation of the fringes can be obtained in the same manner as in Eq. (9.3),

giving

R
@W

@x
� �x0

� �2

þ R
@W

@y
� �y0

� �2

¼ Mr21 ð9:68Þ
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where (�x0;�y0) is the center of the set of concentric circles, r1 is the radius of the

innermost circle, and M is an integral number defined by

M ¼ n2 for equally spaced circles

n for a Fresnel zone plate

�

n being a positive integer. If we use the wavefront W for primary aberrations as in

Eq. (9.4), we find

fR½4Aðx2 þ y2Þxþ 2Bxþ 2Cxþ 2Dxþ F� � �x0g2

þ fR½4Aðx2 þ y2Þyþ Bð3y2 þ x2Þ
þ 6Cyþ 2Dyþ E� � �y0g2 ¼ Mr21:

ð9:69Þ

As pointed out by Murty and Shoemaker, this expression becomes extremely

complicated, except for a few trivial cases. Some typical patterns are shown in the

paper by the same authors.

It is important to point out that this test must be performed with a point source and

that a slit cannot be used.

9.6.2. Phase Shifting Ronchi Test

This class of test was proposed by Thompson (1973), under the name AC grating

interferometer to test laser wavefronts. It is basically a dynamic Ronchi test in which

a rapid treatment of the data can be made by means of a minicomputer.

The fringe pattern is not stationary because the ruling is uniformly translated over

its own plane, in the direction perpendicular to the ruling slits. Then, instead of

photographing a stationary pattern, the moving fringes are recorded by a photo-

electric detector such as a silicon diode array of a vidicon tube.

Each individual detector of the array gives an electrical periodical output, all with

the same frequency, depending on the velocity of the moving Ronchi ruling. The

relative phase of the signals from the detectors depends on the position of the detector

over the wavefront and also on the aberrations W. A precise measurement of these

phases is enough to reconstruct the fringe pattern and from it the wavefront.

To have amoving Ronchi ruling, Thompson (1973) suggested using a drum ruling with

a circumference of about 40 cm. The slight curvature of the ruling is not very important.

Phase shifting Ronchi tests have been described by Koliopoulos (1980), Yatagai

(1984), Omura and Yatagai (1988), and Wan and Lin (1990).

9.6.3. Sideband Ronchi Test

This is essentially a holographic test, as devised by Malacara and Cornejo (1976a).

The method requires a special ruling (or hologram) that is fabricated as illustrated in

Figure 9.24, where two concave mirrors reflect the light of a point source S over a

common area on a photographic plate P. In front of mirror M2 a very coarse ruling
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with straight bands is placed. The aim is to make a hologram in order to reconstruct

the image of M2 with the coarse ruling in front of it using the light from M1 as a

reference beam.

Once the hologram is developed, it is replaced in the beam from M1, but this time

without mirror M2. If the mirror M1 used during the reconstruction is identical to the

mirror M1 employed in forming the hologram, a set of straight fringes will be seen

where mirror M2 was placed. If the mirror is different, the observed fringes will not

be straight, indicating a wave aberration given by twice the difference between the

two mirror surfaces M1.

As shown in Figure 9.25, the main advantage of this method is that the bands are

very sharp and well defined, unlike those in the normal Ronchi test. Further studies

and modifications on the sideband Ronchi test have been reported by Malacara and

Josse (1978), Schwider (1981), and Patorski and Salbut (1984).

9.6.4. Lower Test

This test was devised by Lower (1937), who pointed out that it slightly resembles an

inverted Ronchi test. The normal Ronchi test cannot be used to test a parabolic mirror

with a small f ratio, and for obvious reasons it would be even more difficult to test a

fast Schmidt camera. Originally, Lower used his test to measure the degree of

correction of a fast Schmidt camera. The test consists in placing a slit at the focus

of the system under test and viewing image (at infinity) from a relatively large

distance. This image may be considered as being localized on the aperture of

the system, and it is a straight line when there is good correction. The straightness

of the line remains as the eye traverses the aperture.

This test is very rapid and simple, but for many practical reasons, such as the finite

observing distance, the accuracy is very limited. The factors that limit the sensitivity

and accuracy of the Lower test have been analyzed by Rank et al. (1949) and Yoder

FIGURE 9.24. Setup to make grating for side band Ronchi test.
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(1959). A related test for paraboloidal reflectors, using a similar principle but a screen

line, was developed by Hamsher (1946).

9.6.5. Ronchi–Hartmann and Null Hartmann Tests

Even though the Ronchi and Hartmann tests have been studied separately, Cordero-

Davila et al. (1990) have shown the existence of a close relation between both the

tests. In order to prove that relation, it was shown that for the two tests the screen or

filter plane can be exchanged with the plane where the pattern is observed or

recorded; thus one can go from one test to the other. The physical basis for this

result rests in the geometrical optics concept of propagation of light between both

FIGURE 9.25. Fringes in sideband Ronchi test. (From Malacara and Cornejo, 1976a.)

FIGURE 9.26. Ronchi Hartmann null test, (a) Ronchi-Hartmann screen in front of the surface under test,

(b) Observed null fringe pattern. (From Cordero-Davila, et al., 1990.)
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planes. Using the mathematical development of Section 9.2.2, an ideal Ronchigram

[Fig. 9.26(a)] was calculated and used as a one-dimensional Hartmann screen in front

of the surface. The observed pattern is a null one because the new Ronchi–Hartmann

screen compensates the asphericity of the surface under test. In Figure 9.26(b) the

observed null pattern is shown.

Having the development of a null Hartmann test as a main aim , and after establish-

ing the relation between the Ronchi and Hartmann test, the new Hartmenn screen for a

null Hartmann test was obtained by locating the holes on the screen, as the crossing

points of two perpendicular ideal Ronchigrams. In Figures 9.27 (a,b) the screen and

observed Hartmanngram are shown for the so-called Null Hartmann test. Recently, a

common mathematical theory for the Ronchi and Hartmann test was developed by

Cordero-Devila et al. (1992), which consider the results described in this section.
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10

Hartmann, Hartmann–Shack,
and Other Screen Tests

D. Malacara-Doblado and I. Ghozeil

10.1. INTRODUCTION

This chapter has been rewritten and updated by the first author; it includes some of

the materials taken from the chapter in previous versions of the book. The Hartmann

test, as the Ronchi test and lateral shearing interferometry, measures the wavefront

slope instead of the optical path difference (OPD), like the Twyman–Green and

Fizeau interferometers. A very large wavefront deformation may produce small

slopes changes if the extension of this deformation is large. In an analogous manner,

small wavefront deformations may produce large slope changes if their extension

is small. However, since most of the times the final aim is the retrieval of the

wavefront shape, this has to be obtained from these slope measurements. These

slope are measured from the transverse aberrations at some observation plane near

the focal plane using a geometric optics approach.

This chapter is concerned mainly with the methods of sampling a wavefront or

mirror surface through the use of such screens and similar methods. The sections on

applications of these methods and comparison of the various screen tests among

themselves are included in this chapter. Although the methods described are applic-

able to most lens systems, the presentation in the rest of this chapter will be made for

large concave mirrors, which are the most commonly tested.

The Hartmann test, invented by Hartmann (1900, 1904a,b and c) to test the

Great Refractor at Postdam and illustrated in Figure 10.1, has its antecedent in the

measurements of eye refractive defects using a screen with two holes in front of the

eye as described by Tscherning (1894). It uses a screen with an array of holes

placed close to the entrance or exit pupil of the system under test. The most

frequent screen has a rectangular array of holes with one at the center as shown in

Figure 10.2. As illustrated in Figure 10.3, the wavefront deformations Wðx; yÞ are
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calculated from the measurements of the transverse aberrations TAx and TAy

related by the expressions:

@Wðx; yÞ
@x

¼ � TAxðx; yÞ
r

ð10:1Þ

and

@Wðx; yÞ
@y

¼ � TAyðx; yÞ
r

ð10:2Þ

Mirror
under test

Hartmann
screen

Point
light source

Photographic
plate or
detector

FIGURE 10.1. Hartmann test schematics of a concave mirror.

Mirror under test

Point
light
source

Hartmann
plate

Hartmann screen

FIGURE 10.2. Hartmann test perspective schematics showing the Hartmann screen over a mirror to be

tested.
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where r is the distance from the pupil of the wavefront, which is to be evaluated, to

the Hartmann plate. If the wavefront is convergent, as shown in Figure 10.1, and the

Hartmann plate is close to the point of convergence, r is the radius of curvature of the

wavefront.

Hartmann patterns are nothing else than the spot diagrams obtained in lens design

evaluation, as pointed out by Stavroudis and Sutton (1965). When measuring a

wavefront, the errors can be reduced if the test procedure used affords ways of

obtaining a given result by several independent means. A test pattern that allows for

several independent ways of obtaining a surface deviation at a sample point is likely

to give a closer approximation to the actual value of that deviation than a pattern that

lacks such a feature.

10.2. SOME PRACTICAL ASPECTS

The screen must be centered accurately on the aperture of the mirror under test. This

is particularly true in the presence of spherical aberration, which is the case for

aspheric mirrors tested at their center of curvature. A decentering of the screen in

such a situation leads to an apparent presence of coma as described by Landgrave and

Moya (1986). They present results for parabolic mirrors of various F numbers.

After the screen is placed and centered on the mirror, but before any plates are

taken, the point light source used to illuminate the mirror through the screen must be

centered properly relative to the mirror to prevent the introduction of off-axis

aberrations. This can be done conveniently if the housing of the point source is of

such a size that it is narrowly missed by the beams returned by the region near the

center of the mirror. Without elaborate equipment, one can then center the source by

judging and equalizing visually the gaps between the housing and the light beams.

Actual
wavefront

Ideal
wavefront

Actual
ray position

ray position
Ideal

W(x,y)

Observation
plane

TAy

0y

OPD(x,y)

r

FIGURE 10.3. Relation between the transverse aberrations and the wavefront deformations.
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It is important that a well thought-out support system be used with a mirror under

test: Only deformations that will be present in actual use of the mirror are allowable.

Some of the many effects of support systems have been described byMalvick (1972).

For convenience, the point source is placed at a position closer to the mirror than

the center of curvature. This position places the conjugate image beyond the center

of curvature and permits the interception of the converging light inside and

outside the focus modes without the obstruction of the illuminating beam; the so-

called focus referred to is the conjugate image location of the point source. In

general, the image is highly aberrated for mirrors other than a sphere, and for

classical telescope primaries, spherical aberration should be the only one present.

To facilitate the identification of the dark spots on the Hartmann plate, it is necessary

that the photographic plate or detector be placed outside the caustic limits. The

source can be any light that is dim, or dimmed, enough to permit long exposure times,

which do not result in overexposure of the photographic plate or detector. Exposure

times in the range 90–180 s, depending on source brightness, should be sufficient to

average random air turbulence.

The photographic plate or detector should be very close to being perpendicular to

the optical axis; otherwise, a fictitious astigmatism will be obtained from the data

reduction. There are several ways of orienting the plate holder correctly. A straight-

forward approach is to load the holder with a clear glass plate that has a cross hair

scribed at its center. Then, with an alignment telescope, a zone on the mirror is

viewed through the center of the plate. The alignment scope is first brought into

alignment with the mirror, and then the fainter return from the glass plate is centered

by tilting its holder.

With the screen and source properly located, one or more photographic plates

are recorded, usually at a position between the source and its conjugate image. The

location of the dots obtained on the photographic plate can then be determined to a

high degree of accuracy with a micro-densitometer having an x-y traveling stage.

Typically, a position of uncertainty of less than 0.003 mm can be expected. This

error represents a surface tilt uncertainty of 0.015 s of arc ð1:41� 10�7 radÞ for a
mirror having a radius of curvature of 21.3 m as in the case of the 4-m primaries.

The measuring stage is one of the few critical aspects of the test. When the

photographic plate is placed in the micro-densitometer, this instrument is made

to have its two perpendicular cross hairs present on a viewing screen through

which the plate can also be seen. These cross hairs are aligned with the two rows of

dots that correspond to the two perpendicular rows of holes in the square array, and

which intersect at the center of the screen. The rows of dots do not form straight

lines unless a very good mirror is under test. The plate and cross hairs are aligned

through a succession of small plate rotations and displacements until some mini-

mal departure is obtained. The task is easy with a mirror nearing completion

because the dots line up nicely.

In general, if the pattern is physically large, say of the order of 60 mm, alignment

can be made with a possible rotation error of less than 30 s of arc for the plate relative

to the cross hairs. This error has little effect on the test results, as can be shown

through repeated measurements of the same plate with slightly differing alignment
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criteria. If a gross error of the order 0.5�–10 is introduced, the resultant data reduction
gives a somewhat astigmatic looking, saddle-shaped aspect for the surface figure.

An important assumption in screen testing is that between samples the wavefront

changes are gradual rather than abrupt. This is a safe assumption because abrupt

changes can be readily detected by other means, such as a Foucault knife-edge test,

and in principle their presence can be taken into account or allowance can be made

for them. As a consequence, the screen test gives results that are more representative

of the actual surface features as the mirror surface becomes smoother. The need for

this assumption is due to the fact that each sample point is taken to give the average-

tilt for a certain area on the mirror surface. For the average-tilt approach to hold, one

must assume surface smoothness. This assumptionmust also bemade if a polynomial

fit is used.

Also, it is assumed that the air turbulence is random in magnitude and direction

between the mirror and the recording plane. The main turbulence condition that

influences the results is the case of a laminar sheet of air rising or falling. Such type of

turbulence will uniformly displace the light from a number of holes and system-

atically alter the results. Frequently, this condition is present on a small scale, and it is

difficult to detect.

A common source for this sort of turbulence is a thermal imbalance across the

width of the test beam. The typical situation arises when one is testing with the

optical axis horizontal in the presence of a thermal gradient across the optical path, as

can be found between the floor and the ceiling of a test area when their temperature is

not controlled adequately. If the air reaches a stable condition, then a layering results,

with the coolest and densest layer at the bottom and the warmest and lightest layer at

the top. This air density gradient is also an index of refraction gradient, with the

higher index at the bottom and the lowest at the top. Although this is not a turbulence

in the usual sense, nevertheless, it results in an astigmatic wavefront when the system

under test may not have such an aberration. This astigmatism is aligned with the

vertical axis and can cause further confusion when astigmatism due to a drooping of

the optics is expected because of self-weight deflection of those optics under the local

gravity gradient.

The other typical thermal gradient situation arises when the test is performed with

the optical axis vertical near the outside wall of a building. In such a case, if the wall

is warm, a chimney effect could take place and obviously this would be undesirable.

Similarly, if the wall is cold, a cascade of cold air would also cause problems for the

test. Proper insulation and care in thermal control are the necessary design criteria in

setting up the test under such circumstances.

The screen must be centered accurately on the aperture of the mirror under test.

This is particularly true in the presence of spherical aberration, which is the case for

aspheric mirrors tested at their center of curvature. A decentering of the screen in

such a situation leads to an apparent presence of coma as described by Landgrave and

Moya (1986). They present results for parabolic mirrors of various F numbers.

After the screen is placed and centered on the mirror, but before any plates are

taken, the point light source used to illuminate the mirror through the screen must be

centered properly relative to the mirror to prevent the introduction of off-axis
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aberrations. This can be done conveniently if the housing of the point source is of

such a size that it is narrowly missed by the beams returned by the region near the

center of the mirror. Without elaborate equipment one can then center the source by

judging and equalizing visually the gaps between the housing and the light beams.

10.3. HARTMANN TEST USING A RECTANGULAR SCREEN

The distance from the wavefront at the exit pupil to the Hartmann plate is r and the

linear transverse aberrations are TAx and TAy. The wavefront can thus be calculated

by integration of the transverse aberrations measured at the Hartmann plate.

For an adequate identification of the spots in the Hartmann plate, this plate has to

be located displaced from the focus, frequently inside the focus, so that the light

beams do not cross each other. In other words, if the wavefront has spherical

aberration, the Hartmann plate must be placed outside the caustic region.

As pointed out by Gozheil in a previous version of this chapter, the use of the

square screen was suggested by R. V. Shack in private communications, and it was

first employed to test a number of large telescope primary mirrors, like the first 4-m

telescope, made at Kitt Peak National Observatory (Simmons and Ghozeil, 1971;

Ghozeil and Simmons, 1974); the 3.8-m Anglo-Australian telescope, which was

tested at Grubb Parsons; the second 4-m telescope, made at Kitt Peak for the Cerro

Tololo Interamerican Observatory (Ghozeil 1974); the 2.6-m telescope for the Irenée

Dupont Observatory, made at the Optical Sciences Center of the University of

Arizona; and the 3.6-m telescope for the Canada-France-Hawaii Observatory,

made at the Dominion Astrophysical Observatory. The square array not only gives

uniform sampling of the surface but also does so in a manner that has no circular

symmetry. Thus, there is no need to make assumptions concerning the disposition

and symmetry of the errors to be detected, and the possibility of an artificial circular

error buildup has been removed. Furthermore, a much higher surface-sampling

frequency can be obtained with this method than is possible with radial or helical

screens. The tests performed in this way are independent of random air turbulence

and can be done with or without intervening optics, such as null lenses. The second

option of having no intervening matter other than air is preferred, so that the

introduction of confounding alignment and surface errors caused by intervening

materials can be prevented.

As the mirror nears completion, there is a need for a more detailed and reliable

representation of the surface under test. This can be achieved through the super-

position and averaging of several tests obtained with the screen rotated at some

known amount about its center, relative to the mirror (Ghozeil, 1974). The super-

position can be done numerically with an electronic computer or photographically by

expressing different surface deviations by corresponding densities on a photographic

plate. The deviations obtained from separate tests for each region are used to obtain

new average values for all the regions. This composite method is capable of giving

surface deviations with an uncertainty of less than 0.05 wavelength. Results obtained

in this way have shown faint small features observable with a knife-edge test, while
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simultaneously revealing overall slowly varying asymmetrical features. The square

array method of testing requires the use of a precision centroid finding method.

With this test method, as with other screens, it is not possible to detect small scale

surface changes taking place between holes in the screen. However, as shown by

Gozheil (1974), this test, and potentially the helical screen method, can be made to

FIGURE 10.4. Hartmann screen over the 2.1 m primary mirror of the Guillermo Haro Observatory

telescope made at the Instituto Nacional de Astrofı́sica, Optica y Electrónica, en Tonatzintla Pue. Mexico.

FIGURE10.5. Hartmann spots of the 2.1m primarymirrormade at the Instituto Nacional de Astrofı́sica,

Optica y Electrónica, en Tonatzintla Pue. Mexico.
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show zones that are small in extent through a composite of several tests of the same

mirror under the same conditions, but with the screen rotated at a known amount

relative to the surface.

The screen is placed near the mirror as shown in Figure 10.4, which shows the

screen used with the two 2.1-m primary mirror made at Instituto Nacional de

Astrofı́sica, Optica y Electrónica (INAOE), in Tonatzintla, Mexico, and shows the

341 holes in the screen and the ribbed structure incorporated in the screen to make it

rigid. The Hartmann pattern for this hyperboloid mirror is shown in Figure 10.5.

10.4. WAVEFRONT RETRIEVAL

Several methods of integration can be used with somewhat more reliable results.

Some of these methods are as follows.

(a) The well known trapezoidal integration. In most cases this trapezoidal rule

will suffice.

(b) The Southwell integration algorithm.

(c) The polynomial fitting of the wavefront.

(d) Other methods.

10.4.1. Tilt and Defocus Removal

Any possible lateral displacement of the whole Hartmann pattern, which would

introduce a tilt in the retrieved wavefront, must be subtracted from the data. To do so,

the centroid of the measured dot positions need to be found and established as the

origin of the coordinate system to be used in the reduction. This is done by averaging

all the x and y values of the measured dot locations and then subtracting these average

values from each measurement. The reason for this step is that the intersection of the

plate with the optical axis of the mirror is unknown and the centroid is the best

method for establishing this intersection. Surface deformations that occur randomly

or symmetrically will result in a set of spots whose centroid corresponds with the

location of the intersection of the optical axis and the plate.

The necessary large defocusing in the Hartmann test introduces a large linear

component on the transverse aberrations, which is equivalent to a large quadratic

component in the wavefront. To greatly reduce the effect of this defocusing, the

transverse aberrations must be obtained with respect to the spots in an ideal

Hartmann pattern with the same defocusing. Ideally, a least-squares fitting of the

two measured transverse aberrations to a pair of linear expressions with the same

linear coefficient must be obtained. The ideal transverse aberrations�x and�y with

tilt and defocusing, for a given spot, can be written as

�xm ¼ Ax þ Bxm

�ym ¼ Ay þ Bym
ð10:3Þ
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where Ax, Ay, and B are constants and x and y are measured on the corresponding hole

on the Hartmann screen.

This procedure can be separated in two steps, using the fact that the Hartmann

screen is symmetrical. Then, for every x coordinate of a hole there is a negative

counterpart. As a consequence, summations over x reduce to zero. Thus, the centroid

can be set by

Ax ¼

PN

m¼1

�xm

N

Ay ¼

PN

m¼1

�ym

N

ð10:4Þ

where N is the number of holes over which the summations are to take place.

After the centroid has been established as the origin of the coordinate system to be

used, the ideal positions for the defocused pattern must be calculated. A defocus

situation results in a radial linear departure of the ray intercepts. Thus, the residual

deviations can be brought to the best focus by subtracting the linear term, which is

calculated bymeans of a two-dimensional linear least-square fit. Both, the centroid (or

tilt) and the defocusing removal can be performed with this least squares as follows:

B ¼

PN

m¼1

xm ð�xmÞ þ
PN

m¼1

ym ð�xmÞ

PN

m¼1

x2m þ
PN

m¼1

y2m

ð10:5Þ

Once the constants have been found, the values of the residuals at the best focus,

illustrated in Figure 10.6(b), can be determined by subtracting the value of�xm from

the measured values of TAx and TAy. This gives

TAx m ¼ TAx m measured ��xm ð10:6Þ

where TAx m is the new value.

The new transverse aberration values can be used to obtain an estimate of the

energy distribution of the light returned by the mirror under test. This is done by

counting the number of points having a distance r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TA2
x m þ TA2

y m

q

from the

origin of the coordinate system. If the test is performed at the center of curvature

and the energy distribution at the focus is desired, the residuals can be divided by a

factor of 2. This division is a good approximation that introduces a small error,

equivalent to a surface deformation of less than 0.05 wavelength, at the edge of an

f =2:7 mirror. It is worth remembering that this energy distribution is the result of

geometrical optics considerations and that the real image obtained with the mirror
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will be affected by diffraction. In general, that effect will tend to give a higher energy

concentration in the core of the image.

If the wavefront is highly aspherical, it is convenient also to subtract the aspheric

component before retrieving the wavefront. This can be done by one of the two

different processes, that is by a least-squares fit to a cubic transverse aberration

function, representing primary spherical aberration or by taking the difference

between the newly established x and y coordinates of each dot, and the corresponding

coordinates expected from a perfect mirror is found. The expected coordinates of the

spot can be obtained from geometrical ray tracing or from closed form equations

such as Eq. (9.22) in this book (Malacara, 1965).

10.4.2. Trapezoidal Integration

This method of wavefront retrieval, sometimes call a zonal method, is illustrated in

Figure 10.7, with the linear approximation in the TA measurements; the wavefront

shape is continuous, synthesized by second-order segments with constant curvature

in each segment. Thus, if the wavefront is quadratic, which happens when only tilts,

defocus, and astigmatism are present, the trapezoidal integration becomes exact.

Integrating expressions (10.1) and (10.2), we obtain (the minus sign is ignored for

simplicity)

Wðx; yÞ ¼ 1

r

Z x

0

TAxðx; yÞdx ð10:7Þ

and

Wðx; yÞ ¼ 1

r

Z y

0

TAyðx; yÞdy ð10:8Þ

d

d

S

S

(a) Hartmann screen (b) Hartmann plate

FIGURE 10.6. Schematics of a rectangular array of holes and the positions of the registered spots at the

Hartmann plate. The rectangular array with dotted lines represent the positions of the spots for an ideal

aspheric mirror.
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Since the measurements are made only at points in a rectangular array, in the

classical Hartmann test the wavefront shape is found by a first-order trapezoidal

integration of Eqs. (10.1) and (10.2) by writing

Wn;m ¼ Wn�1;m þ d

2r
½TAxðn� 1;mÞ þ TAxðn;mÞ� ð10:9Þ

along the x axis and

Wn;m ¼ Wn;m�1 þ
d

2r
½TAyðn;m� 1Þ þ TAyðn;mÞ� ð10:10Þ

along the y axis, and

Wn;m ¼ Wn�1;m�1 þ
d

2r

�
ðTAxðn� 1;m� 1Þ þ TAxðn;m� 1ÞÞ

þ ðTAyðn;m� 1Þ þ TAyðn;mÞÞ
�

ð10:11Þ
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FIGURE 10.7. Illustration of a trapezoidal integration with straight lines joining the measured values of

the transverse aberration. The wavefront is reconstructed with quadratic segments. The wavefront is

continuous at the measured points, but not the wavefront slopes.
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along a diagonal line. Here, d is the separation between two consecutive holes in the

Hartmann screen. This expression is calculated for successive spots coming from

holes along a line on the Hartmann screen, beginning with W(0, m), W (n, 0), TA(0,

m), and TA(n, 0) equal to zero. Then, a new line is scanned, until the whole pattern is

covered from several directions. These expressions give the surface deviation at any

point (n, m), taking the first point as a reference.

The holes on the Hartmann screen should be placed very accurately to avoid errors

in computing the surface deviations. The hole diameter should be small but not so

small that their diffraction images on the photographic plate overlap each other and

should be of sufficiently small size so as to permit an accurate measurement of the

wavefront aberrations present (Golden, 1975; Vitrichenko et al., 1975; Morales and

Malacara, 1983).

Because numerical integration methods tend to have an accumulation of errors

inherent in them, some care must be taken to reduce that error. This is best done

through the use of paths of integration that intersect at only one point, which means

that a surface height at any location is obtained by independent means. It is also

worthwhile to integrate along any path in one direction and in its reverse direction,

and then average the results obtained.

The scheme used in the integration follows a philosophy that is shown schema-

tically in Figure 10.8. First, the summations originate on the x and y axes and have as

y
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FIGURE 10.8. Diagram showing the holes on the Hartmann screen. Different integration paths are

followed along vertical lines, horizontal lines, and also lines at 45� and �45�.
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starting value of each integral the value obtained from the other coordinates, integral

going through the point in question. Since the surface departure values obtained

through the x and y integrations should be the same at each point, the results of the

two integrations are averaged at each point. Then, the reverse path summation is done

and averaged with its corresponding integral.

For greater accuracy, the next step can be to rotate the coordinate axes by 45�

about the origin and to repeat the entire integration process, using a different hole

interval and different integration paths. Since these integrations should give the same

results as those obtained with the first scheme, the values obtained by both the

processes are averaged at each point. This means that each surface departure value is

obtained in at least four ways, with a majority obtained in eight ways. This replica-

tion tends to reduce the systematic accumulation of errors, as well as the introduction

of spurious ones.

To further reduce spurious errors, two photographic plates may be measured and

reduced in this fashion, and the results of the two tests may be averaged together. This

reduces errors due to imperfect photographic emulsions and nonrandom air turbu-

lence between mirror and plate, as well as measuring errors.

10.4.3. Southwell Algorithm

This method, sometimes called the Southwell (1980) reconstructor is also a zonal

method.When the linear integration is made from one point to another following two

different paths, the two results may by slightly different due to several factors like

measurement errors in the spot positions, local wavefront deviations from sphericity,

and numerical errors. The idea behind this method is to take into account the

wavefront deformation for some vertical and horizontal adjacent spots in the calcu-

lation of the wavefront deformation for all spots.

Southwell proposed an iterative solution where for any point ðn;mÞ the wavefront
is calculated with Eqs. (10.10) and (10.11) integrating from four neighboring points,

one above, one below, one at the left, and one to the right of the point being

considered as illustrated in Figure 10.9. Then, the final valueWn,m is just the average

of the four values. For notational simplicity, we define Sxn�1;m as

Sxn�1;m ¼ d

2r
½TAxðn� 1;mÞ þ TAxðn;mÞ� ð10:12Þ

Thus, with Eqs, (10.12) and (10.13) for the four neighboring points in Figure 10.9 we

can write

Wn;m ¼ Wn�1;m þ Sxn�1;m

Wn;m ¼ Wnþ1;m � Sxnþ1;m

Wn;m ¼ Wn;m�1 þ S
y
n;m�1

Wn;m ¼ Wn;mþ1 � S
y
n;mþ1

ð10:13Þ
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Thus, the weighted average of these four measurements is

Wn;m ¼ ðsn�1;mWn�1;m þ snþ1;mWnþ1;m þ sn;m�1Wn;m�1 þ sn;mþ1Wn;mþ1Þ
ðsn�1;m þ snþ1;m þ sn;m�1 þ sn;mþ1Þ

þ
ðsn�1;mS

x
n�1;m � snþ1;mS

x
nþ1;m þ sn;m�1S

y
n;m�1 � sn;mþ1S

y
n;mþ1Þ

ðsn�1;m þ snþ1;m þ sn;m�1 þ sn;mþ1Þ
ð10:14Þ

where the weights snm are defined as one for all spots. This expression is calculated

for all points ðn;mÞ in a square array where the whole Hartmann screen is included.

All spots that are nonexistent or located outside of the Hartmann screen should have

the corresponding weight factor s equal to zero. After all the spots had been covered,

a second iteration is made, until about a number of iterations equal to the total

number of spots are completed.

10.4.4. Polynomial Fitting

Wemay also use a polynomial fit to express the changes in slope deviations present

in the mirror. This procedure is frequently called a modal method, because each

polynomial component can be considered as a mode. The fit is made to agree with

some criterion governing how closely the fit and the sample points should agree.

Thus, rather than using tilted flat planes to perform the integration to obtain the

surface departures, one integrates over a polynomial (Cornejo and Malacara,

1976). The wavefront can then be written in terms of Zernike polynomials.

Theoretically, this is ideal because errors due to numerical integration method

are removed. The difficulty lies in obtaining a good polynomial fit. It is known

that such fitting can introduce errors by smoothing out relevant sharp features

or by introducing oscillations when none exists. The first effect usually is due to

Wn -1,n

Wn,m -1

Wn,m

Wn,m +1

Wn +1,m

FIGURE 10.9. Wavefront calculation for point n, m going to this point from four neighboring points in

cross.
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low-order polynomial fits and the second effect is due to high-order fits. Needless

to say, this leads to a reduction in the reliability of the test procedure, especially

near the edge of the mirror.

A polynomial fit can be made through a least-squares method as described next.

Let us assume that the wavefront can be represented by a linear combination of some

polynomials, for example, Zernike polynomials, as

Wðx; yÞ ¼
XN

n¼0

AnPn ð10:15Þ

where N is the number of polynomials being used (it is not the maximum power)

and An are the unknown coefficients of the linear combination. Then, from Eqs.

(10.1) and (10.2), we can write

TAxðx; yÞ ¼ r
XN

n¼0

An

@Pn

@x
ð10:16Þ

and

TAyðx; yÞ ¼ r
XN

n¼0

An

@Pn

@y
ð10:17Þ

Then, a least-squares fit of these analytical functions to the measured correspond-

ing values of the transverse aberrations can be made. From a polynomial fit, one can

then extract classical aberration terms such as coma and astigmatism.

10.4.5. Other Methods

Another approach to retrieve the wavefront with a two-dimensional fast Fourier

transform (FFT) algorithm has been reported (Freischlad and Koliopoulos, 1985). Its

main advantage is that it is less sensitive to noise in the data, which has been used to

obtain two-dimensional wavefront errors.

Also, some of the methods used to demodulate interferograms can be used with

Hartmann patterns as shown by Servı́n et al. (1996 and 1999).

If a non-linear approximation is desired when a strongly aspheric wavefront is

to be measured, another procedure would be to use two-dimensional cubic spline

functions (Ahlberg et al., 1967). If properly used, this method of fitting can give

a better approximation between sampling points than with the trapezoidal rule,

which assumes quadratic curves instead of straight lines in the transverse

aberration functions between two consecutive points. For this method to improve

results, it is necessary that the transverse aberrations to be integrated are

measured with respect to the ideal aspheric wavefront and not with respect to

a close sphere.
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10.5. HARTMANN TEST USING A SCREEN WITH FOUR HOLES

Sometimes, the detailed wavefront topography is not desired and only a measure-

ment of some primary aberrations are needed. In this case, the Hartmann test can be

performed with only four holes near the edge of the pupil of the system. If we have

only four holes, we take two measurements, that is, TAx and TAy, for the light from

each hole. Thus, we have a total of eight measurements. We can determine a

maximum of eight aberration terms, where the constant or piston term cannot be

included. These aberrations can be

Wðx; yÞ ¼ Bxþ Cyþ Dðx2 þ y2Þ þ Eðx2 � y2Þ þ Fxy

þ Gðx2 þ y2Þyþ Hðx2 þ y2Þx
ð10:18Þ

where the coefficients B, C, D, E, F, G, and H represent the following:

B¼ Local cell tilt about the y axis.

C¼ Local cell tilt about the x axis.

D¼Defocusing (local cell spherical deformation).

E¼Astigmatism with axis at 0� or 90�.

F¼Astigmatism with axis at 
45�.

G¼ Coma along the y-axis.

H¼ Coma along the x-axis.

The next aberrations are the two triangular astigmatism terms, with bases along

each of the two axes, x and y, but we cannot find both with only eight measurements.

So, they are not to be calculated.

If the tilt and coma terms are not present the wavefront has a toroidal shape whose

radial curvature can be written (Salas-Peimbert et al., 2005) as

cr ¼ ½2Dþ ð4E2 þ F2Þ1=2� � 2ð4E2 þ F2Þ1=2 sin2ðy� aÞ ð10:19Þ

where the first term is the mean spherical contribution and the second term is the

astigmatic contribution with an orientation (astigmatic axis) a given by

tan 2a ¼ F

2E
ð10:20Þ

Let us now consider the four Hartmann spots produced by the light beams passing

through the four holes at the Hartmann screen. Then, the x components of the

transverse aberrations are given by

@Wðx; yÞ
@x

¼ TAx

r
¼ Bþ 2Dxþ 2Exþ Fyþ 2Gxyþ Hð3x2 þ y2Þ ð10:21Þ
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and the y components of these aberrations are given by

@Wðx; yÞ
@y

¼ TAy

r
¼ C þ 2Dy� 2Eyþ Fxþ Gðx2 þ 3y2Þ þ 2Hxy ð10:22Þ

We have not yet considered any particular configuration for the four holes. The

four holes can be located at
45� (in X) or at 0�, 90�, 180�, and 270�, (in cross) as will
be considered next.

10.5.1. Four Holes in Cross

Now we will consider the following coordinates for the four holes, as described by

Malacara and Malacara (1992) and illustrated in Figure 10.10(a): að�d=2; 0Þ,
bð0;�d=2Þ, gð�d=2; 0Þ, and dð0;�d=2Þ.

We can apply Eqs. (10.21) and (10.22) to the four holes to find the aberration

coefficients and by taking averages where redundant information is available, as in

the case of the G and H coefficients; we finally find all the aberration coefficients for

the square cell to be given by

B ¼ �ðTAxa þ TAxgÞ � 3ðTAxb þ TAxdÞ
4r

C ¼ � 3ðTAya þ TAxgÞ � ðTAyb þ TAydÞ
2r

D ¼ �ðTAxa � TAxgÞ þ ðTAyb � TAydÞ
4rd

E ¼ �ðTAxa � TAxgÞ � ðTAyb � TAydÞ
4rd

F ¼ �ðTAya � TAygÞ
2rd

G ¼ �ðTAya � TAyg � TAyb � TAydÞ
2rd2

H ¼ ðTAxa þ TAxg � TAxb � TAxdÞ
rd2

ð10:23Þ

The typical patterns for some primary aberration are given in Figure 10.11(a).

(a) Four holes in cross (b) Four holes in x

a b

gd

d

a

b

g

FIGURE 10.10. Two Hartmann screens with four holes:(a) in cross and (b) in X.
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10.5.2. Four Holes in X

Now we will consider the following coordinates for the four holes, as described by

Salas Peimbert et al. (2005) and illustrated in Figure 10.10(b): að�d=2;�d=2Þ,
bðd=2;�d=2Þ, gð�d=2; d=2Þ, and ðd=2; d=2Þ. In a manner similar to the case of

the four points in cross, we can find

B ¼ ðTAxa þ TAxb þ TAxg þ TAxdÞ � 2ðTAya þ TAyb þ TAyg � TAydÞ
4r

C ¼ ðTAya þ TAyg þ TAyb þ TAydÞ � 2ðTAxa � TAxb þ TAxg � TAxdÞ
4r

D ¼ �ðTAxa � TAxb � TAxg þ TAxdÞ þ ðTAya þ TAyb � TAyg � TAydÞ
8rd

E ¼ �ðTAxa � TAxb � TAxg þ TAxdÞ � ðTAya � TAyb � TAyg � TAydÞ
8rd

F ¼ �ðTAxa þ TAxb � TAxg � TAxdÞ
2rd

G ¼ ðTAxa � TAxb þ TAxg � TAxdÞ
2rd2

H ¼ ðTAya � TAyb þ TAyg þ TAydÞ
2rd2

ð10:24Þ

The typical patterns for some primary aberration are given in Figure 10.11(b).

(a) Astigmatism at 0° or 90° (b) Astigmatism at angle ± 45°

(c) Astigmatism at angle q (d) Coma in y direction

45°

(c) Astigmatism at angle q

(a) Astigmatism at 0° or 90°

(d) Coma in y direction

(b) Astigmatism at angle ± 45°

(a) Four holes in cross (b) Four holes in x

FIGURE10.11. Typical hartmannpatterns for aHartmann screenwith four holes: (a) in cross and (b) inX.
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10.6. HARTMANN TEST OF OPHTHALMIC LENSES

Salas-Peimbert et al. (2004) have applied the Hartmann test to the measurement and

evaluation of ophthalmic lenses. These lenses can have positive as well as negative

focal lengths. Also the wavefront produced can be spherical, toric, or even highly

aspherical as in the progressive power lenses. In conclusion, if they are illuminated

with a collimated beam of light, the refracted wavefront can be convergent or

divergent and spherical or aspherical.

If the refracted wavefront is projected on a translucid diffusing screen, even larger

than the lens, as illustrated in Figure 10.12, the Hartmann pattern can be observed

with a digital television camera to be digitally processed. With this method, even the

refractive power of the lens can be determined. It is only necessary to measure the

distance from the vertex of the ophthalmic lens to the observing screen.

The presence of a large distortion aberration on the camera lens can affect the

results, but this distortion can be numerically compensated and eliminated when

processing the Hartmann pattern. So, it is desirable to previously calibrate the camera

lens by observing a rectangular array placed at the desired observing distance.

10.7. HARTMANN TEST USING NONRECTANGULAR SCREENS

Over the years, sampling screens with a number of different hole patterns have been

used in testing mirror surfaces. The various types reported in the literature along with

their advantages and disadvantages are discussed in this section. Although recently

there has been an increase in the use of lenticular screens, we will continue to use

‘‘hole’’ as a short term instead of the more descriptive term ‘‘sampling aperture’’ in

the following discussion. It will be made obvious to the reader, in later parts of the

text, when a lenticular screen is being discussed and that the term ‘‘hole’’ is not

applicable.

For convenience in use, it is worthwhile that a few holes be added that do not fall

on the hole pattern of interest. These extra holes serve to aid in orienting the screen

and subsequently the recorded pattern of dots. Classically, photographic plates were

used to record the location of dots obtained from the screen tests and for subsequent

measuring of dot locations recorded on these plates.

Lens
under test

Collimated
light
beam lens

Camera
DetectorObserving

screen
with a
small pupil

FIGURE 10.12. Hartmann pattern projected on a transparent diffusing observing screen. This pattern is

then observed with a camera lens with a small aperture.
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10.7.1. Radial Screen

By far, the most common screen in use, until recently, was the radial pattern shown in

Figure 10.13. This type of screen was used first by Hartmann (1900, 1904) and

subsequently, without substantial change in the original concept, by a number of

other experimenters. A bibliography of the work published on the radial screen test is

given at the end of this chapter.

The basic concept of the radial pattern test is that a sample of points on the surface

of a concave mirror that has a circular aperture can be taken using an opaque cover in

which a number of small holes have been made. The holes are spaced evenly along a

number of diameters of the circular mirror aperture as shown in Figure 10.13. The

choice of such a pattern has several advantages. First, a circular aperture is easily

analyzed in a polar coordinate system. Second, the grid pattern will detect the most

common flaws of mirror surfaces of any size zonal errors and concentric ‘‘hills’’ and

‘‘valleys’’ fractions of a micrometer in magnitude that result from classical grinding

and polishing techniques. Thus, in principle, the radial screen could afford the luxury

of an easily analyzed test that detects the major noticeable surface defects.

In fact, the radial screen test has many shortcomings. A major one is that if one

considers each hole in the screen to be sampling an area on an annulus having as

mean radius the radial location of the hole, it follows that the area sampled is

considerably larger for holes far from the mirror center than for those near that

center. This means that the area of the surface contributing to the major portion of the

light gathering is known with least certainty, with the result that asymmetric defects

not detectable by other means are likely to go undetected by this method as well.

Another major shortcoming is due to the circular symmetry of some of the defects,

which go undetected if the hole spacing is not sufficiently small. Intertwined with

these procedural disadvantages is the assumption, often made in the data reduction to

FIGURE 10.13. Classical Hartmann radial pattern.
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deduce the surface, that the slope deviations detected are part of a circularly

symmetric system. The foregoing objections can be reduced somewhat by using a

radial screen with holes spaced moderately close together, with many diameters

sampled and consequently with some of the diametral arms not having holes near the

mirror center, to prevent overcrowding in that region. The assumption on symmetry

could also be abandoned. Incorporating these changes into the classical test, how-

ever, would lower its ease of reduction.

Also present in this form of testing is a buildup of integration errors along the

circular paths of integration, as discussed in the next section on application. This

error accumulation could be eliminated by a method similar to the replication

developed for the square array screen (Ghozeil and Simmons, 1974), but applied

to circular integration.

The radial screen can be used for testing a concave mirror in collimated light, or

with a point source placed at or near the paraxial center of curvature. The first test

is suitable for systems such as telescopes. It requires that the screen be placed

either flush with the surface or sufficiently far from the concave mirror so that the

beams, after reflection, do not strike the screen before they come to focus. When

the mirror is under test with light from a point source, the screen suffers from the

same location constraint already described and should be placed as close to the

mirror as possible.

In the radial screen method, it has been customary to record, on two photographic

plates, the light reflected from the mirror, with the mirror illuminated through the

screen. One plate can be placed inside and the other outside the theoretical point to

which the light should be converging, or both plates can be on the same side of that

location. Either of the two-plate techniques allows one to compensate for plate tilt

and for errors in hole spacings in the screen. The mirror for recording plane distance

need not be known accurately, but the plate separation is important in the computa-

tion unless a least-squares refocusing is to be done as described in Section 10.3.3.

In the classical test reduction, where the photographic plates are placed with one

inside and the other outside of focus, a mean weighted focus position, F0, can be

obtained as follows:

F0 ¼
P

RiFi
P

Ri

ð10:25Þ

where Fi is the focus obtained with the light from a pair of screen holes diametrically

located to either side of the vertex, and Ri is the radial distance of the ‘‘zone’’ that

contains that pair of points. These values of Ri act as weight factors. To obtain an

indication of the size of a point imaged by the lens, the Hartmann T criterion is used,

as expressed by

T ¼ 200; 000

F2
0

P
R2
i jFi � F0j
P

Ri

� �

ð10:26Þ

This gives the point image size in seconds of arc.
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The astigmatism of the mirror can be estimated by comparing the average focus

obtained from another arm of the radial screen with the average focus obtained from

another arm perpendicular to the first one. However, this utilizes a relatively small

number of sampling points and, consequently, does not give a very reliable estimate

of that astigmatism.

Only one plate at a time needs be reduced if the screen is well known, as was the

case for the 3-m (l20-in.) Lick Observatory primary mirror (Mayall and Vasilevskis,

1960). This modification is a great time saver if there are many points to measure on

the photographic plates.

The measured spot locations are reduced to give surface deviations by the general

method described in Section 10.2. In the classical form of the test, only radial

integration profiles are obtained. More recently, radial and tangential integrations

have been used (Mayall and Vasilevskis, 1960; Schulte, 1968; Vitrichenko et al.,

1975) to obtain more reliable results than the radial profiles alone. The two integration

modes should differ only by a constant and should be made to agree. In fact, circular

error buildup due to the tangential integration does not readily permit a simple shift to

bring about the agreement. This method would be improved if some ways were

established to introduce replication in the determination of surface deviations.

10.7.2. Helical Screen

In an attempt to overcome the disadvantages of the radial screen, a helically

distributed set of holes in a screen was used to test the Lick Observatory 3-m

(120-in.) primary mirror (Mayall and Vasilevskis, 1960). A portion of this pattern

is shown schematically in Figure 10.14. Although basically a radial screen pattern, it

differs from the classical pattern insofar, as holes along any radius are shifted radially

relative to adjacent radii so as to form a helix as shown in Figure 10.15.

This choice of pattern affords an opportunity for the pattern to intercept zonal

errors that might go undetected with a classical screen having the same hole spacing.

FIGURE 10.14. A portion of a helical screen showing the staggering of holes in the radial arms of the

screen.
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Thus, it overcomes one of the disadvantages of the classical screen. However, it still

suffers from unequal area sampling so that the most poorly sampled area of the mirror

is the one that will gather a great percentage of the light that will be used in forming

an image with the instrument in actual use.

This screen test makes extensive use of both radial and tangential integration paths

in its application. This takes into account the reality that mirror deformations result,

not merely in radial tilts, but in tilts having two components (Kingslake, 1927–1928)

that are due to asymmetric surface departures from the ideal mirror surface. Diffi-

culties arise in relating the slopes by sampling holes that are radially displaced

relative to neighboring radial arms of the screen. The methods needed to reduce the

data are thoroughly reported in the only known occurrence of the use of this screen

(Mayall and Vasilevskis, 1960).

10.8. HARTMANN–SHACK TEST

Instead of using a screen with an array of holes, Platt and Shack (1971) proposed

using a lenticular screen as illustrated in Figure 10.16. There are several small but

important differences between this method and the classic Hartmann test, for

example:

(a) In the classic test, the Hartmann pattern is obtained in a convergent light beam

close to the focus, whereas in the Hartmann–Shack sensor the test is made in a

nearly collimated beam of light. If the wavefront under test is convergent, a

collimating lens has to be used before the sensor. Figure 10.17 shows three

possible optical arrangements.

FIGURE 10.15. Complete helical screen showing the spiral distribution of holes.
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(b) An advantage in the Hartmann–Shack method is that any positive or negative

power can be easily detected and measured.

(c) Each of the spots is individually focused on the detector, making the light

energy density of the spot much higher than in the classic Hartmann test.

The Hartmann–Shack lenticular screen was originally made with two identical

layers of cylindrical lenses perpendicular to each other. Now, they are made as lenslet

wavefront
Aberrated

Hartmann–Shack
sensor

CCD
Detector

FIGURE 10.16. Hartmann–Shack test using a plate with a rectangular array of lenslets.

under test
Small lens

Point
light
source

sensor with
Hartmann–Shack

wavefront
under test

Convergent

CCD detector

Hartmann–Shack
sensor with
CCD detector

Small
collimating
lens

(a)

(b)

FIGURE10.17. Wavefront testingwith aHartmann–Shack sensor: (a)A small lens about the same size of

the sensor, (b) a convergent wavefront.
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arrays in molded plastic, glass, or fused silica. The Hartmann–Shack plates are arrays

between 10� 10 to more than 100� 100 lenslets. Each lenslet has a diameter in the

approximate range 0.2–2 mm. A typical focal ratio f /#, which is nearly the size of the

spot, in mm is large, between f=10 and f=200. Table 10.1 shows the main character-

istics of some lenslet arrays.

If the wavefront is flat, the light beam passing through each lens is focused near its

optical axis. Since the lens array is not perfect, the lenticular array must be previously

calibrated with a reference flat wavefront.

The diffraction spot size semidiameter r is given by

r ¼ fl

d
ð10:27Þ

where d and f are the diameter and the focal length of the lenslets, respectively, and l

is the wavelength of the light. The angular dynamic range of this sensor is defined as

the maximum possible angular aberration that can be measured without any crossing

or overlapping of the spots. Thus, the maximum allowed spot deviation is about

d=2� r, so that the angular dynamic range becomes

ymax ¼
d=2� r

f
ð10:28Þ

The size s of each pixel in the detector determines the angular sensitivity, which is

defined by the inverse of the minimum measurable angular slope, given by

ymin ¼
s

f
ð10:29Þ

Since the spot displacement on the detector is equal to thewavefront slopemultiplied

by the focal length of the lenslet, a shorter focal lengthwill give a greater dynamic range

but a reduced angular sensitivity. The most adequate focal length will depend on the

intended application. The several possible sources of error in the Hartmann–Shack test

had been analyzed by some authors, for example, by Neal et al. (2002).

Because of its compactness, ease of calibration, high surface-sampling frequency,

and other advantages, the method of reimaging the aperture onto a small screen

is finding increasing applications (Loibl, 1980). The Hartmann–Shack wavefront sensor

TABLE 10.1. Main characteristics of some lenslet arrays used

in Hartmann–Shack sensors.

Full size Lenslet diameter Lenslet focal Focal

Array size in mm in mm length in mm ratio f /#

100� 100 50� 50 0.5 8.31 16.6

60� 60 61� 61 1.0 40.0 40.0

55� 55 62� 62 1.1 105.0 95.5

30� 30 70� 70 2.2 209.0 95.0
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has been widely used for adaptive optics in astronomy (Ftaclas, 2001), for eye measure-

ments (Liang et al., 1994), and for aspheric lens testing (Greivenkamp et al. (2001).

10.9. CROSSED CYLINDER TEST

It has been pointed out that in the classic Hartmann test the observation plane has to

be out of focus so that the hole from which each of the detected light spots can be

properly identified. Once the Hartmann plate is taken, the amount of applied defocus

can be measured if the radius of curvature of the wavefront is well known. However,

this is not always the case and sometimes we would like to measure this radius of

curvature from the Hartmann plate or be able to identify andmeasure any defocusing.

Two possible examples are the human eye and a photographic camera. Also, in these

two cases we cannot introduce a large defocusing, unless a convergent or divergent

lens in placed in front of the system.

Howland (1968) has proposed to use a pair of crossed cylinders in front of the

system, one of them convergent and the other divergent, to produce the desired

defocusing, instead of using a single convergent lens. This arrangement has several

FIGURE 10.18. Hartmann patterns with the two crossed cylinder technique in the presence of primary

aberrations.
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advantages, since any defocusing can be measured, including its sign, from the

Hartmann plate. The two crossed cylinders are placed in front of the system under

test, a positive cylinder with its axis at�45� with respect to the x axis and a negative
cylinder at þ45� with respect to the x axis. Instead of a pair of crossed cylinders, a

single lens with two opposite curvatures in orthogonal direction could be used, but it

is more complicated and expensive to produce this lens than two cylinders.

Figure 10.18 shows the Hartmann patterns using this method for an aberration free

system and for a system with spherical aberration and coma.

10.10. TESTING WITH AN ARRAY OF LIGHT SOURCES

OR PRINTED SCREENS

Instead of using a screen with an array of holes in front of the pupil of the system

under test and a single point light source, it is possible to use an array of independent

light sources, each one illuminating a small zone on the pupil of the system. The

working principle is the same, which is based on geometrical optics. There are

several possible different configurations, depending on the type of optical element or

system being tested.

Let us consider a lens with spherical aberration as in Figure 10.19. If the lens is

illuminated by a wavefront with a distortion that just matches the spherical aberra-

tion, the refracted wavefront will be spherical and thus focused at single focus. Now,

instead of illuminating with a single wavefront, an array of point light sources is

placed on a plane in front of the lens. Then, the refracted rays originating from the

rays traveling perpendicularly to the aspherical wavefront before entering the lens

are selected by means of a pinhole at the focus of the lens. If the light sources in the

array are equally spaced, ray intersections at any virtual or real observation planewill

not be equally spaced, as in an aberration free lens.

The distance from the ray intersection to the ideal ray intersection in the observa-

tion plane can be interpreted as the transverse aberration. The radius of curvature of

the wavefront is the distance from the observation plane to the pinhole. Although the

observation plane can be located anywhere, ideally, the observation plane is on the

Array of
light
sources

Wavefront

Lens
under test

Pinhole

Real
observation

plane

Virtual
observation
plane

FIGURE10.19. A lenswith spherical aberration, illuminated by an aberratedwavefront that justmatches

the spherical aberration of the lens. The refracted wavefront is spherical.
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pupil of the system under test. Then the distance between the real and the ideal

intersections is the transverse aberration TAðx; yÞ, and the location of the intersection
of the real ray has the coordinates x, y, with origin at the center of the pupil. It must be

noticed that since neither the pinhole nor the light sources are infinitely small, and the

light spots being observed are not small either. Similar to the classic Hartmann test,

the centroid of the spot can be taken. This measurement principle can be used to test

lenses or optical surfaces as will now be described.

A ruled screen, that is, a screen with two rectangular arrays of straight lines drawn

on it can be used instead of using arrays of point light sources. Otherwise, the test is

nearly the same and its pattern interpretation is identical. These tests will be briefly

described in the next paragraphs.

10.10.1. Testing Convergent Lenses

A convergent lens can be tested as illustrated in Figure 10.20. An array of point

sources is placed in front of the lens. If the pupil of the observing system is at the

focus, the object is assumed to be at infinity. The distance from the lens to the light

source is relatively unimportant, but has to be large enough so that the size of each of

the light sources and any lateral displacement from its correct position do not affect

the results much.

If the lens is not designed for an object at infinity, but at a finite distance, the

imaging lens has to be placed at the correct image position. This imaging lens has a

small aperture and forms an image of any desired virtual observing plane at the

observing screen. Ideally, this lens has to form an image of the pupil of the system

under test at the observation plane. The imaging lens with the observation plane can

be replaced if desired by the human eye.

A similar arrangement is shown in Figure 10.21. The difference is that a back

telecentric system formed by the collimator and a small stop, with the focusing lens,

are used in front of the array of light sources (frequently solid state lasers). With this

telecentric system, an image of the array of point light sources is formed at the

entrance pupil of the system under test. The stop after the lens under test is not used

because the small aperture stop at the collimator helps to produce narrow parallel

beams of light entering the lens under test. Then, the Hartmann spots are formed at

the position sensing detector as in the classic Hartmann test.

Light
source Lens

under test
with a
small pupil

array
Observing
screen

Imaging
lens

FIGURE10.20. Testing a convergent lenswith an array of light sources in front of the lens.A small stop at

the imaging lens selects only the rays that pass through a common focus.
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An advantage of having independent light sources is that they can be switched on

and off in sequence. This permits an easy identification of the stops at the observation

plane even if no defocus is applied, since only one light source is on at the time of

measurement. Another advantage is that the absence of defocus allows the detection

and measurement of the convergence or divergence power.

As described by López-Ramı́rez et al. (2000), instead of using an array of point

light sources, a screen with two orthogonal arrays of straight and parallel lines can be

placed in front of the lens, as shown in Figure 10.22. The imaging lens and the

observation plane can be a human eye. Aspherical lenses can be tested with this

method in a simple manner, observing the patterns as shown in Figure 10.23.

10.10.2. Testing Concave and Convex Surfaces

A convex surface or divergent lens can also be tested with this test using an array of

light sources. Of special importance is the testing of strongly convex surfaces. The

two problems that appear when observing the virtual image of a point light (real or

virtual) source in front of the convex surface are (a) that the observed image has a

strong astigmatism, thus appearing two focal surfaces, the tangential and the sagittal

surfaces and (b) that the two focal surfaces are quite strongly curved. If the object is a

virtual plane behind the surface, the shape of the two focal surfaces is close to an

ellipsoid, but not exactly, as illustrated in Figure 10.24.

To test a strongly curved surface, as for example the cornea of the human eye,

the arrangement as shown in Figure 10.25 can be used. The point light sources can be

located at an ellipsoidal surface between the sagittal and tangential surfaces. The

virtual images of the point light sources are then formed at a plane behind the surface.

Lens
under test

Laser
array

Focusing
lens

Position
sensing
detector

Collimator
and stop

FIGURE 10.21. Testing a convergent lens with an array of point light sources. A bundle of narrow and

parallel beams of light illuminate the lens under test.

Ruled
screen Lens

under test
Observing
eye

FIGURE 10.22. Testing a convergent lens by observing a ruled screen located at the front of the focal

plane of the lens.
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At a hole close to the ellipsoid, a lens is placed to form the image of the surface under

test at the observing screen. The lens with the observing screen can be a digital or a

television camera. This ellipsoidal configuration of the surface with the array of light

sources has been used by Mejı́a–Barbosa Y. and D. Malacara–Hernandez (2001) and

Mejı́a–Barbosa (2006) to test convex mirrors.

The ellipsoidal shape is sometimes unpractical, and a simple configuration is

desired. Diaz-Uribe and Campos-Garcı́a (2000) proposed a cylindrical configuration

with its axis aligned with the optical axis of the convex surface under test as

illustrated in Figure 10.26. In this case, instead of an array of point light sources, a

printed screen can be used. The lines to produce an imagewith a rectangular array are

quite distorted as shown in Figure 10.27. Their correct shape is calculated be ray

tracing. The image observed from the end of the tube as shown in Figure 10.28 is

obtained with a strong convex aspherical surface as shown in Figure 10.29.

C

R

surface
Tangential

Stop
Virtual
plane
image

Spherical
mirror
under
test

surface
Sagittal

FIGURE 10.24. Tangential and sagittal surfaces produced with a plane virtual object behind a strong

convex surface and a stop centered on the optical axis, close to the image surfaces.

FIGURE 10.23. Observing the ruled screen in front of the lens under test. (a) A lens without spherical

aberration (with an aspherical surface) and (b) a lens with spherical aberration.
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FIGURE10.26. Null testing of a strong convex surface using a cylindrical ruled screenwith its axis being

coaxial with the optical axis of the convex surface.
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Observing
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Stop

FIGURE 10.25. Testing a strong convex surface with a array of light sources on an ovoidal surface.
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FIGURE 10.27. Ruled screen to be folded as a cylinder used to test a strong convex surface.
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FIGURE 10.28. Plastic cylinder with the ruled screen inside it.

FIGURE 10.29. Pattern observed with the cylindrical ruled screen.
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As shown by López-Ramı́rez et al. (2000), concave surfaces can also be tested

with printed screens as illustrated in Figure 10.30 for a paraboloid and an spherical

surface. Off-axis concave paraboloid can be tested in a similar manner with a tilted

flat screen as described by Avendaño-Alejo and Dı́az–Uribe (2006).

10.11. MICHELSON–GARDNER–BENNETT TESTS

A test was devised byMichelson (1918) to determine mirror surface deformations by

the interference of light reflected from the surface illuminated through two holes in a

screen. The Michelson setup is shown schematically in Figure 10.31. The light

source is a slit illuminated by a monochromatic lamp. The image of the slit is

observed by means of a microscope. A series of screens with two apertures or,

equivalently, a double slit mechanism is placed in front of the surface under test. One

aperture is fixed at the center, and the other changes its radial distance. Interference

bands are observed in the microscope, with the central fringe exactly at the position

Sphere

Ruled
transparent screen

Center of
curvature

Focus

(a) (b)

Center of
curvature

Ruled screen
with holeParaboloid

Observing
eye

Observing
eye

FIGURE 10.30. Testing with a flat ruled screen: (a) A concave paraboloid and (b) a concave sphere.

Screen with
two apertures

Monochromatic point

light source

Microscope

Mirror
under test

FIGURE 10.31. Michelson test setup. The central screen hole is not moved, whereas the other hole is

moved in the survey of the entire surface.

10.11. MICHELSON–GARDNER–BENNETT TESTS 393



of the slit image if the wavefront is spherical. When the wavefront is not spherical,

the distance between the central fringe and the image of the slit gives the error. The

fringe displacement, in fractions of the separation between fringes, is the wavefront

error. By placing the movable hole over many places on the aperture, a complete

mapping of the wavefront errors can be obtained.

Michelson’s method was later modified to a diametral screen with several holes

(Merland, 1924; Gardner and Bennett, 1925; Bennett and Gardner, 1925) for

testing refractive elements and is also applicable to mirrors. The Gardner–Bennett

setup is illustrated in Figure 10.32, which shows that the interference fringes

between adjacent holes on the screen are recorded, not at the focus, as in the

Michelson test, but outside or inside the focus, as in the Hartmann test. The

defocusing must be sufficiently small, however, so that the light from adjacent

holes does interfere. The deviation of the central fringe from its ideal position

gives an indication of the phase difference between the wavefront regions covered

by two holes as in the Michelson test.

Although these forms of testing have not gained much popularity, they may be

worth a thorough investigation for potential use in uncommon testing situations. A

bibliography of publications on applications of various forms of this method is given

at the end of this chapter.

10.12. OTHER DEVELOPMENTS

One important development was the modification of the classical test to incorporate

an electro-optical detector array instead of the customary photographic plate

(Hausler and Schneider, 1988; Pearson, 1990). This permits rapid data collection

Point
light
source

or detector
plate
Photographic

Screen
with an array
of holes

Surface
under test

FIGURE 10.32. Gardner–Bennett test setup.
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and analysis of several spot patterns, and with the aid of a microcomputer these can

be averaged. The averaging can be done either with the raw data consisting of spot

centroids or with the wavefront maps that result from the analysis of the individual

patterns. This approach also permits the dynamical sampling of the aperture (Golden,

1975; Hausler and Schneider, 1988).

An improvement on the accuracy in measuring the spot centroids has been obtained

by the intentional overlapping of these spots, thus causing an interference effect to

occur (Korhonen, 1983; Korhonen et al., 1986). Such an approach allows a closer

packing of the spots and a possible higher surface-sampling frequency. This would

make the use of detector arrays more attractive, especially since the detector could be

biased to ignore the low-intensity noise present between adjacent spots.

With the use of the electro-optical detector arrays and fast microcomputers, a

rapid turnaround in testing can be achieved. Also this combination makes it possible

to test the same surface several times, without changing it, and thus makes it possible

to reduce test errors by averaging the several test results. Finally, we have seen that

continuous work is being done in the application and analysis of the Hartmann test,

with very promising innovations being considered.
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11

Star Tests

D. Malacara and W. T. Welfordy

11.1. INTRODUCTION

This chapter has been rewritten and updated by the first author, largely based on the

previous version by late Prof. W. T. Welford. The star test is conceptually, perhaps,

the most basic and simplest of all methods of testing the image-forming optical

systems:We examine the image of a point source formed by the system and judge the

image quality according to the departure from the ideal image form. In principle, the

test can be made quantitative by, for example, photoelectric measurement techni-

ques, but in practice the star test in theworkshop is almost always carried out visually

and semiquantitatively.We shall mainly discuss visual techniques.We can divide star

testing methods into two groups: (a) those in which very small aberrations, near or

below the Strehl tolerance limit, are examined and (b) those in which relatively large

aberrations are studied. Group (a) is typified by tests on microscope and telescope

objectives and group (b) by tests on camera lenses in which, for example, the star test

is used to plot the astigmatic field surfaces or to estimate transverse chromatic

aberration.

The monochromatic image of a point source, or point spread function as it is often

called, has a very complex structure, particularly in the presence of aberrations. The

structure depends in a complicated way on the geometrical aberrations, but it would

be out of place in a book on practical methods to go deeply into this aspect. Moreover,

it is always possible in principle to calculate the point spread function from the

aberrations, although the calculation may in practice be costly in computer time; but

for the present purposes we should like to be able to estimate the aberrations from the

form of the point spread function. This, however, is generally impossible in principle.

If the aberration is axially symmetrical, this calculation could be done from very

careful measurements of the light intensity in the star image. We have to make

estimates based on experience and on the many examples of point spread functions

that have been computed and photographed from known aberrations. Thus, the star

test is semiquantitative, and considerable experience is needed to get the best results

from it. Nevertheless, it is an important testing technique because it is rapid and
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reliable in experienced hands and is very sensitive. For example, the test is used in the

final adjustment of a critical air space in microscopic objectives of high numerical

aperture, since in this process it is desirable to try a new spacing and to retest rapidly.

There are not many publications about the star test probably because it depends so

much on experience. The basic reference is still the work of Taylor (1891). Useful

descriptions of the method have also been given by Martin (1961) and by Twyman

(1942); the latter reproduces much of Taylor’s descriptive material.

In discussing the star test we shall mostly assume that the pupil of the system

under test is filled with light of uniform intensity, and we shall also assume that the

star image is formed at a reasonably large convergence angle, say, not less than 0.01.

Modest variations of intensity across the pupil generally do not affect the star image

much, but we make an exception in the case of Gaussian beams from lasers. (A true

Gaussian beam has an indefinitely large aperture, while at the same time the theory

by which the Gaussian beam profile is derived uses the paraxial approximation! This

apparently blatant contradiction is resolved by the fact that, in practice, the intensity

in the Gaussian profile is negligibly small at distances from the central maximum

greater than, say, three times the 1=e2 radius.) Gaussian beams will be discussed in

Section 11.2.6. and the effects of very small convergence angles will be mentioned in

Section 11.2.7. At very large convergence angles, say, numerical aperture greater than

0.5, the shape of the point spread function is again different in detail from the one to be

described here, and an excellent study of such effects was recently published by

Stamnes (1986); for reasons of technical convenience, it is very unlikely that a practical

star test would be carried out at such large numerical aperture (NA); the usual

procedure is to transform the NA by a reliably aberration-free system such as a

well-corrected microscope objective, which itself has been star tested. Thus, for our

main descriptions of the aberration free point spread function (Figs. 11.1–11.9), we

have used the usual scalar wave approximation as the basis of the calculations.

11.2. STAR TEST WITH SMALL ABERRATIONS

In star testing systems that are nearly diffraction limited (possibly apart from

chromatic aberration), we need a background of information about the appearance

of the point spread function with small aberrations. This is given in Sections 11.2.1–

11.2.5, but without mathematical details.

Photographs and computations of point spread functions are to be found throughout

the literature on applied optics, although often not in a form particularly applicable to

practical star testing. One of themost useful sets of photographs is that which is used as

a frontispiece by Taylor (1891) and subsequently reproduced in many other publica-

tions, for example, Martin (1961). Among other photographs, we may mention the

work of Nienhuis (1948), which was reproduced by, for example, Born and Wolf

(1975); however, we should note that Nienhuis took some of his very beautiful spread

function photographs with a coherent background in order to enhance the secondary

rings and fringes, and this rather falsifies them for the purposes of star testing. In fact all

photographs are to be mistrusted for star testing: The nonlinearity of the photographic

emulsion is compounded with that of the halftone process and the result cannot be
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relied on over any reasonable dynamic range. We therefore give only graphical

presentations of spread functions in this chapter.

11.2.1. The Aberration Free Airy Pattern

Figure 11.1 shows the Airy pattern, the monochromatic aberration-free point spread

function for a system with a circular aperture of uniform transmission, and

Figure 11.2 shows the same with logarithmic vertical scale. What is plotted in these

two figures is the light intensity (vertical) against the radial distance from the center

of the image (horizontal). The light intensity is scaled to unity at the center of the

pattern. The radial coordinate z, which lies in the image plane, is given by

z ¼ 2p

l
sin aZ ð11:1Þ

where l is the wavelength of the light, a is the convergence angle (cone semiangle) of

the image-forming beam, and Z is the actual radial distance. Thus the radial

coordinate as shown is dimensionless and is often said to be in z units or diffraction

FIGURE 11.1. The Airy pattern; the aberration-free image of a bright point formed in monochromatic

light by a system with a circular aperture. The function plotted is

I ¼ 2J1ðzÞ
z

	 
2

where z ¼ ð2p=lÞ sin aZ, sin a is the convergence angle of the image-forming beam, and Z is the radial

distance from the center of the aperture.The second and third rings are plotted at 10 times the actual ordinate.
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units. These are such that the radius of the first dark ring in the Airy pattern is 3:83z
units, so that the size of a z unit in a point spread function under inspection can be

estimated immediately. Since the Airy pattern is of basic importance in star testing,

we give in Table 11.1 some of its numerical properties. Table 11.1 includes the

FIGURE 11.2. The Airy pattern plotted with a logarithmic scale.

TABLE 11.1. The Airy Pattern, I ¼ 2J1ðzÞ
z

� �2

1. Radii of dark rings (zeros of first-order Bessel function, J1)

Number of ring: 1 2 3 4 5 6

Radius: 3.83 7.02 10.17 13.32 16.43 19.62

2. Radii and intensities of bright rings (zeros of second-order Bessel function, J2)

Number of ring: 1 2 3 4

Radius: 5.14 8.42 11.62 14.80

Intensity: 0.0175 0.00416 0.00160 0.000781

3. Halfwidth: the radius at which the intensity¼ 0.5 is 1.615. (Note: This is appreciably

less than half the radius of the first dark ring.)

4. Encircled flux: the proportion of the total light flux inside a circle centered on the central

maximum; it is given by 1� J20ðzÞ � J21ðzÞ.
Radius: 0.5 1 2 3 4 5 6 7 8

Flux: 0.0605 0.221 0.617 0.817 0.838 0.861 0.901 0.910 0.916
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encircled flux function, which gives the proportion of the total flux within a given

radius from the center. The encircled flux (sometimes called the encircled energy)

has occasionally been proposed for use in the development of the star test (see, e.g.,

Barakat and Newman, 1963), but probably the practical difficulties are too great for it

to be generally adopted. However, the function is useful as a guide to the general

properties of the Airy pattern. This function is plotted in Figure 11.3.

FIGURE11.3. The ‘‘Encircled Energy,’’ that is, the proportion of total light flux inside a circle of radius z

in the image plane. See Table 11.1.

FIGURE11.4. The diffraction solid for theAiry pattern; 2.5 squares in the horizontal plane correspond to

a z unit. (Computed and plotted by M. W. L. Wheeler.)
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Figure 11.4 shows an alternative way of presenting the Airy pattern; the vertical

height of the figure represents the relative intensity. Such a figure is sometimes called

a diffraction solid. Figure 11.5 represents the same solid with increased vertical scale

to show the details of the outer rings.

11.2.2. The Defocused Airy Pattern

One of the earliest findings of practical experience in star testing is that it is very

useful to examine the defocused point spread function on both sides of the best focal

plane. This may seem paradoxical, but it is found to be much easier to diagnose the

aberrations from the defocused image than from the image at best focus. We there-

fore show in Figure 11.6 the contours of constant intensity (isophots) in a plane

containing the optical axis. The axes correspond to a radial coordinate in the image

plane (vertical axis) and to the defocus distance along the principal way. The image

plane coordinate is the same dimensionless coordinate as was used in Figures 11.1

and 11.2 and the defocus coordinate, explained in the caption, is also dimensionless.

The scales are such that the geometrical cone of rays would have a semiangle of 45�,
but by using appropriate values of the convergence angle x and the wavelength A, the

diagram can represent any coney

Several features of this distribution areworth noting. It is symmetrical about the true

focal plane. There are zeros (‘‘dark spots’’) along the axis, equally spaced (apart from

one missing at the focal plane) and alternating with maxima. The intensity along the

axis is shown in Figure 11.7. In Figure 11.6, the out-of-focus patterns consist of bright

FIGURE11.5. Similar to Figure 11.4, butwith increased vertical scale truncated to relative intensity 0.03.

(Computed and plotted by M. W. L. Wheeler.)

y It should be noted, however, that this applies only to the case in which the diameter of the first dark ring

is much less than the diameter of the exit pupil of the optical system. This situation would, of course,

almost invariably exist in most workshop testing situations, but occasionally it may happen that the con-

vergence angle is very small and then Fig. 11.6 would not be a true picture. This happens more frequently

in beams with Gaussian profiles, as produced by a single-mode TEM00) laser, since these are often used

nearly collimated.
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and dark rings, spreading out with increasing defocus. This cannot be seen very clearly

in Figure 11.6 but is more evident in Figure 11.8, which is again a set of isophots, but

taken over a greater range of both the coordinates and showing only one quadrant of the

symmetrical pattern. The isophots are labeled with the logarithm, to base 10, of the

relative intensity, so as to give a greater range of intensities in the diagram. FromFigure

11.8 it can be seen that a typical defocused pattern, easily recognizable by anyonewho

has looked at point spread functions, will show a series of roughly equally spaced rings,

increasing in intensity toward the outside and having the outermost ring brighter,

wider, and larger in diameter than would be expected from the general progression of

the rings. In fact, the rings are not so regularly graded as they appear at first to be; this

can be seen from a very careful inspection of the monochromatic point spread function

or from a study of Figure 11.8. Nevertheless, this apparent regularity is easily upset by

FIGURE 11.6. Isophots (contours of constant intensity) in the defocused Airy pattern. The line z ¼ u is

the boundary of the ray cone. The circles denote minima (zeros on the axes); the crosses, maxima. The

contours are labeled with the logarithm of the intensity. (From values computed by J. C. Dainty.)
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small aberrations, and this is a very useful property of the star test. As the defocus is

steadily increased, the appearance is as if new rings appear from the center and spread

out, taking the rest of the pattern with them like the ripples in a pond.

Some of these effects and those described in Section 11.1.5 are illustrated by

photographs taken by Cagnet et al. (1962). Beiser (1966) gave a perspective sketch of

the intensity distribution through focus, and Taylor and Thompson (1958) reported

careful measurements to verify the predicted distributions. Figure 11.9 shows the

inside of focus, in focus and out of focus images of an aberration free system.

11.2.3. Polychromatic Light

The descriptions in Sections 11.2.1 and 11.2.2 apply, of course, to monochromatic light.

All features of the point spread function (diameter of dark rings, distances between axial

zeros, etc.) scale in direct proportion to the wavelength. Thus, even if an optical system

has no chromatic aberration according to geometrical optics (i.e., a purely reflecting

system), wewould still expect to see color effects when star testing; however, in practice,

these are not very noticeable. We can, therefore, use white light for testing most of the

reflecting systems without danger of confusion from the weak chromatic effects.

FIGURE11.7. The intensity at the center of the defocusedAiry pattern. The quantity plotted is sin 1
4
u= 1

4
u

where u ¼ ð2p=lÞ� sin2 a, a is the convergence angle of the beam, and � is the defocus distance.
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In refracting systems, however, the star test easily reveals ‘‘secondary spectrum,’’

that is, the residual uncorrectable chromatic aberration. We are not always concerned

to actually test chromatic correction by star testing because achromatism depends on

overall choices of glass types and powers of components and is therefore affected

only by relatively gross errors in construction that would affect other aberrations

more markedly. Thus, in testing refracting systems we should use either a fairly

FIGURE 11.8. Isophots in the defocused Airy pattern; this diagram covers a greater of defocus than

Figure 11.6. The chain line ðz ¼ uÞ denotes the boundary of the cone of rays forming the pattern. The circles

denote minima (zeros on the axes); the crosses, maxima. The contours are labeled with the logarithm of the

intensity, scaled to unity at the origin. (From values computed by J. C. Dainty.)

FIGURE 11.9. Inside of focus, in focus, and outside of focus images for an aberration free system.
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narrow wavelength band, selected by means of a filter (Section 11.3.2.) or a laser. In

this way the monochromatic aberrations can be more clearly seen; this is usually the

object in workshop tests, since it is these aberrations that are susceptible to correction

by refiguring or by tuning air spaces.

Linfoot and Wolf (1952) calculated the total flux in polychromatic star images from

refracting telescopes, weighted according to the visibility curve of the human eye. These

results are of great interest for optical designers, particularly, since the calculations were

done for existing telescope objectives, but they are probably not very useful as a

background to the star test, since in actual operation the varying colors seen probably

make at least as much impression as the total brightness. However, they do show how the

interesting color changes that are observed arise from secondary spectrum effects.

11.2.4. Systems with Central Obstructions

Most large telescopes and many other optical systems have a central ‘‘hole’’ in

the pupil, due to a secondary mirror. Some of the effects of this central obstruction on

the point spread function are rather surprising. There are three main effects: (a) The

FIGURE11.10. The in-focus point spread function for a circular aperturewith a central obstructionwhich

is one quarter of the full diameter. This should be compared with Figure 11.2 to see the effect on the central

intensity and the outer rings.
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central maximum becomes narrower; (b) the outer rings become irregular in bright-

ness-some brighter, some dimmer; and (c) the spacing along the axis of the dark spots

increases. A detailed theoretical studymade by Linfoot andWolf (1953) showed that,

if the obstruction ratio (diameter, not area) is E, the axial spreading of the features is

according to the factor ð1� E2Þ�1
. Figure 11.10 shows the in-focus pattern for an

obstruction ratio E ¼ 0:25, which is typical for an astronomical telescope. Features

(a) and (b) may be seen in comparison with those in Figure 11.2. Linfoot and Wolf

(1953) give isophot diagrams showing the out-of-focus effects.

11.2.5. Effects of Small Aberrations

In an optical design context, ‘‘small aberration’’ usually means a distortion of the

wavefront from the ideal spherical shape of the order of magnitude l=4. This is so
because the system of aberration tolerances based on the Strehl criterion leads to

aberration tolerances of this order. It is generally accepted that, when the aberrations

are at this tolerance limit, as described later, the effect on the formation of images

of extended objects is negligible, and the optical system is said to be diffraction

limitedy

The Strehl aberration tolerance system is explained by, for example, Born and

Wolf (1975). It depends on the concept that the initial effect of introducing a small

amount of aberration of any kind into the wavefront forming the point spread

function is to reduce the maximum intensity slightly: The width at half maximum

of the central maximum stays unchanged, and the flux taken from the center is

redistributed to the outer rings. A 20% drop in the maximum intensity is generally

taken as the tolerance limit, and simple formulas are given (e.g., by Born and Wolf

1975) for the amounts of different aberrations that will produce this tolerance limit.

FIGURE 11.11. The diffraction solid for a 0.6 of a wavelength of coma (the Strehl tolerance limit).

(Computed and plotted by M. W. L. Wheeler.)

ySometimes the term ‘‘Rayleigh limit’’ is used, since Lord Rayleigh proposed the quarter-wave-length

criterion.
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However, the eye is not very good at judging changes in the absolute intensity

levels; so the Strehl criterion is not very useful in workshop practice, although it is

invaluable in optical design. It is also found that, as mentioned earlier, one can see

much less than in the Strehl limit in many cases. This can be understood by looking at

the photographs of aberrated point spread functions in some of the references already

cited; to choose an example at random. Born and Wolf (1975) reproduce in their

Figure 9.8 a photograph of coma at about the Strehl tolerance limit, taken by

Nienhuis (1948), and it is quite easy to see that this is an aberrated point spread

function. The same point is made in Figure 11.11, which shows the diffraction solid

for coma at the Strehl limit. There seems to be no doubt, on the basis of experience,

that the semiqualitative methods beautifully described by Taylor (1891) are extre-

mely sensitive; however, it is difficult to set a limit to the sensitivity since this

depends on the kind of aberration, for example, whether the wavefront shape varies

rapidly or slowly across the aperture. In a study of spherical aberration, Welford

(1960) suggested that it is possible to detect l=20 of slowly varying aberration and

l=60 of rapidly varying aberration.

11.2.6. Gaussian Beams

By convention, the equivalent of a focus for a Gaussian beam is called the beam

waist; the beam profile is the same at all points along the beam, simply scaling the

intensity and width depending on the distance from the beam waist. There are well-

known formulas relating the width of the beam to the distance from the waist and

giving the curvature of the phase front (e.g., Kogelnik and Li, 1966). If a system is to

be used with Gaussian beams, then by implication the lenses and other components

must have enough spare aperture to ensure negligible truncation of the Gaussian

profile; the equivalent of the star test would then be to check that the final beam waist

has a true Gaussian profile; but since the defocused waist does not change qualita-

tively in a Gaussian beam, this is not very easy to assess. In practice, it is probably

better to expand the input beam and test the system with fully filled aperture

(so-called hard-edge beam) and with more or less uniform amplitude; this can be

an overrigorous test, since the outer parts of the aperture have less amplitude with a

Gaussian beam. However, unless the Gaussian beam very much underfills the

aperture, the difference is negligible. If a Gaussian beam is used in the test, there

is the danger that any slight truncation of the beam at some point in the system will

introduce ringing or fringing in the phase front; it is then not easy to tell if this is due

to truncation or aberrations in the optical system.

11.2.7. Very Small Convergence Angles (Low Fresnel Numbers)

When a hard-edged beam is almost collimated, so that the focus is formed with a

beam of very small convergence angle, the diffraction pattern in the focal region is

qualitatively different from that described in Section 11.2. This is discussed in some

detail by Stamnes (1986) and by Li and Wolf (1984). From the point of view of star

testing, the most marked effect is that for an aberration free beam, the intensity
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distribution is no longer symmetrical on either side of the focus; this would con-

siderably complicate the task of assessing the quality of the system, so that it is

advisable to avoid testing in a nearly collimated space.

This raises the question, how nearly collimated may we be without upsetting the

simpler descriptions of the star image in Section 11.2. This is best answered in terms

of the Fresnel number of the beam: Let a be the radius of the exit pupil and let R be the

radius of curvature of the emerging phase front, that is, R is the distance from the

pupil to the focus; the Fresnel number N is defined as

N ¼ a2

lR
ð11:2Þ

The significance of the Fresnel number is that N=2 is the number of whole wavelength

depth of the curvature of the phase front at the edge of the pupil, and it is shown in the

references quoted earlier that the asymmetric effects in the focal region occur when N

is not very large, say, less than 10. Thus, star testing should always be done in a space

where the Fresnel number is not too small according to this criterion.

11.3. PRACTICAL ASPECTS WITH SMALL ABERRATIONS

We now discuss in more detail the effects to be looked for in visual star testing for

small aberrations. In what follows we assume that approximately monochromatic

light is used.

11.3.1. Effects of Visual Star Testing

Asymmetry of the in-focus pattern denotes a coma-like aberration. This may be

either a genuine coma due to working off-axis or a ‘‘manufacturer’s aberration’’ due

to poor centering of components (often quite strong asymmetric color effects can be

seen because of bad centering), to nonsymmetrical polishing of surfaces, or even to

nonuniform distribution of the refractive index in a lens component. A rare source of

coma-like effects is an asymmetrical phase change on reflection at a mirror surface.

This can be caused by uneven coating of multilayer dielectrics; but if a dielectric-

coated mirror is used to fold a beam at a large angle and if the beam has a large

convergence angle, enough asymmetrical phase change may result in giving coma-

like effects, due to varying angles of incidence across the beam.

In practice, asymmetries always show up more clearly in the defocused image.

With coma, in particular, there is a very marked effect of the out-of-focus asymmetry,

which is useful in finding the axis or center of the field of a system; this is what ismeant

by the term ‘‘squaring-on,’’ applied to telescope objectives for astronomical use.

Small amounts of astigmatism show up as a ‘‘Maltese cross’’ effect in focus, and

again there is a considerable gain in defocusing. In particular, on moving steadily

through focus from one side to the other, the effect of a switch in the direction of the

astigmatic focal lines is easily detected for much less than the Strehl limit.
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Of course, neither astigmatism nor coma should be present in the axial point

spread function of a well-constructed system, and the most important thing to be able

to judge is the state of spherical aberration correction. Here almost nothing can be

obtained from studying only the in-focus image (but this is not so for large aberra-

tions; see Section 11.4.1), and it is essential to use defocus.

In describing the effects we use the generally accepted terms undercorrection and

overcorrection; undercorrection means that for primary spherical aberration the rays

from the edge of the pupil focus nearer to the optical system than the paraxial rays, if

a real image is formed, and vice versa for overcorrection. In terms of wavefront

shapes, a zone of the aperture has undercorrection if the wavefront in that zone is in

advance of the reference sphere (ideal or unaberrated wavefront), and again, vice

versa for overcorrection.

With primary spherical aberration or with spherical aberration of any single

higher order, we find that undercorrection produces sharper, well-defined rings on

the side of focus nearer to the optical system (‘‘inside of focus’’) with a particularly

bright outermost ring, whereas with ‘‘outside of focus,’’ all rings are blurred and

show less contrast and the outer ring, in particular, fades to a vague smudgewith poor

definition. For overcorrection the same appearances are seen, but with ‘‘inside of

focus’’ and ‘‘outside of focus’’ interchanged. Figure 11.12 shows diagramatically the

case of undercorrection in relation to the ray diagram; it can be seen that the much

brighter outermost ring occurs on the side where the ray caustic is formed. This is a

convenient way to remember how to relate these effects, since we would naturally

expect a great concentration of light flux near the caustic. In other words, we see

more light intensity near a greater concentration of rays. This rule is generally true,

provided that we are far enough from the main focus; it offers a simple way of

interpreting zonal aberration effects. Thus suppose that we go a considerable distance

FIGURE 11.12. Zonal spherical aberration: this ray-theoretic interpretation shows approximately how

effects due to the zone would appear.
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inside focus and we see that at, say, two thirds of the diameter of the spread-out

pattern, the rings are brighter and sharper; this indicates that the rays from the

corresponding part of the aperture are bunching together here or, alternatively,

that the corresponding zone of the wavefront is more concave than it should be.

The opposite effect of fainter and more diffuse rings would be seen outside focus.

Figure 11.13 shows the effect of a zonal wavefront error in bunching the rays.

11.3.2. The Light Source for Star Testing

In practice, we never use a real star as a test object for star testing because atmo-

spheric turbulence causes the star image to vary in intensity, position, and aberrations

to the extent that a critical appraisal is impossible.

The laboratory artificial star is a pinhole with a lamp of the right spectral

composition. The pinhole must be small enough to be quite unresolved, that is, its

angular subtense at the objective must be much less than l=D, where D is the

diameter of the objective aperture. In practice, it is easy to check that the pinhole

is of the correct size by noticing whether any trace of the pinhole edges can be seen in

the star image, since most pinholes are irregular enough in outline to show an image;

if only diffraction structure can be seen, the pinhole is small enough.

Very costly pinholes are available in special mounts for use as spatial filters in laser

beams. For workshop use, it is cheaper and simpler to employ electron microscope

aperture stops. These come as thin, electroformed copper disks about 3mm in diameter

with holes from about 5 to 50 mm in diameter, as ordered; the holes are not always very

accurately circular in shape, but this does not matter for testing purposes.

Before electron microscope apertures became generally available, several other

devices were used, as described in the references cited at the beginning of this

FIGURE 11.13. The effect of zonal wavefront error in bunching the rays.
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chapter. Among these was the reflection of a distant light source in a small, clean

globule of mercury, obtained by condensing mercury vapor onto a microscope slide.

(In particular, this has been suggested for star-testing microscope objectives.) It is

worth mentioning in connection with workshop practice that mercury is a cumulative

poison with appreciable amounts that can be absorbed from mercury vapor at room

temperature and pressure. This method should therefore never be used.

An intense light source, such as a quartz-halogen lamp or a high-pressure mercury

lamp focused onto the pinhole, is desirable in order to be able to pick up the star

image easily. A filter can be placed immediately after the pinhole as shown in

Figure 11.14. It is usually not advisable to use a laser as a source for star testing.

Themain objection is that the coherence length of a helium-neon laser is long enough

to produce interference effects between many beams multiply reflected off the

surfaces of a refracting system. These effects can be bright enough to obscure the

details of the star test, particularly since the workshop testing would probably be

done before any antireflection coating was put on the surfaces. Another objection to

the use of a laser, for refracting systems at any rate, is that the system may be

corrected for a different wavelength and the spherical aberration correction vary

appreciably with wavelength. However, for testing large mirror systems a laser is

probably the best source, since it provides enough intensity to work in daylight.

11.3.3. The Arrangement of the Optical System for Star Testing

For testing small refracting objectives the simplest arrangement is the one shown in

Figure 11.15, with the star at a suitable distance. What this distance needs to be is, of

course, arguable, and it is only possible to know for certain by computing the effect of

FIGURE11.14. Lamp and pinhole assembly. The drawing shows a tungsten-halogen lamp,which should

be on a centering and focusing mount, followed by a condenser, pinhole, and filter. The condenser should

focus the filament onto the pinhole.

FIGURE11.15. Arrangement for testing a small refracting objective; the lightmay ormay not be filtered,

according to the detailed requirements of the test.
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using a finite conjugate from the design specification. For most practical purposes,

the rule ‘‘infinity is a distance greater than 20 times the focal length of the system

under test’’ is good enough.

The eyepiece for viewing the star must have enough magnification to show all the

detail in the point spread function. The facts that the scale of detail is of the order of the

radius of the first dark ring, and that the angular resolution limit of the eye under

favorable conditions is about one arc-min, lead to the handy rule that the focal length of

the eyepiece in millimeters should be equal to or less than the f number of the system

under test;y thus to test an f=10 beamwe need a l0-mm eyepiece, that is, magnification

�25. With some experience it is easy to tell when the eyepiece has enough magnifica-

tion, since only then all the diffraction structure in the star image can be seen.

Needless to say, we must have an eyepiece that itself has negligible aberrations to

star-test a good objective. It is rather unlikely that this would not be so since our rule

implies that the maximum diameter of the ray pencils in the eyepiece will be 1 mm

and most eyepiece designs will be substantially perfect at this aperture. However,

there may be accidental defects such as scratches or slight decentering, and these can

easily be identified by rotating the eyepiece.

For looking at beams with very short focal ratios, it may be necessary to use a low-

power microscope instead of an eyepiece. The rule then takes the form that the

overall magnification of the microscope should not be less than 250 divided by the f

number.

Sometimes a collimator, either refracting or reflecting, is used to place the star

exactly at infinity. This is undesirable, partly because added cost is incurred and

partly because the aberrations of the collimator are then added to those of the system

under test. However, under some workshop conditions the long air path needed for

the arrangement of Figure 11.15 may be subjected to unavoidable thermal turbu-

lence, and it may be necessary to use a collimator instead. Usually, under average

conditions an air path exceeding 1 or 2 m is enough to show turbulence effects with a

critical optical system, so we must either screen a longer path, put it in a separate test

bay, or wait for a particular time of day or night when the disturbances are least.

Occasionally, the whole system has been put in a helium atmosphere or even in a

vacuum tank for test purposes, but this is not practicable in most workshops. A large

concave spherical mirror can be tested in Figure 11.16 since it has no spherical

aberration for equal conjugates. However, it is necessary to keep the separation of the

two conjugates small to avoid astigmatism. This separation should be less than about

R
ffiffiffiffiffiffi

lR
p

D
ð11:3Þ

where R is the radius of curvature of the mirror and D its diameter. For example, if

R ¼ 1m and D ¼ 200mm, the separation must be less than 7 mm.

A paraboloidal mirror needs one infinite conjugate. There seems little doubt that

star testing is not the best method for short focal ratio paraboloids; on the contrary,

yStrictly speaking, these figures give twice the f number, but it is as well to have a factor of 2 at hand in

magnification.
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however, paraboloidal mirrors are very useful as collimators for star testing other

systems. In general, to test conicoidal surfaces, any of the null test configurations

described in Chapter 12 can be used.

11.3.4. Microscope Objectives

The star test is particularly useful for microscope objectives (Martin and Welford,

1971), and the techniques are rather different from those so far described. The

artificial star is made by vacuum-alumizing or silvering a microscope slide and

gently wiping it with a clean cloth before cementing a coverslip to it. Unless the slide

was cleaned very carefully before coating, the wiping will produce several pinholes,

among which will be some that are suitable as artificial stars. An alternative

technique described by Slater (1960) will produce pinholes of precisely determined

size down to about 0.1 mm diameter. The test is then carried out with a bright lamp

and an efficient substage condenser.

As mentioned at the beginning of this chapter, the star test is used in the rapid final

adjustment of a critical air space to balance the spherical aberration correction for

objectives of high numerical aperture. The spherical aberration of these objectives is

also sensitive to both the thickness of the slide cover glass (except for oil immersion

objectives) and the magnification; the latter is set by the length of the microscope

draw tube, if there is one. Thus for critical work it is necessary to determine the cover

glass thickness for which a given objective has least spherical aberration (usually a

combination of high orders); alternatively, we may be able to find the magnification

at which the objective performs best with a given cover glass thickness.

The star test is also convenient for checking the flatness of allegedly flat field

objectives and for checking the chromatic correction of apochromatic objectives.

Finally, it is known that some specimens of fluogie scatter light strongly, and the star

test shows whether the fluorite in a given apochromat or semiapochromat has this

FIGURE 11.16. Testing a concave spherical mirror. The right-angle prism is aluminized on the two faces

used asmirrors. For amirror with a short focal ratio, the eyepiecewould have to be replaced by a low-power

microscope. Care must be taken that the pinhole is illuminated so as to fill the whole aperture of the mirror;

likewise, themicroscope objectivemust have a numerical aperture large enough to collect the light from the

aperture.
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undesirable property: the scattered light shows up as a haze, easily distinguishable

from the diffraction rings, around the star image.

11.4. THE STAR TEST WITH LARGE ABERRATIONS

Very simple and useful quantitative tests can be made on systems such as photo-

graphic objectives, projection objectives, and television camera objectives that do

not have diffraction-limited aberration correction. The systemwill normally be set up

on a nodal slide optical bench with a collimator (Kingslake, 1932), as shown in

Figures 11.17 and 11.18, so that off-axis aberrations can be measured. Many detailed

descriptions of such benches are available; see, for example, Leistner et al. (1953).

FIGURE 11.17. A nodal slide optical bench as used for star testing photographic objectives and similar

systems. The T-bar represents the optical axis and the focal plane of the lens under test; as it turns off axis it

pushes the viewing microscope away so that it is always focused on the correct focal plane. (But in some

versions the microscope does not move, and the lens is moved forward by the linkage instead; in yet other

versions there is no T-bar, and the microscope must be moved back by a calculated amount.)

Microscope

T-Bar

Lens under
test

Nodal adjustment

Focus adjustment

FIGURE 11.18. Schematic perspective view of a nodal lens bench.
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The principles in star testing for large aberrations are quite different from those for

small aberrations; for the latter, we examine the diffraction structure of the point

spread function and try to estimate the types and amounts of aberrations on the basis

of experience, but for large aberrations, we essentially use concepts of geometrical

optics and determine ray aberrations. Wandersleb (1952) gave some good photo-

graphs of heavily aberrated point spread functions.

11.4.1. Spherical Aberration

Here we set the objective under test on axis and use a filter for the appropriate

wavelength. Then, we use a series of annular diaphragms in the aperture of the

system and determine the focus of the hollow pencil of rays from each as shown in

Figure 11.19. In this way, the longitudinal spherical aberration curve is obtained, and

this can be treated in the usual ways to obtain any other form of description of the

aberration; that is to say, when we know the longitudinal spherical aberration, we can

calculate the transverse spherical aberration.

FIGURE11.19. Measuring longitudinal spherical aberrations by the star testwith a zonal diaphragm.The

broken lines indicate a paraxial pencil of rays.

FIGURE 11.20. Testing for spherical aberration bymasking half of the aperture; the hatched pattern will

appear bright at the focal plane indicated.
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In this procedure, as in the others described in Section 11.4, there is some

advantage in arranging such that the object pinhole is not quite diffraction limited;

this not only gives a little more light flux, a useful bonus in most cases, but also makes

it rather easier to judge the ray intersections.

A quicker procedure, which gives only a qualitative picture of the aberrations,

is simply to put an opaque straightedge across half the aperture as shown in

Figure 11.20 and look at the image in various focal planes. As indicated, the

general nature of the aberration appears as semicircular strips on either side of

the axis, and with a little practice this image can easily be interpreted. The inside of

focus, in focus, and outside of focus images with spherical aberration are shown in

Figure 11.21.

11.4.2. Longitudinal Chromatic Aberration

Suitable filters are used, and the aperture is stopped down until the spherical

aberration is negligible; the longitudinal chromatic aberration can then be plotted

directly from the measured focal positions for the different wavelengths. If we use

annular diaphragms, we can also measure the chromatic variation of spherical

aberration; however, this refinement is rarely of interest in a practical workshop

situation.

Again the straightedge across half the aperture can be used as for spherical

aberration, without filters in the light source. The distribution of colors then gives

a rapid indication of the balancing of the chromatic correction.

11.4.3. Axial Symmetry

In the systems with which Section 11.4 is concerned, it is usual to find some

asymmetry on axis due to the building up of constructional tolerances. This is

particularly so with zoom lenses, where the decentering may vary over the zoom

range. The axial star image provides an instant check on the centering and may be

used as a control in improving it, if this is required. To aid in this, it is useful to have

an accurate rotation mechanism on the nodal slide mount for the lens under test.

FIGURE 11.21. Inside of focus, in focus, and outside of focus images with spherical aberration.
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11.4.4. Astigmatism and Coma

We can plot the positions of the sagittal and tangential focal lines by turning the lens

off axis and focusing in turn on each line. Of course, in this process we also see all the

other off-axis aberrations (coma, transverse chromatic aberration, etc.). We therefore

close down the lens iris enough to eliminate or nearly eliminate spherical aberration

and coma, but not, of course, to the extent that the astigmatism disappears as well.

In a large system, it may be as well to check the symmetry of the lens field by

rotating the lens and watching the astigmatic focal lines at a chosen field angle.

Sometimes, more asymmetry is found off axis than on axis. A star test measurement

of the astigmatic field curvature, together with some assessment of coma, is often

used to tune the air spacings of large photographic objectives. Figure 11.22 shows the

inside of focus, in focus and outside of focus images in the presence of astigmatism.

The corresponding images for coma are in Figure 11.23.

11.4.5. Distortion

The accurate calibration of, for example, photogram metric objectives for distortion

is a very large topic that is not considered in this book. However, it is worth noting

that the nodal slide optical bench used for star testing enables us to make a simple

measurement of distortion that is useful in many cases.

When the lens under test is being set up, we set the axis rotation of the nodal slide

under the second nodal point by the following procedure. We find the star image in

the microscope and turn the slide a small amount off axis. If the star image moves,

FIGURE 11.23. Inside of focus, in focus, and outside of focus images with coma.

FIGURE 11.22. Inside of focus, in focus, and outside of focus images with astigmatism.
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say, to the left, we move the lens along the nodal slide in the direction that brings the

image back to the center of the microscope field of view, at the same time keeping it

in focus by following it with the microscope. This procedure is continued until the

image does not move sideways at all as the nodal slide is rotated; the lens is then

correctly positioned. However, it is almost invariably found that there is no position

of the lens along the nodal slide that will give no movement at all of the star image;

the best we can do is, rather, as shown in Figure 11.24, where the image returns to the

axis after a short excursion. The residual displacement is, of course, a manifestation

of the distortion of the lens. The full-line graph indicates what might be measured. It

would be more usual to subtract from this a suitable linear term to give the broken

line graph for distortion, which depends on cubic and higher powers of the field. The

subtraction of a linear term merely implies a slightly different choice of nominal

focal length for the system under test.

A detailed description of this procedure, with a discussion of errors, has been

given by Washer and Darling (1959).

11.4.6. Non-Null Tests

By implication, we have so far considered only null tests, that is, tests of systems

that ought to have no aberrations. Sometimes, however, we need to test a system to

see whether it has prescribed nonzero aberrations. The classical example is, of

course, the paraboloid mirror with equal conjugates, which is geometrically more

convenient than one conjugate at infinity. Another example might be an aspheric

singlet lens for use in the infrared, since its aberrations would be different if tested in

visible light.

Since the star test is not very accurately quantitative, even when used as described

in Section 11.3, for actually measuring large aberrations, it is best to convert such a

FIGURE 11.24. Distortion measurement. The full-line graph represents transverse displacement of the

star image as a function of the field angle, assuming that a compromise position for the nodal axis has been

found. The broken line shows the effect of adding a linear term; this amounts to a shift of the nodal point to

the paraxial position.
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test into a null test by adding an auxiliary optical systemwith the required aberrations

(see Chapter 14). This is a designed optical system that should be easy to be

made accurately; Dall (1947) described the widely used system of an auxiliary

lens for null-testing paraboloids, yand many other examples, which have been

published.

A more recent alternative, which can be used if it is permissible to test the system

with a laser as light source, is to employ a computer-generated hologram as

the auxiliary system. A useful description of this method is given by Birch and

Green (1972). The computer-generated hologram can synthesize a wavefront of any

desired shape, provided that the available computer graphics system has enough

resolution to draw it. As usually described, the computer-generated hologram

corrector is part of an interferometric testing scheme, but it could be used equally

well to synthesize an aberrated wavefront for transmission through the system under

test; if the system had the desired aberrations, the result, would be an aberration free

star image.

11.5. WAVEFRONT RETRIEVALWITH SLOPE

AND CURVATURE MEASUREMENTS

The wavefront shape can be retrieved from wavefront slopes and curvature measure-

ments by integration of the Poisson equation as we will describe in the next few

sections. On the contrary, the local slopes and the local curvatures can be obtained by

any of many possible methods. For example, the slopes can be measured by means of

some classic procedures, like the Hartmann and Ronchi tests or by using lateral

shearing interferometry. It is interesting, however, that the local slopes and

curvatures can also be obtained by measuring the irradiance of defocused images,

making the star test a quantitative procedure.

11.5.1. The Laplacian and Local Average Curvatures

Roddier (1988) and Roddier et al. 1988, based on a proposal by Beckers (1994) in

1979, developed a method to evaluate the wavefront shape by measuring the local

curvatures from defocused star images. The local curvatures cx and cy of an almost

flat wavefront in the x and y directions are given by

cx ¼
@W2ðx; yÞ

@x2
and cy ¼

@W2ðx; yÞ
@y2

ð11:4Þ

The Laplacian, which is defined by

r2Wðx; yÞ ¼ 2rðx; yÞ ¼ @W2ðx; yÞ
@x2

þ @W2ðx; yÞ
@y2

ð11:5Þ

yThe paper cited refers to knife-edge testing, but the principle of the auxiliary lens is, of course. the

same.
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is equal to twice the average of the local curvature rðx; yÞ. This is the well-known
Poisson equation. To solve it in order to obtain the wavefront deformations Wðx; yÞ,
we need to know: (a) the average local curvatures distribution rðx; yÞ, which is a

scalar function and (b) the radial wavefront slopes at the edge of the circular pupil,

which are the so called Neumann boundary conditions.

To solve the Poisson equation as described by Roddier et al. (1988), we can use the

Jacobi iteration algorithm or, alternatively, we can use iterative Fourier methods as

will be shown next.

11.5.2. Wavefront Determination with Iterative Fourier Transforms

Hardy et al. (1977) have measured slope differences to obtain the curvatures, and

from them the Poisson equation is solved to obtain the wavefront. The curvature in

the x direction is taken as the difference between two adjacent tilts in this direction,

and in the same manner the curvature along the y axis is obtained. Then, the average

of these curvatures is calculated. They have used the Hudgin (1977) algorithm to

obtain this solution.

Roddier and Roddier (1991) and Roddier et al. (1990) have reported a method to

obtain the wavefront deformations Wðx; yÞ from a knowledge of the Laplacian,

solving the Poisson equation or from local slope measurements, by using iterative

Fourier transforms. To understand this method, let us take the Fourier transform of

the Laplacian of the wavefront as follows:

F r2ðx; yÞ
� �

¼ F @2Wðx; yÞ
@x2

� �

þ F @2Wðx; yÞ
@y2

� �

ð11:6Þ

But on the contrary, from the derivative theorem in Fourier theory, we have

F @Wðx; yÞ
@x

� �

¼ i2pfxF Wðx; yÞf g ð11:7Þ

and similarly for the partial derivative with respect to y. In identical manner, we may

also write

F @2Wðx; yÞ
@x2

� �

¼ i2pfxF
@Wðx; yÞ

@x

� �

¼ �4p2f 2x F Wðx; yÞf g ð11:8Þ

Thus, it is easy to prove that

F r2ðx; yÞ
� �

¼ �4p2F Wðx; yÞf g f 2x þ f 2y

� �

ð11:9Þ

Hence, in the Fourier domain the Fourier transform of the Laplacian operator

translates into a multiplication of the Fourier transform of the wavefront Wðx; yÞ
by f 2x þ f 2y .
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The wavefront may be calculated if measurements of the slopes along x and y are

available, as in the case of the Hartmann and Ronchi tests as well as in lateral

shearing interferometry, by means of this expression:

Wðx; yÞ ¼ � i

2p
F�1

fxF @Wðx;yÞ
@x

n o

þ fyF @Wðx;yÞ
@y

n o

f 2x þ f 2y

8

<

:

9

=

;
ð11:10Þ

This simple approach works for a wavefront without any limiting pupil. In

practice, however, the Laplacian is multiplied by the pupil function, to take into

account its finite size. Thus, its Fourier transform is convolved with the Fourier

transform of the pupil function. As a result, this procedure does not give correct

results. An apodization in the Fourier space, that is, a filtering of the frequencies

produced by the pupil boundaries is needed, as in the Gershberg (1974) algorithm, to

extrapolate the fringes outside of the pupil. The division by f 2x þ f 2y produces this

filtering. As a result of this filtering, just like in the Gershberg algorithm, after taking

the inverse Fourier transform, the wavefront extension is not restricted to the internal

region of the pupil, but extends outside the initial boundary.
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FIGURE 11.25. Flow chart of iterative Fourier transform algorithm used to find the wavefront from the

measured slopes. (After Roddier and Roddier, 1991b.)
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The complete procedure to find the wavefront is thus an iterative process, as

described in Figure 11.25.

We can also retrieve the wavefront by taking the Fourier transform of the Laplacian

wavefront, dividing it by f 2x þ f 2y and taking the inverse Fourier transform, as follows:

Wðx; yÞ ¼ � i

4p
F�1 F r2Wðx; yÞ

� �

f 2x þ f 2y

( )

ð11:11Þ

An iterative algorithm quite similar to the one just described, based on this

expression has been also proposed by Roddier and Roddier (1991a and 1991b), as

shown in Figure 11.26. The Laplacian is measured with a method to be described

here, with two defocused images. The Neumann boundary conditions are taking by

setting the radial slope equal to zero within a narrow band surrounding the pupil. To

better understand this boundary condition, we may consider the wavefront curvature

on the edge of the pupil as the difference between the slopes on each side of the

pupil’s edge. If the outer slope is set to zero, the curvature has to be equal to the inner

slope. In other words, the edge radial slope is not arbitrarily separated from the inner

curvature, if this external slope is made equal to zero.
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FIGURE 11.26. Flow chart of iterative Fourier transform algorithm used to find the wavefront from

the measurement of the Laplacian. (After Roddier and Roddier, 1991b.)
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11.5.3. Irradiance Transport Equation

To understand how the local curvatures and hence the Laplacian can be obtained

from defocused star images, we have to model the image formation by using

diffraction theory. Let us consider a light beam passing through a diffracting aperture

(pupil) in the x-y plane and propagating with its average direction along the z axis.

The irradiance as well as the wavefront shape (phase) continuously change along the

trajectory. If the diffracting aperture is much wider than the wavelength, the diffrac-

tion Huygens wavelets are emitted in a narrow cone. Thus, we can use a parabolic

approximation for the wavefront shape of each wavelet. This is equivalent to a

geometrical optics approximation. Then, as shown by Teague (1983) and Steibl

(1984), the disturbance at any plane parallel to the x-y plane and with any value of z

may be found with the differential equation

r2uðx; y; zÞ ¼ 2k2uðx; y; zÞ þ 2ik
@uðx; yÞ

@z
¼ 0 ð11:12Þ

instead of the Helmoltz diffraction equation, where uðx; y; zÞ is the wave amplitude

disturbance with its amplitude and phase, and the wave number is k ¼ 2p=l. We may

assume a solution to this equation in the form

uðx; y; zÞ ¼ I1=2ðx; y; zÞ exp ikWðx; y; zÞð Þ ð11:13Þ

where Iðx; y; zÞ is the irradiance. If we substitute this disturbance uðx; y; zÞ into the

differential equation, after some algebraic steps we can obtain a complex function

that should be made equal to zero. Then, equating real and imaginary parts to zero,

we obtain two equations. The first one is

@W

@z
¼ 1þ 1

4k2I
r2I � 1

2
rW � rW � 1

8k2I2
rI � rI ð11:14Þ

which is known as the phase transport equation that can be used to find thewavefront

shape at any point along the trajectory. The‘second equation is

@I

@z
¼ �rI � rW � Ir2W ð11:15Þ

which is known as the irradiance transport equation. Ichikawa et al. (1988) reported

an experimental demonstration of phase retrieval based on this equation. In these two

expressions, the (x, y, z) dependence has been omitted for notational simplicity. The

Laplacian r2 and the gradient operators r work only on the lateral coordinates x

and y. Following an interesting discussion by Ichikawa et al. (1988), the two terms

forming the irradiance transport equation can be interpreted as follows:

(a) The gradient rW(x, y, z) represents the direction and magnitude of the local

slope (tilt) of the wavefront and the gradientrI(x, y, z) is the direction in which
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the irradiance value changes with maximum speed. Thus, their scalar product

rIðx; y; zÞ � rWðx; y; zÞ is the irradiance variation along the optical axis z, due
to the local wavefront slope. Ichikawa et al. (1988) call this a prism term.

(b) The second term Iðx; y; zÞr2Wðx; y; zÞ can be interpreted as the irradiance

along the z axis, caused by the local wavefront average curvature. Ichikawa

et al. (1988) called this a lens term.

Thus, these two terms describe the variation of the beam irradiance caused by the

wavefront deformations, as it propagates along the z axis. The transport equation, as

pointed out before, is a geometrical optics approximation, valid away from sharp

apertures, as long as the aperture is large enough compared with the wavelength of

the light. The defocused image structure can be computed with this equation only if

the diffraction effects are negligible, which is true only with a large defocusing.

To gain even more insight into the nature of this equation, it can be rewritten as

� @Iðx; y; zÞ
@z

¼ r � ½Iðx; y; zÞrWðx; y; zÞ� ð11:16Þ

and since rW is a vector representing the wavefront local slope, we can see that the

transport equation represents the light energy conservation, which is analogous to the

laws of mass or charge conservation, frequently expressed by

� @r

@t
¼ r � ðrnÞ ð11:17Þ

with r and n being the mass or charge density and the flow velocity, respectively.

11.6. WAVEFRONTDETERMINATIONWITHTWOIMAGESUSINGTHE

IRRADIANCE TRANSPORT EQUATION

With two images with a large defocusing, one inside of focus and one outside of focus

the local curvatures, the Laplacian and hence also the wavefront can be obtained by

using the irradiance transport equation (Roddier, 1990).

Following Roddier et al. (1990), let P(x, y) be the pupil function equal to one

inside the pupil and zero outside the pupil. We also assume that the illumination at

the plane of the pupil is uniform and equal to a constant I0 inside the pupil. Hence, the

irradiance gradient rI(x, y, 0) at the plane of the pupil is equal to zero everywhere

except at the pupil’s edge where

rIðx; y; 0Þ ¼ �I0ndc ð11:18Þ
where dc is a Dirac distribution around the pupil’s edge and n is unit vector

perpendicular to the edge and pointing outward. On the contrary with this pupil

function the gradient of W at this plane becomes

rW ¼ @W

@r
ð11:19Þ
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where r is the radial coordinate given by r2 ¼ x2 þ y2. Substituting these values of

the gradient of the irradiance and the wavefront into the irradiance transport equation

evaluated at the pupil plane, we obtain

@Iðx; y; zÞ
@z

� �

z¼0

¼ �I0�
@Wðx; y; zÞ

@r

� �

z¼0

dc � I0Pðx; yÞr2Wðx; y; zÞ ð11:20Þ

where the derivative on the right-hand side of this expression is the wavefront

derivative in the outward direction, perpendicular to the pupil’s edge. The curvature

sensing is performed by taking the difference between the illumination observed in

two planes, symmetrically located with respect to the diffracting stop, as shown in

Figure 11.27. Thus, the measured irradiances at these two planes are

I1ðx; y;þ�zÞ ¼ I0 þ
@Iðx; y; zÞ

@z

� �

z¼0

�z

I2ðx; y;��zÞ ¼ I0 �
@Iðx; y; zÞ

@z

� �

z¼0

�z

ð11:21Þ

When the wavefront is perfectly flat at the pupil, both the Laplacian at all points

inside the pupil and the radial slope at the edge of the pupil are zero. Then, I2(x, y,

��z) is equal to I1(x, y,�z). Having obtained these data, one may form the so called

sensor signal as

sðx; y;�zÞ ¼ I1 � I2

I1 þ I2
¼ 1

I0

@Iðx; y; zÞ
@z

� �

z¼0

�z ð11:22Þ

I2 I1

Wavefront

Real
observing
plane

Virtual
observing
plane

Pupil

Optical axisz = 0

zz

FIGURE 11.27. Irradiance measured in the two planes, symmetrically placed with respect to the pupil.
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Substituting Eq. (11.19) into Eq. (11.21) yields

I1 � I2

I1 þ I2
¼ @Wðx; y; zÞ

@r
dc � Pðx; yÞr2Wðx; yÞ

� �

�z ð11:23Þ

Thus, with the irradiance I1 and I2 in two planes symmetrically located with

respect to the pupil ðz ¼ 0Þ, we obtain the left term of this expression. This gives us

the Laplacian of W(x, y) (average local curvature) for all points inside the aperture

and the wavefront slope @W/@n around the pupil’s edge P(x, y), as a Neumann

boundary condition, to be used when solving Poisson’s equation.

The two planes on which the irradiance has to be measured are symmetrically

located with respect to the diffracting pupil. In other words, one plane is real because

it is located after the pupil, but the other plane is virtual because it is located before

the pupil. In practice this problem has an easy solution because the diffracting

aperture is the pupil of a lens to be evaluated, typically a telescope objective.

As we see in Figure 11.28, a plane at a distance l inside the focus is conjugate to a

plane at a distance�z after the pupil. On the contrary, if a small lens with focal length

f/2 is placed at the focus of the objective, a plane at a distance l outside the objective

focus is conjugate to a plane at a distance �z before the pupil. In both cases the

distance �z and the distance l are related by

�z ¼ f ðf � lÞ
l

ð11:24Þ

Roddier and Roddier (1991) have pointed out that the small lens with focal length

f/2 is not necessary if l is small compared with f. We must take into account that one

defocused image is rotated 180� with respect to the other and also any possible

(b)

(a)

l

l

z

z

f

f

f /2

FIGURE11.28. Two conjugate planes, one plane before refraction on the optical system, at a distance�z

from the pupil and, the second plane after refraction, at a distance l from the focus of the system. (a)With the

first plane at the back of the pupil and the second plane inside of focus. (b)With the first plane at the front of

the pupil and the second plane outside of focus, using an auxiliary small lens with focal length f/2.
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difference in the magnification of the two images. The important consideration is that

the subtracted and added irradiances in the two measured images must correspond to

the same point (x, y) on the pupil.

The measurements of the irradiance have to be made close enough to the pupil, so

that the diffraction effects are negligible, and the geometric approximation remains

valid. Let us assume that the wavefront to be measured has some corrugations and

deformations of scale r0 (maximum spatial period). With the diffraction grating

equation, we see that these corrugations spread out the light over a narrow cone with

an angular diameter a ¼ l=r0. Thus, the illumination in the plane of observation can

be considered a blurred pupil image. Let us now impose the condition that the

maximum allowed blurring at a distance�z is equal to r0/2. With this condition it is

possible to show that the geometrical optics approximation implied in the transport

irradiance equation is valid only if �z is sufficiently small, so that the following

condition is satisfied:

�z � r20
2l

ð11:25Þ

It is interesting to see that this distance �z is one fourth of the Rayleigh distance in

Talbot autoimaging. This result is to be expected, since then the shadow of the grating

is geometrical. If the light angular diameter spread a is known, for example, if this is

equal to the atmospheric light seeing in a telescope, we may also write

�z � l

2a2
ð11:26Þ

When measuring the converging beam, this condition implies that the defocusing

distance l should be large enough, so that

l � f

1þ r20
2lf

ð11:27Þ

In conclusion, the minimum defocusing distance depends on the maximum spatial

frequency of the wavefront corrugation we want to measure. This frequency also

determines the density of sampling points to be used to measure the irradiance in the

defocused image.

11.7. WAVEFRONT DETERMINATION WITH A SINGLE DEFOCUSED

IMAGE USING FOURIER TRANSFORM ITERATIONS

If the defocusing distance cannot be made large enough, the geometrical optics

approximation assumed by the irradiance transport equation is not satisfied. In that

case, diffraction effects are important like in the classical star test, and the method

described in the preceding sections cannot be applied in such a test. Thus, a different

iterative methods have to be used.
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Gershberg and Saxton (1972) described an algorithm using a single in-focus

image rather than two defocused images, with the following steps:

(a) An arbitrary guess of the wavefront deformations (phase and pupil transmis-

sion) is taken. The pupil transmission is frequently equal to one and the phase

can be anything.

(b) The in-focus image (amplitude and phase) in the observation plane is com-

puted with a fast Fourier transform.

(c) The calculated amplitude is replaced by the observed amplitude (square root

of the observed intensity), keeping the calculated phase.

(d) An inverse Fourier transform gives a new estimate of the incoming wavefront

amplitude and phase (deformations) at the pupil plane.

(e) The calculated input amplitude is replaced by the known input amplitude

(pupil transmission), keeping the calculated phase.

These steps are iterated until a reasonably small difference between measured and

calculated amplitudes is obtained. This algorithm quickly converges at the begin-

ning, but then tends to stagnate.

11.8. WAVEFRONT DETERMINATION WITH TWO OR THREE

DEFOCUSED IMAGES USING FRESNEL TRANSFORM ITERATIONS

Fienup and Wackermann (1987) described an improved method that converges more

easily and avoids stagnation, reconstructing the images from the modulus of their

Fourier transform. Misell (1973a and 1973b) found that by using two images, one in-

focus and one out-of-focus, the results are much improved. Just like in the Gershberg

and Saxton algorithm, iterations with the fast Fourier transform are carried out

P
3 2

F 1

FIGURE 11.29. Aspheric wavefront and three planes where images are observed. (a) Best focus position

1, (b) paraxial focus F, (c) Defocused images 2 and 3.
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between the pupil and the in-focus image, alternating with iterations between the

pupil and the out-of-focus image of the pupil. To calculate the out-of-focus image, a

quadratic phase term is added to the phase of the complex amplitude at the pupil

function. This term introduces the desired defocusing. This procedure is called a

Fresnel transform since the image is not in-focus.

ESTIMATED PUPIL ILLUMINATION

YES

START

NO

COMPUTE COMPLEX
AMPLITUDE IN IMAGE 3

THROUGH FOURIER
TRANSFORM

COMPUTE COMPLEX
AMPLITUDE IN IMAGE 1

THROUGH FOURIER

FIRST GUESS OF AMPLITUDE

AND PHASE IN PUPIL PLANE

YES

TRANSFORM

SET FLAG.
IF CONVERGENCE

STAGNATES

SWITCH FLAG

REPLACE AMPLITUDE
WITH OBSERVED
AMPLITUDE

ESTIMATE ERROR.
I 3

COMPUTE COMPLEX
AMPLITUDE IN IMAGE 1

THROUGH FOURIER

TRANSFORM

COMPUTE COMPLEX
AMPLITUDE IN IMAGE 2

THROUGH FOURIER

TRANSFORM

REPLACE AMPLITUDE
WITH OBSERVED

2IAMPLITUDE
ESTIMATE ERROR.

COMPUTE COMPLEX
AMPLITUDE IN IMAGE 1

THROUGH FOURIER

TRANSFORM

REPLACE AMPLITUDE
WITH OBSERVED
AMPLITUDE I 2

ESTIMATE ERROR.

TAKE THE SQUARE OF
THE AMPLITUDE

COMPUTE COMPLEX
AMPLITUDE IN THE

PUPIL PLANE
UNWRAP THE PHASE

ESTIMATED WAVEFRONT

FLAG ONFLAG OFF

FIGURE 11.30. Flow chart of iterative Roddier and Roddier (1991a) used to find the wavefront and the

pupil illumination for the Hubble Space Telescope.

FIGURE 11.31. Three images used in the Roddier and Roddier (1991a) algorithm used to evaluate the

Hubble Space Telescope. (From Roddier and Roddier, 1991a)
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Roddier and Roddier (1991b) developed an improved version of Misell method to

compute the shape of the defective primary mirror of the Hubble telescope. They

pointed out that a relatively large defocusing is more accurate than a short defocus-

ing. The defocusing should be large, but not so large that the geometric approxima-

tion is possible. To understand how this defocused image may be obtained, let us

consider Figure 11.29 where the pupil of the optical system, located at P produces an

aberrated (aspherical) wavefront with paraxial focus at F. If we take the Fourier

transform of the complex amplitude at the pupil, with the phase given by the

separation between the wavefront and a reference sphere with center at F, we obtain

the complex amplitude of the image at the paraxial focus. Now, if we take the Fourier

transform of the complex amplitude at the pupil, with the phase given by the

separation between the wavefront and a reference sphere with center at 3, illustrated

by the dotted curve, we obtain the complex amplitude of the image at the plane 3.

This is what we call a Fresnel transform. Roddier and Roddier noticed that this

procedure may bring some errors, since the phase difference with respect to the

reference sphere has so large slopes in the radial direction that this may cause

undersampling errors.

The proposed alternative is to go from the pupil to the desired defocused

observation plane in two steps; first from the pupil P to the best focus position 1.

Going to the best focus minimizes the wavefront deviations with respect to the

reference sphere be introducing a small defocusing. Then, by taking the inverse

Fourier transform with a different focusing factor we obtain the image at the desired

defocused plane. This procedure implies two transforms instead of one, but the final

result is better. Three observation planes are used in this method, as illustrated in

Figure 11.29. The first step is to make a first guess of the pupil complex amplitude

and to compute the image at the best focus 1. The computed amplitude is replaced by

the measured amplitude, keeping the calculated phase. Then, the complex amplitude

at the plane 2 is calculated with an inverse Fourier transform using a different focus

factor. Then, iterations are performed in this manner between planes 1 and 2 without

FIGURE11.32. Results obtained for the evaluation of theHubble SpaceTelescope. (a) Pupil illumination

and (b) computed wavefront after defocusing and spherical aberration terms had been removed. (From

Roddier and Roddier, 1991a).
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going back to the pupil system. When the convergence slows down, image 2 is left

and iterations between planes 1 and 3 are made. Figure 11.30 shows the flow chart for

this algorithm, using the three images. Figure 11.31 shows the three images taken

with the Hubble telescope and Figure 11.32 shows the results.
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12

Testing of Aspheric Wavefronts and Surfaces

D. Malacara, K. Creath, J. Schmit and J. C. Wyant

12.1. INTRODUCTION

Aspheric wavefronts with spherical aberration are produced by optical systems using

spherical as well as aspherical surfaces. Aspheric surfaces are used in optical systems

in order to improve aberration correction and, frequently, to decrease the number of

optical elements needed to make this correction satisfactorily. However, if these

surfaces are tested while being isolated from the rest of the optical system to which

they belong, they frequently produce aspherical wavefronts. The interferometric

testing and measurement of aspherical wavefronts are not as simple as in the case of

spherical or flat wavefronts.

To test aspherics, often a null test is issued. The usual definition of a null test is that

which produces a fringe-free field when the desired wavefront is obtained. Then, if a

tilt between the wavefront under test and the reference wavefront is added and the

paraxial curvature of them are equal, straight and parallel fringes are obtained. Under

these conditions, any deviation from straightness of the fringes is a graphical

representation of the wavefront deformation. This is the ideal testing procedure

because the desired wavefront is easily identified and measured with high accuracy.

There are several methods to obtain this null test, but sometimes this is not simple and

may even be a source of possible errors.

Typically, if a quantitative retrieval of the wavefront is desired, the interferogram

is imaged onto a CCD detector. Then, the straightness of the fringes for a perfect

wavefront is useful but not absolutely necessary. However, the minimum fringe

spacing should be larger than twice the pixel size in the detector. This is the well-

known Nyquist condition, which may be impossible to satisfy if the wavefront has a

strong asphericity.

In a Fizeau or Twyman–Green interferogram, a strong rotationally symmetric

aspheric wavefront has many fringes when taken at the paraxial focus setting

as shown in Figure 12.1(a). By adding a small curvature to the wavefront, that is,

by adding defocusing, the minimum fringe spacing can be slightly reduced. For
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example, let us assume that the aspheric wavefront with rotational symmetry can be

represented by

WðSÞ ¼ aS2 þ bS4 ð12:1Þ

where S is the radial distance from the optical axis (S2 ¼ x2 þ y2), the first term to the

right of the equal sign is the defocusing, and the second term is the asphericity

(primary aberration). The defocusing coefficient a should be chosen so that the

minimum fringe spacing on the pupil aperture is as large as possible. The fringe

spacing is defined by the wavefront slope, so the maximumwavefront slope has to be

minimized. This condition is satisfied if (see Fig. 12.2)

a ¼ � 3

2
bS2max ð12:2Þ

This increases the minimum fringe spacing in the interferogram by a factor of 4, as

illustrated in Figure 12.1(b).

To simplify the analysis of a single fringe pattern with closed fringes, it is

sometimes necessary to introduce a large tilt so that only open fringes appear as

shown in Figure 12.1(c). Then, we say that a linear carrier has been introduced along

FIGURE 12.1. Interferogram of an aspheric wavefront with primary spherical aberration (a) at the

paraxial focus, without tilt; (b) at the best focus, without tilt; and (c) at the best focus, with large tilt.

Paraxial focus

Best focus

Marginal focus

W

Smax

FIGURE 12.2. Wavefront profiles for primary spherical aberration at three different focus settings.
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the x axis. With these conditions, when scanning the wavefront along horizontal lines

the same fringe is not scanned twice. The problem with this method is that the

introduction of the large tilt that opens the fringes also decreases the fringe spacing.

The minimum fringe spacing occurs where the sum of the slope of the wavefront

under test plus the slope of the reference wavefront tilt is the largest.

In a rotationally symmetric aspheric wavefront, the fringes are concentric rings

and also in many other interferograms the fringes may close, forming loops. This

kind of interferograms are difficult to analyze and frequently some special compli-

cated techniques have to be used. A second and more important disadvantage is that

the fringe spacing is quite small near the edge of the pupil.

When sampling an interferogram where the Nyquist condition is violated,

each pupil detector measures the average intensity of the light falling over its

small area. If the fringe spacing is smaller than twice the pixel size, the image of

the fringes is washed out or the contrast will be greatly reduced if these two

dimensions are similar as shown in Figure 12.3(a). If the pixel size is much smaller

than its spacing, instead of a low fringe contrast, some false spurious fringes will

appear, as shown in Figure 12.3(b). This effect is known as aliasing. Most CCD

detectors have a pixel spacing almost equal to the pixel size. So, fringe aliasing is not

common.

12.2. SOME METHODS TO TEST ASPHERIC WAVEFRONTS

There are several methods that had been used to test aspheric surfaces, which will be

described in this chapter. The methods for testing the quality of aspheric surfaces that

have been developed can be classified into the following categories:

1. One of the several possible non-null classic tests can be quantitatively used,

measuring the wavefront with the Foucault, Ronchi or Hartmann tests, mathematically

FIGURE 12.3. Interferogram of an aspheric wavefront with primary spherical aberration, at the paraxial

focus, with fringe spacing smaller than twice the pixel size. (a)With pixel size equal to pixel separation and

(b) with pixel size smaller than pixel separation.
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in calculating the surface deformations with respect to the closest sphere. This

process in general is time consuming, and frequently the accuracy of the results

is not high enough if the aspheric deformation is strong, due to their relatively

smaller sensitivity as compared with interferometry. These methods are described in

Chapters 8–10.

2. For conicoidal surfaces with symmetry of revolution, there is always a pair of

conjugate focii that are free of spherical aberration as illustrated in Figure 12.4. Then,

if the surface under test is illuminated with a convergent or divergent wavefront with

the center of curvature at the proper focus, the reflected wavefront is spherical and

thus is easier to test. To produce the necessary illuminating wavefront, some

auxiliary optical elements are nearly always necessary. There are several of these

null configurations that will be described here.

3. Some additional optical elements can be added to the testing system to

compensate for the spherical aberration of the wavefront reflected from the aspheric

surface. Then, an auxiliary optical system is designed so that, in combination with the

aspheric surface, it forms a stigmatic image of a point source. The auxiliary optical

system is called a null corrector or null compensator. These methods will be

described in this chapter.

4. If only one interferogram picture is taken and the asphericity is not very strong,

several interferometric methods can be used to evaluate the fringe pattern. However,

if the asphericity is strong and the fringe spacing is not larger than twice the pixel

separation at the detector (Nyquist condition), the interferogram may become

impossible to analyze. Analysis is possible only with a procedure described by

Greivenkamp (1987) and only when the following conditions are satisfied:

(a) The pixel size is smaller than the pixel separation. Then, spurious fringes

will appear where the Nyquist condition is not satisfied.

(b) The wavefront’s general shape is known.

(c) The expected wavefront is smooth. The problem is then solved by proper

phase unwrapping until the retrieved wavefront and its slopes are continuous.

HyperboloidEllipsoid

(a) (b)

FIGURE 12.4. Reflective concave and convex ellipsoidal and hyperboloidal surfaces.
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5. With phase-shifting techniques, a series of Fizeau or Twyman–Green inter-

ferograms can be used without the introduction of tilt, even if closed loop fringes are

formed. A series of a minimum of three interferograms have to be taken with different

values of the constant term for the phase, also called piston term. Then, the inter-

pretation of the wavefront evaluation becomes relatively simple from a mathematical

point of view, but it is much more complicated from the experimental point of view.

The phase shifting techniques are described in detail in Chapter 14. When measuring

an aspheric wavefront with phase shifting, the defocusing term has to be properly

chosen so that the fringe spacing is minimum as described before. As pointed out

before, the limitation is that by using the optimum focus setting, the Nyquist

condition is not violated.

6. If the wavefront has a strong deviation from sphericity, even phase shifting

techniques become impossible. Another possibility under these conditions is to test

the wavefront by dividing the complete aperture into small regions where the Nyquist

condition is not violated. In other words, in all small regions the fringe spacing

should be larger than twice the pixel separation. This technique, sometimes referred

to as a wavefront stitching technique, will be described in this chapter.

7. If a longer wavelength is used, the dynamic range is increased by reducing

some of its sensitivity. For example, by operating at 10.6 mm, the dynamic range is

increased twenty times, approximately.

8. Sources and detectors for longer wavelengths may be prohibitively expensive.

A solution to this problem may be found in two-wavelength methods, where fringes

at longer (synthetic) wavelength are created by simultaneous exposure at two

different wavelengths. These fringes, which are resolvable for high slopes at a longer

wavelength, may be analyzed with a phase shifting method. Different synthetic

wavelengths can be obtained by combining different visible wavelengths, as

described in Chapter 15 and Section 12.13 in this chapter.

9. Lateral or radial shear interferometry, as described in Chapters 4 and 5,

provides a larger dynamic range for testing strong aspherics, but a smaller sensitivity.

12.3. IMAGING OF THE INTERFERENCE PATTERN

IN NON-NULL TESTS

An aberrated wavefront continuously changes its shape as it travels; therefore, if the

wavefront is aspherical, the interference pattern will also continuously change as the

beam advances as shown in Figure 12.5. Since the errors of an instrument are

represented by wavefront distortions on the pupil, the interferogram should represent

the wavefront deformations at that place.

The problem is even worse if the wavefront travels twice through the optical

system during the test. For example, when testing a lens with any of the configura-

tions as described in Chapter 2, the wavefront travels twice through the lens; the

second time, it travels after being reflected from the small mirror in front of the lens.

If the aberration is small, the total wavefront deformation is twice the deformation
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introduced in a single pass through the lens. However, if the aberration is large, this

condition is not followed, because the wavefront changes while traveling from the

lens to the mirror and back to the lens. Then, the spot in the surface on which the

defect is located is not imaged back onto itself by the concave or convex mirror, and

the ray will not pass through this defect the second time. Great confusion then results

with regard to the interpretation of the interferogram, since the defect is not precisely

duplicated by the double pass through the lens.

It may be shown that the image of the lens is formed at a distance L from the lens,

which is given by

L ¼ 2ðF � rÞ2
2F � r

ð12:3Þ

where F is the focal length and r is the mirror radius of curvature (r > 0 for a convex

mirror and r < 0 for a concave mirror). We may see that the ideal mirror is convex

and very close to the lens (r � F).

An adequate optical arrangement has to be used if the lens under test has a large

aberration, in order to image its pupil back on itself. Any auxiliary lenses or mirrors

must preserve the wavefront shape. Some examples of these arrangements are shown

in Figure 12.6 (Malacara and Menchaca, 1985).

However, for microscope objectives this solution is not satisfactory because the

ideal place to observe the fringes is at the back focus. In this case the Dyson (1959)

system illustrated in Figure 12.7 is an ideal solution. It is interesting to point out that

Dyson’s system may be used to place the self-conjugate plane at concave or convex

surface, while maintaining the concentricity of the surfaces.

Even if the wavefront passes only once through the optical system under test, the

second problem is to image the interference pattern on the observing detector, screen,

or photographic plate. The imaging lens does not need to preserve the wavefront

shape if it is placed after the beam splitter, and thus both interfering wavefronts pass

through this lens. However, this lens has to be designed in such a way that the

interference pattern is imaged without any distortion, assuming that the pupil of the

system is at an image of the point light source as shown in Figure 12.8(a). A rotating

FIGURE 12.5. Change in the wavefront profile as it travels.
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ground glass in the plane of the interferogram might be sometimes useful in order to

reduce the noise due to speckle and dust in the optical components. Ideally, this

rotating glass should not be completely ground in order to reduce the loss of

brightness and to keep the stop of the imaging lens at the original position, as shown

in Figure 12.8(b). If the rotating glass is completely ground, the stop of the imaging

Lens under test Spherical mirror Spherical mirrorLens under test

Lens under test Spherical mirror

Lens under test Lens under testReflecting surface Plane mirror

FIGURE12.6. Systems to image the pupil of the optical element under test backon itself after reflection at

the mirror.

Back focus of
microscope
objective

Spherical
mirror

R =
N

N – 1
R =

12 R + d1

R2

R1 d

FIGURE 12.7. Dyson system to image the back focus of the microscope objective back on itself, after

reflection on a concave mirror.
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lens should be shifted to the lens in order to use all available light, but then the

lens must be designed taking this new stop position into consideration as shown in

Figure 12.8(c).

12.4. SOME NULL TESTING CONFIGURATIONS

Now some of the many possible configurations that allow a null test of an aspheric

surface are reviewed.

12.4.1. Flat and Concave Spherical Surfaces

Not only aspheric surfaces are sometimes difficult to test, even spherical surfaces

are difficult if the radius of curvature is too short or too large with respect to its

diameter. Some null test configurations appropriate for flat or concave spherical

surfaces are shown in Figure 12.9, with the relevant parameters and dimensions

(Ritchey, 1904).

12.4.2. Telescope Refracting Objectives

A telescope doublet may easily be tested by autocollimation against an optical flat as

shown in Figure 12.10. The flat must, of course, be as good as the rest of the system is

intended to be. It is also necessary to keep the light source and the testing point as

close as possible to each other to avoid astigmatism. When a system is double passed

(including the case of the testing of a single concave surface at the center of

curvature), as in this configuration, any antisymmetric wavefront aberration, like

Interference
pattern

Imaging
lens Stop

Image of
pattern pattern

Image of

Stoplens
Imaging

pattern
interference

pattern
Image of

lens
imaging

pattern
interference

Half-ground
glass and

Ground glass and Stop and

(a) (b)

(c)

FIGURE 12.8. Imaging of the interferogram on the observation plane by means of a lens (a) without any

rotating ground glass, (b) with a rotating half-ground glass, and (c) with a rotating fully-ground glass.
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coma, transverse color, and distortion, is canceled due to the the symmetry of the

system.

12.4.3. Concave Paraboloidal Surfaces

If the paraboloid is not too large popular configurations use autocollimation with an

optical flat as shown in Figure 12.11. The amount of spherical convexity or concavity

permissible in the flat mirror used in autocollimation tests was shown by Burch

(1938) to be given by

d ¼ 64
f

D

� �2
e

4Q� 0:5
ð12:4Þ

where f is the effective focal length and D is the aperture diameter of the system

under test. The symbol d represents the depth in fringes of the spherical concavity or

convexity of the ‘‘flat’’ mirror, and e represents the tolerance, also in fringes, of the

Short focus
spherical
mirror

Microscope
objective

under test

Light source
and

testing point

Mirror

Light source

and

testing point

Mirror
under test

Light source
and
testing point

under test

FIGURE 12.9. Testing concave spherical and flat mirrors.

Lens

under test
Light source

and

testing point

Reference

flat mirror

FIGURE 12.10. Testing a lens by autocollimation against a flat mirror.
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zonal effect error introduced. If the system under test is refracting, the zonal error is

�2e=ðN � 1Þ, where N is the refractive index. The parameter Q is defined by

Q ¼ � OSC

sin2 y
¼ 1

sin2 y

Y

F sin y
� 1

� �

ð12:5Þ

where OSC is the ‘‘offense against the sine condition’’ and y is the angle at which a

marginal ray with height Yat the entrance pupil converges to the focus of the system.

As Burch pointed out, a paraboloid and an aplanatic system are the two cases of

practical interest: for these, Q ¼ 0:25 and Q ¼ 0, respectively, giving

d ¼ 
128
F

D

� �2

e ð12:6Þ

If the paraboloid has a large aperture with respect to its radius of curvature, a point

light source may be placed at its focus. Then, the collimated beam may be examined

with another paraboloid with the same diameter but much larger focal length, as

proposed by Parks (1974).

12.4.4. Concave Ellipsoidal or Spheroidal Surfaces

An ellipsoidal sometimes also called a prolate spheroid surface, obtained by rotation

of the ellipse about it’s major axis may be tested with conjugates at finite but at

different distances (Kirkham, 1953) as shown in Figure 12.12(a). In a Twyman–

Green interferometer, a configuration, like the one illustrated in Figure 12.13 and as

suggested by Schwider (1999), can be used. Two identical lenses have to be used in

both the arms of the interferometer, so that the aberration introduced by the lenses is

the same.

mirror
under test Collimated

beam of light

flat mirror

Reference

Paraboloidal

mirror
Paraboloidal

under test

Paraboloidal
mirror
under test

Reference

flat mirror

Testing
point

Light source
and

testing point

Light source
and
testing point

Reference
flat mirror

Light source

and

testing point

Off-axis

paraboloidal

mirror

FIGURE 12.11. Testing paraboloidal concave mirrors.
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An oblate spheroid is obtained by rotating the ellipse about its minor axis. In this

case the images at the foci of the ellipse are astigmatic. Coma aberration is not

present due to the symmetry of the system. A small cylindrical lens may be placed

near its focus in order to correct this astigmatism if necessary (Everhart, 1966) as

shown in Figure 12.12(b). Several different arrangements to test oblate spheroids

using refractive compensators have been proposed, as described by Rodgers and

Parks (1984).

12.5. TESTING OF CONVEX HYPERBOLOIDAL SURFACES

12.5.1. Hindle Type Tests

The testing of convex hyperboloids is very important for astronomical instruments.

The most common test for these surfaces has been implemented by using a Hindle

sphere as described in the following section. The problem with this method is that a

Ellipsoid Oblate spheroid

Cylindrical
lens

(a) (b)

FIGURE 12.12. Testing concave ellipsoidal and oblate spheroidal mirrors.

Two
identical
lenses

Ellipsoidal
concave
mirror

FIGURE 12.13. Testing and ellipsoidal concave mirror in a Twyman–Green interferometer.
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very large concave spherical surface, much larger than the surface under test, is

required. Various other methods using compensators have been reported for testing

convex hyperboloids, as described by Parks and Shao (1988).

We have mentioned that when testing conicoids a null test is obtained, then

the center of curvature of the illuminating wavefront is at the proper focus; but

since at least one of the geometrical foci is inaccessible, additional optical

elements are required. A convex hyperboloidal surface can be tested with the

method proposed by Hindle (1931), who showed how an autostigmatic arrange-

ment for testing a convex hyperboloid can be implemented by retro-reflection

from a sphere whose center is at the inaccessible focus of the hyperboloid as

shown in Figure 12.14(a). Concave ellipsoidal surfaces can be examined with a

Hindle arrangement, as shown in Figure 12.14(b). Small concave hyperboloids

are also tested in a similar way (Silvertooth, 1940) as shown in Figure 12.14(c) A

complete two mirror Cassegrain or Ritchey–Chrétien telescope can be tested in

an autocollimating configuration devised by Ritchey if a large reference flat is

available (see Fig. 12.14(d)).

Figure 12.15 shows Hindle arrangements for testing convex paraboloids and

convex prolate spheroids. In addition to the Hindle sphere, a collimator is required

to test a convex paraboloid. To test an ellipsoid (prolate spheroid), a lens designed for

conjugates at finite distances is needed to provide a beam that converges to one of the

spheroidal foci.

Although the Hindle and related tests for convex conicoids affords a stigmatic

retroreflected image, its implementation is often impractical because keeping the

obscuration inherent in the test within permissible bounds results in a prohibitively

large spherical mirror. In the case of a hyperboloid of diameter D, the aperture of the

Hindle sphere DH is given by the relation

DH ¼ Dðmþ 1Þ
mr þ 1

ð12:7Þ

where r is the permissible obscuration ratio, and m is the magnification of the

hyperboloid for its stigmatic conjugates. Thus, a 0.25-m hyperboloid with m ¼ 10

and permissible r ¼ 0:2 requires a 0.92-m Hindle sphere.

A modification of the Hindle test that avoids this difficulty was described by

Simpson et al. (1974). Their arrangement is shown in Figure 12.16. The concave

surface of a meniscus element serves as the Hindle sphere. This surface is half

silvered so that it can be placed close to the conicoid without introducing obscura-

tion. The radius of the convex surface can be chosen to compensate for the spherical

aberration introduced by the refraction of the light beam passing through the concave

surface. This testing configuration has been studied by Robbert (1979) and by

Howard et al. (1983).

To test the effect of the meniscus Hindle element on the retroreflected wave, the

hyperboloid is removed and the retroreflected image of S from a calibrating sphere

with center at F is examined. Any significant aberration introduced by the meniscus

can then be subtracted from the measurement of the figure error of the hyperboloid.
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FIGURE 12.14. Hindle, Silvertooth, and Ritchey tests for hyperboloidal mirrors.
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A meniscus was designed to test the 0.25-m 10� hyperboloid mentioned earlier.

The geometrical foci of the hyperboloid were at 0.6 and 6 m. The base radius of the

hyperboloid is thus 1.33333 m, and its conic constant is K ¼ �1:49383. Glass of
index 1.52 was chosen for the meniscus element. For a 5 cm separation of the

meniscus from the hyperboloid, the radius of the concave surface is 65 cm. With a

meniscus thickness of 5 cm, the radius of the convex surface that results in aberration

compensation at the edge of the aperture is 66.6637 cm. The required clear aperture

of the meniscus is 0.254 m. The RMS (root mean square) of the wavefront deforma-

tions as given by the OPD (optical path difference) of the retroreflected wave is

0.0016 l at l ¼ 632:8 nm. The stigmatic quality of the retroreflected image is thus

retained in this modified Hindle test. Its use for testing convex conicoids is limited

Light source

testing point
and

spherical mirror
Auxiliary

under test

Paraboloidal
mirror

(a)

and
testing point

Light source

(b)

spherical mirror
Auxiliary

under test
mirror
Ellipsoidal

FIGURE 12.15. Testing paraboloidal and ellipsoidal convex mirrors.
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FIGURE 12.16. Simpson–Oland–Meckel modified Hindle arrangement.
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only by the availability of refracting material of approximately the same size as the

surface being tested.

An inconvenience with the Hindle test is that a large spherical mirror is needed.

Another solution has been proposed byMeinel and Meinel (l983a, 1983b) in order to

test the hyperboloid from the back surface. The mirror has to be made out of fused

quartz in order to have good transparency and homogeneity. There are two possible

optical arrangements for this test, one is shown in Figure 12.17(a) with the light

source and the testing point at the same position. The surface has to be slightly

convex with a long radius of curvature. As pointed out byMeinel andMeinel, a better

solution is obtained if the back surface is made flat and the spherical aberration is

completely corrected by locating the light source and the testing point along the

optical axis, separated some distance from each other as shown in Figure 12.17(b).

Many interesting variations of this test and some others may be found in a paper by

Parks and Shao (1988).

12.5.2. Testing by Refraction

Descartes discovered that a refractive conical can focus an incident collimated beam

of light without any spherical aberration, if the conic constant K is equal to

K ¼ � n1

n2

� �2

ð12:8Þ

Hyperboloid

(b)

(a)

Hyperboloid
surface

convex
Slightly

surface
Flat

C

C

FIGURE12.17. Meinel’s test for a hyperboloidal convexmirror (a) using equal conjugates, with the light

source and the testing point at the same position and (b) using unequal conjugates. The light source and the

testing point are at different positions, but they can be made to coincide if a double-pass configuration is

used, by placing a small flat mirror on these points.
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where n1 is the refractive index of the first medium and n2 is the refractive index of

the second medium. There are two possible solutions:

(a) If n2 > n1 and r > 0, the conic is an ellipsoid, sometimes called Descartes

ovoid, as shown in Figure 12.18(a). If the first medium is air and the second

one is glass, we have a conic constant given by

K ¼ � 1

n2
ð12:9Þ

and if the distance from the vertex of the ellipsoid to the second focus, which is

the point of convergence, is L, we have

Lc ¼ n

n� 1
ð12:10Þ

where c is the vertex curvature.

(b) If n2 < n1 and r < 0, this is a hyperboloid, as illustrated in Figure 12.18(b). If

the first medium is glass and the second one is air, the conic constant is

K ¼ �n2 ð12:11Þ

Hyperboloid

Ellipsoid

K = –n2

K = –
2n

1

(a)

(b)

FIGURE 12.18. Cartesian configuration for an ellipsoid and a hyperboloid.
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and if the distance from the vertex of the hyperboloid to the focus, which is the point

of convergence, is L, we have

Lc ¼ � 1

n� 1
ð12:12Þ

where the vertex curvature is negative.

Table 12.1 gives the main parameters for two common optical glasses.

Using this property, a convex hyperboloid may be tested with the arrangement

given in Figure 12.19, if the index of refraction of the glass is of the proper value. The

glass has to be clear and homogeneous; so optical glass or fused silica have to be

used. Pyrex or glassceramic materials are not adequate. Since this test is made by

transmission instead of reflection, the wavefront deformations OPD and the surface

deformations W are related by W ¼ OPD=2ðn� 1Þ, which is about half the sensi-

tivity obtained in a reflective arrangement.

If the refractive index is not adequate to produce an aplanatic image, an object

distance may be selected so that the image is free of primary spherical aberration.

This may be done by ray tracing, but an approximate solution may be calculated

which requires that the third-order spherical aberration in Eq. (16.26) be zero. By

making n�1 ¼ 1 and defining a distance l ¼ y=u�1, this condition is

ð8A1 þ Kc3Þ þ
ðnþ1Þ

l
þ c

n2
cþ 1

l

� �2

¼ 0 ð12:13Þ

TABLE 12.1. Main parameter for the focusing of a collimated beam using a refractive

conicoid with two common optical glasses.

Refractive index Ellipsoid Hyperboloid

n K Lc K Lc

BK7 1.5168 �0.4347 2.9350 �2.3007 �1.9350

F2 1.6200 �0.3810 2.6129 �2.6244 �1.6129

Hyperboloid

K = –n2

Reflecting
plane

FIGURE 12.19. Testing a hyperboloid with a Cartesian configuration.
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Then, as suggested by James and Waterworth (1965), a lens with a convex

hyperboloidal surface may be tested as shown in Figure 12.20. The spherical

aberration of the second surface is eliminated by bringing this surface in contact

with another lens using oil, whose second surface is spherical and is concentric with

the testing point. In this case, however, the compensation is not perfect, since some

small residual aberrations may remain. The sensitivity in about one fourth of that

obtained in a reflective arrangement.

This property of the lenses with one hyperbolic convex surface can be used to

test a convex surface with another procedure suggested by Bruns (1983). A

convergent lens is placed in front of the convex surface under test to compensate

for the spherical aberration introduced by the convex hyperbolic surface under

test as illustrated in Figure 12.21. Unfortunately, no lens with spherical surfaces

may correct the spherical aberration of the hyperboloid. So, Bruns uses a lens

with a hyperboloidal surface. This hyperboloid in the front lens has conic

constant KL related to the selected glass refraction index. This makes the lens

very simple to test when a collimated beam enters the lens through the flat face,

since for this lens orientation spherical aberration is corrected. When this lens is

used in reverse, that is, with the collimated beam entering the convex surface, it

has a spherical aberration with the proper sign to cancel that of the convex

mirror.

If the desired conic constant for the convex mirror is KM, with radius of

curvature RM , Bruns has shown that the spherical aberration of this system is

Testing
point

Spherical
surfacesurface

Light
source

Hyperboloidal

Dummy lens

FIGURE 12.20. Testing an aspheric surface by selecting the conjugate distance that produces the

minimum amount of spherical aberration.

HyperboloidHyperboloid

C

FIGURE 12.21. Testing a hyperboloidal surface by using an aspherical lens to compensate the spherical

aberration.

452 TESTING OF ASPHERIC WAVEFRONTS AND SURFACES



compensated for when the refractive index nL of the lens in front is given by the

following relation:

KM ¼ � 2ðnL þ 1ÞðRM þ dÞ
nLðnL � 1ÞRM

ð12:14Þ

where d is the separation between the flat surface of the lens and the mirror, and an

infinitely thin lens is assumed. The focal length of the lens is equal to RM þ d. The

value of RM is fixed, thus nL and dmust be chosen so that this relation is satisfied for

the desired value of KM.

12.6. TESTING OF CYLINDRICAL SURFACES

A concave cylindrical surface can be tested as illustrated in Figure 12.22, where the

axis of the cylindrical test is in the vertical direction (Shnurr and Mann, 1981). A flat

reference surface that reflects partially is located at the focus of the cylinder where

the image is formed like a bright and narrow vertical line. The retroreflected

wavefront is flat. It has to be noticed, however, that the wavefront is reversed about

a vertical axis. Since the light is reflected twice on the surface under test, the

antisymmetric mirror deformations are cancelled out while the symmetrical compo-

nents are duplicated. Also, a highly spatially coherent illumination like that produced

by a gas laser is needed.

C

Light from

(a) Top view

C

(b) Side view

testing
instrument

Light from
testing
instrument

Flat reference
surface

Flat reference
surface

Cylindrical
surface
under test

Cylindrical
surface
under test

FIGURE 12.22. Testing a concave cylindrical surface in Twyman–Green interferometer using an

auxiliary flat surface.
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Since the light being reflected is quite narrow, resembling a bright line, the

reference mirror can be substituted by a very narrow mirror covering just the image

and not the whole aperture. It must be remembered that this narrow image is not a

perfect line due to the aberrations of the mirror under test. Geary and Parker (1987)

and Geary (1991) substituted the narrow mirror by a thin fiber as shown in

Figure 12.23. The fiber is coated to make it highly reflective and thinner than the

width of the image due to the aberrations. The wavefront reflected back to the

cylindrical surface on the fiber is cylindrical. Then, the aberrations are not duplicated

due to the double pass, and the antisymmetrical components of the aberration are

eliminated.

A cylindrical lens can also be tested using similar arrangements with a flat mirror

as shown in Figure 12.24, or with a wire. The same conclusions as described in the

last paragraph apply to this test.

A convex cylindrical mirror can be tested with the arrangement in Figure 12.25.

The difference is that the beam from the interferometer has to be convergent. The

retro-reflected wavefront is also spherical.

Another approach to test cylindrical lenses has been proposed by Lamprecht et al.

(2003). The cylindrical wavefront produced by the cylindrical lens is transformed

back to a planewavefront bymeans of a diffractive optical element, which is made by

optical e-beam lithography.

12.7. EARLY COMPENSATORS

This section on null compensators is adapted from the original chapter in earlier

versions of this book, written by late Abbe Offner. The corresponding test of a
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FIGURE12.23. Testing a concave cylindrical surface inTwyman–Green interferometer using a reflective

fiber.
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concave paraboloidal mirror is a lengthy and less accurate process. In this case, the

figure errors must be deduced from measurements of the ray transverse aberrations

(surface slopes) for a large number of zones, since a concave aspheric or conic

surface tested at the center of curvature has a spherical aberration wavefront

deformation given in third-order approximation by

WðrÞ ¼ ð8A1 þ Kc3Þr4
4

ð12:15Þ

where Al is the first aspheric deformation term, K is the conic constant, and c ¼ 1=R
is the curvature. For a conic surface we may write

W ¼ 1

4
KR

�
r

R

�4

ð12:16Þ

For many years the only alternative to the method of using the knife-edge test

during the manufacture of a paraboloidal mirror was to test the mirror by autocolli-

mation with the aid of an optical flat, which had to be as large and as accurately

figured as the mirror being manufactured.

12.7.1. Couder, Burch, and Ross Compensators

Couder (1927) pointed out that departure from stigmatism of the image of a point

source at the center of curvature of a paraboloidal mirror can be removed by

interposing a small compensating lens between the image and the mirror. He used

a two-element compensator in the arrangement shown in Figure 12.26. Two elements

were necessary because he required a null corrector of zero total power to conve-

niently carry out the manufacturing process desired in his paper. To manufacture a

30-cm f/5 paraboloidal mirror, he used a null corrector whose aperture (scaled from

his drawing) was about 4 cm.

The use of a spherical mirror beyond the center of curvature of a paraboloid to

compensate for the aberrations of a paraboloid used with source and knife edge near

its center of curvature was described by Burch (1936). He derived the fifth-order

aberration of the null systems of this type and showed that with the two-mirror

arrangement of Figure 12.27, the residual aberration of the paraboloid is less than

one-fortieth of a wave for paraboloids as fast as f=5 and with apertures up to 80 cm,
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FIGURE 12.26. Couder two-element compensator.
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when the compensating mirror aperture is one fourth of that of the paraboloid. For

larger apertures and/or faster paraboloids, he suggested figuring the convex mirror

with a down edge that departed from the base sphere by an eighth power law so that

the seventh-order spherical aberration could be balanced. He calculated that an

asphericity of about 2.8A would be required to compensate for the aberrations of

the 5-m f=3.33 Mount Palomar mirror.

A simple third-order solution for a refracting compensator was also published by

Burch (1938). The refractor was a planoconvex lens of focal length f and refractive

index n, used in the arrangement shown in Figure 12.28, in which its plane surface is

reflecting. For an paraboloid of base radius R, the third-order aberration of the image

at the center of curvature is balanced when f ¼ Rn2=ðn� 1Þ2, so that for n ¼ 1:52
the lens has an aperture of about one eighth of that of the paraboloid. Burch expected

the residual aberration with this null corrector to be negligible for paraboloids of

aperture ratio not exceeding f=8. He added, ‘‘Anyone with an aptitude for analytical

optics or for ray-tracing could earn the gratitude of practical opticians by calculating

the secondary aberrations for this and other kinds of compensating lens systems.’’

This plea was answered 30 years later by Holleran (1968).

During the manufacture of the 5-m f=3.33 Mount Palomar mirror, a 25-cm

diameter compensator was used to form a stigmatic retro-reflected image near the

center of curvature of the mirror (Ross, 1943). The arrangement used is shown in

Figure 12.29.
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FIGURE 12.27. Burch two-mirror compensator.
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FIGURE 12.28. Burch planoconvex compensator.
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To obtain a degree of compensation such that the residual zonal aberration resulted

in a disk of confusion that was small compared to that caused by the atmosphere, Ross

found it necessary to add an aspheric corrector plate to a refractive element with

spherical surfaces, which by itself balanced the spherical aberration of the paraboloi-

dal mirror. The retroreflective arrangement used by Ross has the advantage that it is

coma-free and therefore insensitive to departures of the source and knife edge from the

axis of the system. Moreover, since the compensator is used twice, it has to contribute

only one-half as much aberration as is required in Couder’s arrangement.

12.7.2. Dall Compensator

The planoconvex lens of Burch is a convenient and an easily used solution to the

problem of making a null corrector for a paraboloidal mirror of moderate aperture.

However, with this method a planoconvex lens used in the manufacture of a para-

boloidal mirror can serve as a compensator only for other paraboloidal mirrors of the

same focal length.

Dall (1947, 1953) noted that, since the spherical aberration of a lens is a function

of its conjugates, the same planoconvex lens can be used as a compensator for many

paraboloids. Dall employed the arrangement of Figure 12.30, which is quite similar

to the arrangement used by Couder. The major difference is that, the Dall compen-

sator is placed in front of the light source and not in front of the observer’s eye. The

reason for this is that if it is used on the convergent beam, the convergence of the

C

Light
source and

Ross
compensator

testing
point

Mirror
under
test

FIGURE12.29. Ross aspheric compensator used during the fabricationof the5-mMount Palomarmirror.
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FIGURE 12.30. Dall planoconvex compensator.
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beam may become so large that an observation of the whole surface under test may

not be possible.

The Dall compensator is normally used in an off-axis arrangement, with the light

passing only once through the compensator. Two double-pass configurations, with

the divergent as well as the convergent beams passing through the compensator, may

also be used: (a) exactly on axis, using a beam splitter and (b) slightly off axis. Then,

the compensating lens needs to compensate only half the total aberration on each

pass, making it less strong. Then, an additional factor of 2 has to be used in front of

Eq. (12.15). Another advantage of the double-pass symmetrical arrangement is that it

is coma free. Thus, any coma introduced by the off-axis lateral displacement of the

light source and the observer or any misalignment of the lens compensator does not

introduce any coma. Unfortunately, the double-pass arrangement may be used only if

the radius of curvature of the surface under test is very large compared with its

diameter.

Dall found that proper choice of the short conjugate of the lens provides adequate

compensation if the ratio of the radius of curvature R of the paraboloid to the focal

length f of the lens is between 10 and 40. The relation required to balance the third-

order aberration of the parabola at its center of curvature is

R

f
¼ 1

2
ðm� 1Þ2 n2ðm� 1Þ2

ðn� 1Þ2
þ ð3nþ 1Þðm� 1Þ

n� 1
þ 3nþ 2

n

" #

ð12:17Þ

wherem is the ratio of the long conjugate distance l0 to the short conjugate distance l,
and n is the index of refraction of the plano-convex lens. (The sign convention is such

that in the Dall arrangement m > 1.)

The Dall compensator has been widely used, especially by amateur telescope

makers. The degree of compensation that can be attained with this extremely simple

null corrector is illustrated by the following example.

A Dall compensator is desired for a 0.6-m f=5 paraboloidal mirror. Taking m ¼ 2,

N ¼ 1:52, and F ¼ 3 m in Eq. (12.17), we find R=f ¼ 11:776, which is within the

bounds prescribed by Dall. The compensator specifications are then f ¼ 50:950 cm,

l ¼ �25:475 cm, and l0 ¼ �50:950 cm. With this null corrector the computed root-

mean-square (RMS) departure from the closest sphere [RMS optical path difference

(OPD)] of the wavefront that converges to form an image of the light source is 0:048l
at l ¼ 632:8 nm. A paraboloid fabricated to give a null test with this compensator

would have an RMS figure error of 0.024A. The Strehl intensity resulting from this

figure error is 0.91. The diameter of the plano-convex lens required to achieve this

compensation is about one-twelfth of that of the paraboloidal mirror.

The paraboloid of the examples is about the largest for which a Dall compensator

is adequate. Since the arrangement suggested by Dall is not coma-free, the light

source must be located accurately on the axis of the convex lens, and this axis should

be directed to pass through the pole of the paraboloid.

Practical instructions for making and using a Dall null tester are given in two

papers by Schlauch (1959) and by Stoltzmann and Hatch (1976). By restricting the
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refractive index of the plano-convex lens to 1.52, the computation of Eq. (12.17) can

be avoided with the help of a curve in Schlauch’s paper, which is adapted from the

one published by Dall (1953).

A Dall lens made with BK-7 glass and using red light can also be calculated with

the curves in Figure 12.31. The radius of curvature is 25 mm and the thickness is

5 mm. A difference with Figure 12.30 is that it has been assumed that the plane

surface of the lens and the testing point (knife edge) are in the same plane, as

illustrated in Figure 12.32. Assuming only the presence of third-order spherical

aberration, from Eq. (12.16) we may say that the distance d from the light source to

the vertex of the convex surface of the lens has to be a function only of the product

KR. This is true only for small apertures (large ratio R=DÞ: If the aperture is large

(ratio R=D small), the fifth-order spherical aberration is present in the Dall lens, and it
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FIGURE12.31. Distanced from the light source to theDall compensator lens in Figure 12.32 for different

values of the product of the radius of curvature times the conic constant.
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surface of the Dall lens.
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has to be partially compensated with some overcompensation of the third-order

aberration. Then, a zonal spherical aberration remains uncorrected. This remaining

aberration is not a severe problem if the aperture is small or if there is a large central

obscuration, as pointed out by Rodgers (1986).

A Dall compensator can be modified to be coma-free by using the planoconvex

lens on axis like in the retro-reflective arrangement of Ross. The relation to be

satisfied with this arrangement is a modification of Eq. (12.17) in which the factor 1/2

is eliminated since the lens is traversed twice. With this arrangement, for example,

the compensator for the 0:6�mf=5 paraboloid has R=f ¼ 23:552; f ¼ 25:475 cm,

l ¼ �12:737 cm, and l0 ¼ �25:475 cm. The diameter of the planoconvex lens is then

that of the paraboloid. The residual figure error of the paraboloid that gives a null test

with this arrangement is exactly the same as that computed in the preceding example.

The retroreflective arrangement has the advantage, however, that since it is coma-

free, it is not affected by small departures of the light source from the axis of the

planoconvex lens.

In an interesting variation of the Dall compensator proposed by Puryayev (1973),

an afocal meniscus whose concave surface is conicoidal is substituted for Dall’s

planoconvex lens in the autostigmatic arrangement used by Ross (Fig. 12.29). For an

afocal meniscus,

r1 � r2 ¼
dðn� 1Þ

n
ð12:18Þ

where r1 is the radius of the concave surface of the meniscus, r2 is the radius of its

convex surface, d is its thickness, and n is its index of refraction.

The third-order value of the conic constant K of the concave surface required to

compensate for the aberration of a paraboloid of radius R is

K ¼ R

ðN � 1Þ r2

r1

� �2

l

ð12:19Þ

where l is the distance from the light source to the meniscus. (The sign convention is

such that K is negative.)

With the same 20-cm-diameter meniscus compensator, Puryayev achieved com-

pensation for any paraboloidal or near-paraboloidal surface whose focal length does

not exceed 24 m and whose aperture ratio does not exceed 1:4. The maximum

residual wave aberration of the retro-reflected wave for any paraboloid in this range

is about l/2 at 632.8 nm. This residual can be computed and taken into account when

the figure of the test mirror is being determined.

12.8. REFRACTIVE COMPENSATORS

As described earlier (Burch, 1936; Ross, 1943), compensation for the spherical

aberration of a paraboloid or other aspheric concave mirror can be achieved to any
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desired degree of accuracy by the incorporation of an aspheric element in the null

corrector. This method is limited to cases in which the figure of the aspheric element

can be ascertained with an accuracy better than that desired for the aspheric mirror.

Primary mirrors that are to be incorporated into diffraction-limited space-borne

optical systems are now required to have RMS figure errors as small as one-

hundredth of the wavelength of visible light. It is therefore desirable that the

components of a null corrector for these mirrors be spherical or flat so that their

figure errors can be measured to the required accuracy.

In the design of his null corrector, Ross found that the farther he put the lens from

the center of curvature of the mirror, the less residual aberration there was when the

compensation was exactly at the center and the edge. This is so because, although the

longitudinal spherical aberration S of the normals to the paraboloid follows

the simple law S ¼ y2=2R, where y is the distance of the normal from the axis of

the paraboloid and R is its radius, additional terms of a power series would be

required to describe the same spherical aberration distribution in a coordinate system

with its origin at the null corrector. For a null corrector in contact with the paraboloid,

the compensating spherical aberration would be described by the same simple law.

Unfortunately, this null corrector would be as large as the paraboloid.

12.8.1. Refractive Offner Compensator

Offner (1963) pointed out that a small lens that forms a real image of a point source at

the center of curvature of a paraboloid, in combination with a field lens at the center

of curvature that images the small lens at the paraboloid, is optically equivalent to a

large lens at the paraboloid. The use of a field lens in this way was first suggested by

Schupmann to control secondary spectrum (Schupmann, 1899; Offner, 1969). This

kind of compensator has been widely used to test astronomical optics of many

different characteristics (Sasian, 1988).

With a field lens that images the compensating lens c at the paraboloid in Offner’s

arrangement, the spherical aberration of the compensating lens must follow the same

law for aperture as do the normals to the paraboloid.

This restriction on the compensating lens is not necessary. All that is required is

that lens c provide sufficient third-order spherical aberration to compensate for that

of the normals of the paraboloid. The power of the field lens (and thus the location of

the image of lens c) is then varied to minimize the high-order aberration.

To balance the third-order aberration of the normals to a conicoidal mirror with

conic constant K and base radius R, a planoconvex lens of focal length f and index of

refraction n must satisfy the relation

�KR

f
¼ ð1� mÞ2 n2ð1� mÞ2

ðn� 1Þ2
þ ð3nþ 1Þð1� mÞm

n� 1
þ ð3nþ 2Þm2

n

" #

ð12:20Þ

wherem is the ratio l0=l (Fig. 12.33). (The conicoid must have K < 0 if the aberration

of its normals are to be balanced by the spherical aberration of a planoconvex lens.

The sign convention is such that m < 0.)
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Since the mirror under test in general has a large spherical aberration, the field lens

does not have an ideal position. It may be placed between the mirror and its caustic,

inside the caustic region or outside the caustic. Any of these possible locations

produce good compensations, with slight variations, as explained by Sasian (1989).

Different techniques for designing this compensator have been explored by several

authors, among others, by Landgrave and Moya (1987) and by Moya and Landgrave

(1987).

The main purpose of the field lens is to avoid fifth-order spherical aberration, but

another equally important consequence of its presence is that the wavefront at the

mirror under test is imaged on the plane where the aberrations are observed, that is, at

the compensating lens.

The importance of the field lens in the Offner arrangement is evident from the

example of the design of a null corrector for a 1-m f=4 paraboloid using planoconvex
lenses with refractive index 1.52. The quantity m that results in the desired conver-

gence angle of the retroreflected wavefront is first chosen.

Choosing a convergence of f=12 leads to m ¼ �0:6667. The value of the focal

length of the compensating lens required to balance the third-order aberration of the

paraboloid normals is then seen from Eq. (12.20) to be 20.9115 cm, since K ¼ �1

and R ¼ 800:0 cm. The conjugates for m ¼ �0:6667 are l ¼ �52:2772 cm and

l0 ¼ �34:8532 cm. The retroreflective system formed by placing the source at the

long conjugate of this lens and the paraboloidal mirror center of curvature at its short

conjugate is corrected for third-order spherical aberration, but has fifth-order lateral

spherical aberration of �0.0205 mm. The RMS OPD of the retroreflected wavefront

is 0.23 l at l ¼ 632:8 nm.

A field lens of focal length 33.3976 cm at the center of curvature of the

paraboloid forms an image of the compensating lens on the paraboloidal mirror.

With this addition, the sign of the fifth-order spherical aberration is reversed, its

value being þ0.0207 mm. The RMS OPD of the retroreflected wave is increased

slightly to 0.26 l.

The focal length of the field lens that minimizes the high-order spherical aberra-

tion is found to be 66.8900 cm. With this field lens, the computed RMS OPD of the

retroreflected wavefront is reduced to 0.0003 l, a value well below what can be

measured. The diameter of the compensating lens required for this degree of

correction is one-twentieth that of the f=4 paraboloid.
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FIGURE 12.33. Refracting compensator with field lens.
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In Eq. (12.20), it is assumed that the curved surface of the planoconvex field lens is

at the center of curvature of the paraboloid. It is sometimes convenient to move the

field lens to a position close to, but not at the center of curvature. In this case the field

lens introduces an additional magnification mf The condition for compensation of

third-order aberration then becomes

�KR

f 2f
¼ ð1� �mÞ2 n2ð1� �mÞ2

ðn� 1Þ2
þ ð3nþ 1Þð1� mÞ�m

n� 1
þ ð3nþ 2Þ�m2

n

" #

ð12:21Þ

where �m ¼ mf
2=m.

Like Ross’s arrangement, the retroreflective arrangement of Offner is inherently

coma-free so that the correction of the retroreflected wavefront is maintained when

the source is near the axis but not exactly on it.

The high degree of stigmatism that can be achieved by the use of the Offner

corrector has led to its application for the quantitative assessment of the figures of

large aperture concave conicoidal mirrors. For this purpose, the retroreflected

wavefront can be compared with a reference sphere in a spherical wave interfe-

rometer (Houston et al., 1967). A multipass version of the spherical wave inter-

ferometer in which the retroreflected wavefront and the reference sphere are

optically conjugate (Heintze et al., 1967) is particularly useful for making this

measurement with the greatest accuracy. With this interferometer, which has been

given the acronym SWIM (spherical wave interferometer multibeam), individual

points of a wavefront have been measured with an accuracy of 0.003 l (private

communication).

12.8.2. Shafer Compensator

This compensator is a triplet, designed by Shafer (1979), so that the following three

conditions are satisfied:

1. For a certain distance from the light source to the compensator, the spherical

wavefront from the light source preserves its spherical shape after passing

through the compensator. Then, positive or negative compensations may be

achieved by displacing the system along the optical axis.

2. The system is afocal (effective focal length infinite), so that the angles with

respect to the optical axis of the light rays entering the system are preserved

after passing through the compensator.

3. The angular magnification of the afocal system, (lateral magnification for a

near object) must be equal toþ1. Thus the apparent position of the light source

does not change when moving the compensator along the optical axis.

A system with a negative lens between two positive lenses, as in Figure 12.34, is

appropriate for positive conic constants (oblate spheroids) of any magnitude and

negative conic constants (paraboloids or hyperboloids) of moderate magnitude as

464 TESTING OF ASPHERIC WAVEFRONTS AND SURFACES



shown in the graph in Figure 12.35. This graph is inverted when a positive lens is

placed between two negative lenses.

12.8.3. General Comments about Refracting Compensators

The main refracting compensators are the Couder, Dall, Shafer, and the Offner

compensators. They have the following properties in common:

1. All compensate the spherical aberration but with a different degree of perfec-

tion. The best in this respect is the Offner compensator.

2. All can be used in a single or double pass, but the Couder and Dall compensa-

tors are typically used in a single pass, generally in front of the light source, while the

Shafer and Offner compensators are normally used in double pass.
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FIGURE 12.34. Shafer compensator with all lenses made with BK-7 glass.
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FIGURE 12.35. Wavefront aberration due to third-order spherical aberration vs. lens motion for Shafer

compensator and an f/2 system with a wavelength of 632.8 nm.

12.8. REFRACTIVE COMPENSATORS 465



3. The chromatic aberration is not corrected in any of these compensators,

hence monochromatic light has to be used. One possibility is to use laser light and

another is to use a color filter. It is suggested to use a red filter close to the eye or

image detector (after the compensator) so that the wavefront shape is not affected by

this filter.

4. The amount of spherical aberration correction depends very critically on the

axial position of the compensating lens; so unless its position is very accurately

measured, we can never be sure about the exact value of the conic constant of the

concave surface under test. This value has to be measured by some other test that

does not use any compensator, like the Hartmann test. However, the general

smoothness of the surface can be easily determined only with a compensator.

5. In a double-pass configuration, any lateral displacement of the light source and

the observer in opposite direction and by equal amounts, with respect to the optical

axis, does not introduce any coma. It is assumed, however, that the optical axis of

both the conic surface under test and the compensating lens coincide; otherwise some

coma is introduced.

12.9. REFLECTING COMPENSATORS

The weak point in making measurements with the Offner null corrector is the

difficulty in measuring the index variations of the nulling element to the required

degree of accuracy. In the example described (Offner, 1963), the thickness of the 4.5-

cm-diameter compensating lens was 1.05 cm. An average index difference of

3� 10�7 along the paths of the two rays that traverse this lens twice results in an

optical path difference of l=100 at l ¼ 632:8 nm. Faster aspheric mirrors with larger

aperture require larger compensating lens diameters and thicknesses. For these, even

smaller average index differences result in optical path errors of this magnitude.

Fabrication and qualification of large glass elements to this degree of homogeneity is

not feasible at present.

These difficulties can be avoided by substituting spherical mirrors for the

planoconvex refracting compensating element of Figure 12.33. The figure errors of

such elements can be determined with great accuracy. A small field lens can be

retained since it is possible to select small pieces of glass with satisfactorily small

index variations.

It is well known (Burch, 1936) that the axial aberration of a spherical mirror

used at a magnification other than �1 can be used to compensate for the

aberration of the normals of a concave conicoid with negative conic constant.

The high degree of compensation achieved with the Offner refractive null

corrector can also be obtained by a reflecting compensator used with a field

lens at the center of curvature of the conicoid, as shown in Figure 12.36. As in

the refractive version, the radius of the nulling mirror RN and its conjugates l and

l0 are chosen to balance the third-order aberration of the normals to the conicoid

of radius Rc and the conic constant K. The power of the field lens is then
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varied to minimize the high-order aberration. The relations to be satisfied are as

follows:

RN ¼ � 8KRc

ðm2 � 1Þ2
ð12:22Þ

l ¼ ð1� mÞRc

2
ð12:23Þ

m ¼ l

l0
¼ � 2Zc

ZN
ð12:24Þ

where 2Zc and 2ZN are the f numbers of the beam at the center of curvature of the

conicoid and at the retroreflected image, respectively.

The ratio of the diameter of the conicoid Dc to that of the null mirror DN can be

computed from the relation

Dc

DN

¼ ðm2 � 1Þ2
4Kðm� 1Þ ð12:25Þ

Some values of the ratio of the diameter of a paraboloid to that of a single mirror

compensator, computed from Eq. (l2.25), are listed in Table 12.2. Diameter ratios of

more than 10 require values of�m greater than 4. A practical limit on the value of m is

set by the resultant value of hN, the f number at the retroreflected image, which is

inversely proportional to m [Eq. (12.24)]. If the compensated wavefront is to be

examined interferometricallywithout transfer optics, the interferometermust be capable

of handling f=ZN beam. The single-mirror compensator thus requires large compensat-

ingmirrors if Zc, the f number of the conicoidalmirror, is small. The permissible residual

aberration of the compensated image alsomust be taken into account, and in some cases

this results in a value of Ac greater than that set by the lower limit on ZN .

l

l'

To and from
surface
under testField

lens

Testing
point

Compensating
mirror

FIGURE 12.36. Single mirror compensator with field lens.
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For example, a one-mirror compensator was designed for a 3-m f=2.45 hyperbo-

loidal primary mirror of a proposed Ritchey–Chrétien system. The conic constant of

the mirror was �1:003313. A value of �4:9 was chosen for m, resulting in an f=1
beam at the retroreflected image. The third-order mirror specifications computed

from Eqs. (12.18) to (12.21) and the specifications of the optimized design are shown

in Table 12.3. The focal length of the field lens that minimizes the high-order

aberration is 55.4849 cm. The computed RMS OPD of the retroreflected wavefront

is 0.009 l at l ¼ 632:8 nm. If a smaller residual had been required, a smaller value of

�m would have been chosen for the compensator. The resulting compensator mirror

would then have been larger, and the convergence angle of the retroreflected beam

would have been smaller.

12.9.1. Reflective Offner Compensator

Although the single-mirror compensator of Figure 12.36 is optically the least

complicated of the reflecting compensators, practical implementations require an

additional element, such as the folding flat of Figure 12.37, to make the retroreflected

image accessible. The quality of the flat must, of course, be comparable to that of the

spherical mirror.

The same number of accurately fabricated optical components is required in the

two-mirror compensator shown in Figure 12.38. The in-line arrangement facilitates

accurate alignment and provides an accessible retroreflected image.

With the two-mirror compensator, the central portion of the aspheric mirror

cannot be observed because of the holes in the nulling mirrors. These null correctors

should be designed so that the obscured portion of the aspheric mirror in the null test

is no larger than the obscured portion of the aspheric mirror in actual use.

The third-order design of a two-mirror compensator is affected by the value of the

obscuration ratio at each of the mirrors. The following equations apply when the

TABLE 12.2. Diameter ratio and magnification,

single mirror compensator.

Magnification Diameter ratio

�3 4

�3.5 7

�4 11.25

�4.5 16.8

�5 24

TABLE 12.3. One-mirror null corrector for 3-m f=2.45 hyperboloid.

Type of design m RN l AN ZN

Third order �4.9 22.2849 65.7404 13.42 1.000

Optimized �4.7 22.2849 65.7518 13.5 1.044
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obscuration ratio r is the same at the two mirrors. As in the case of the single-mirror

null corrector, the parameters and apertures are functions of a magnification. For the

two-mirror compensator, the magnification is that from the intermediate image to the

image at the center of curvature of the aspheric mirror, defined by the relation

m1 ¼ � 2Zc
Z1

ð12:26Þ

where Z1 is the f number at the intermediate image. The ratios of the diameters of the

apertures of the two nulling mirrors D1 and D2 to the aperture of the conicoid Dc

when the third-order aberration of the conicoid normals is compensated for by that of

the null corrector can be computed from the following relations:

Dc

D1

¼ 1

4K
ðm1 þ 1Þ

�
m2

1ð1þ 2r � r2Þ � 2m1ð1� rÞ � 2
�

ð12:27Þ

Dc

D2

¼ Dc

D1

m1r � 1

m1 þ 1
ð12:28Þ
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FIGURE 12.37. Practical implementation of single-mirror compensator.
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FIGURE 12.38. Two-mirror compensator with field lens.
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The other relations required for the third-order design are as follows:

R1 ¼
4D1Zc
1� m1

ð12:29Þ

R2 ¼
4D2Zc

m1ð2� rÞ þ 1
ð12:30Þ

l1 ¼ 2ZcD1 ð12:31Þ

d ¼ Z1ðD1 þ D2Þ ð12:32Þ

ZN ¼ � 2Zc
m1ð1� rÞ þ 1

ð12:33Þ

where l1 is the distance from the center of curvature of the conicoid to the field mirror,

d is the distance between the two mirrors, and ZN is the f number at the retroreflected

image.

The way in which the apertures of the two mirrors and the f number of the

retroreflected image vary as a function of the magnification m for two values of the

obscuration ratio can be seen in Table 12.3. Comparison with Table 12.1 shows that

for a given magnification, the larger mirror of the two-mirror compensator is

approximately of the same size as the single-mirror compensator. However, the

difference between the magnitudes of m1 and 2ZcZN in Table 12.3 indicates that,

for a given maximum size compensator element, the convergence angle at the

retroreflected image with the two-mirror compensator is approximately one half of

that with a single-mirror compensator.

The degree of compensation attainable with the two-mirror compensator is

extremely high as shown by the following example. A compensator was required

for a 3-m f=1.5 paraboloid that was to be used with an obscuration ratio of 0.3. A

spherical wave interferometer that could accommodate convergence angles up to

f=1.2 was available. The values r ¼ 0:25 and m1 ¼ �4 were chosen to give the safe

value ZN ¼ 1:5. Equations (12.27) and (12.28) led to the acceptable values

A1 ¼ 14:82 cm and A2 ¼ 27:22 cm. The parameters obtained from Eqs. (12.29) to

(12.33) are listed as third-order design parameters in Table 12.4. The field lens

required to optimize this compensator is a meniscus lens of refractive index 1.519,

thickness 0.5 cm, and radii 14.619 cm (convex) and 71.656 cm (concave), with the

convex surface facing the paraboloid. With this field lens and the slight modifications

of the other parameters shown in Table 12.4, the RMS OPD of the retroreflected

wavefront is 0.009 l at l ¼ 632:8 nm. Had a smaller residual aberration been

TABLE 12.4. Two-mirror null corrector for 3-m f=1.5 paraboloid.

Type of design m1 R1 R2 l1 d A2 ZN

Third order � 4.00 17.7778 22.2222 44.4444 27.7778 22.22 1.50

Optimized � 3.99 17.7776 22.2227 44.3868 27.7789 21.34 1.52
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required, the value of m1 would have had to be reduced. This would have resulted in

larger values of A1 , A2, and ZN.

12.9.2. Reflective Adaptive Compensator

Another interesting reflective compensator has been described by Tiziani et al.

(2001). They use an optical configuration where the reflective compensator is an

adaptive mirror whose shape can be changed as desired by controlling it with a

computer. The system in Figure 12.39 adds the reflected wavefront from the aspheric

surface under test to the shape of the adaptive mirror. The light beam is reflected

twice on the adaptivemirror, so that its shape is added twice to the aspheric wavefront

from the system under test. The flexible mirror is an aluminum coated nitride

membrane that is attracted electrostatically by electrodes on the back of the mem-

brane. This membrane can be deflected up to about 20 mm PV, which corresponds to

about 80 wavelengths due to the double reflection on this membrane.

12.10. OTHER COMPENSATORS FOR CONCAVE CONICOIDS

The success of the simple small compensators described in the preceding sections

results from a fortunate combination of conditions.

Focusing

axis at 45°
1/4 phase plate

lens

P polarized light
from interferometer

ASPHERIC SURFACE
UNDER TEST

S Polarized
light

Adaptive
mirror

Polarizing
beam splitter

FIGURE 12.39. Aspheric compensator using an adaptive mirror.
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1. The concave aspheric mirrors by themselves transform the divergent wave

from a point source to a convergent one though aberrated wave.

2. The greater part of the aberration introduced by the aspheric is of low order.

3. The sense of the aberration is opposite to that introduced by a concavemirror or

a simple convex lens.

The first condition must be met if the null corrector is to be smaller than the

aspheric mirror being tested. The second condition makes it possible to get good

compensation with a single element of convenient form. The third condition makes

it possible to use a simple relay lens that provides a position for a field lens.

Concave spherical mirrors can be used for compensators only when this condition

is met.

A small null corrector of the same general form can be designed for any

concave mirror whose surface is generated by rotating a conic section about its

major axis.

Concave prolate spheroids do not require compensators since their geometrical

foci are accessible and, as is the case with all conicoids that have geometrical foci,

their imagery is stigmatic when these are the conjugates. However, when one of the

geometrical foci is at a large distance from the mirror, it may be more convenient to

perform a null test at the center of curvature with one of the null correctors described

in Sections 12.2–12.4.

An oblate spheroid, such as the one that is used as the primary mirror of aWright–

Schmidt system, does not satisfy condition 3. Nevertheless, a null test of the modified

Dall type can be obtained by substituting a plano-concave lens for the Dall plano-

convex lens (Figure 12.40). Since the curved surface of this lens faces the oblate

spheroid, the third-order solution is formally the same as that for the Offner plano-

convex compensator. The parameters and conjugates of the plano-convex lens

required to balance the third-order aberration of the normals to the prolate spheroid

can thus be obtained by the use of Eq. (12.20). The quantity m is the ratio l0/l. In this
case it is positive and has a value less than 1. The effect of the choice ofm on the ratio

of the size of the oblate spheroid to that of the null corrector is shown in Table 12.5;

the values were computed for N ¼ 1:52 and K ¼ 1. The implementation of the value

C
Dall
compensator

Light source
and

l

l'

observer

for oblate spheroids

FIGURE 12.40. Modified Dall compensator for oblate spheroids.
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m ¼ 0 requires the addition of a collimator to put the source optically at an infinite

conjugate. The resulting arrangement is shown in Figure 12.41.

A null corrector of this type was designed for a 0.6-m aperture f /5 oblate spheroid

with conic constant K ¼ 1. The departure of this aspheric from the base sphere is

equal in magnitude but opposite in sense to that of the paraboloid used as an example

in Section 12.2. The values n ¼ 1:52 and m ¼ 0 were chosen. The focal length of

the planoconcave lens, obtained from Eq. (12.20), is 70.2216 m. The RMS OPD

of the retroreflected plane wave is 0.033 l at l ¼ 632:8 nm. The diameter of the null

lens is 0.7 cm.

Holleran (1963, 1964) described a null test for concave conicoids that has the

virtue that no auxiliary optical elements need be manufactured. The surface to be

tested is made level and is immersed in a liquid that forms a planoconvex lens in

contact with the surface under test. In the simplest form of the test, a pinhole light

source and knife edge are placed at a distance d above the plane surface of the liquid.

For liquid lens of thickness t and refractive index n,

d ¼ R

n
� t ð12:34Þ

where R is the vertex radius of curvature of the conicoid. The retroreflected image is

corrected for third-order spherical aberration if

n2 ¼ 1� KR

R� t
ð12:35Þ

where K is the conic constant of the mirror.

TABLE 12.5. Aperture of planoconcave null lens

compensator for oblate spheroid (K ¼ 1; n ¼ 1:52).

m Diameter asphere/Diameter compensator

0.0 8.54

0.1 7.13

0.2 5.88

0.3 4.77

0.4 3.8

C
Dall
compensator
for oblate spheroids
with collimator

Light source
and
observer

FIGURE 12.41. Compensator for oblate spheroid used with a collimator.
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The accuracy of the test is very good for shallow curves of moderate aperture. The

peak-to-valley departure �W of the surface from the desired conicoid when

Eq. (12.35) is satisfied and t � R is

�W � KR

41:5Z6
waves ð12:36Þ

In Eq. (12.36), Z is the f number of the conicoidal mirror,R is its radius in millimeters,

and the wavelength is 632.8 nm. The peak-to-valley error of a 0.5-m-diameter f=3
paraboloid figured to give a perfect null by this test is 0.10 wave. Decreasing the f

number to 2.5 for a mirror having the same aperture increases the figure error to 0.25

wave. The error of an f=2.5 mirror reaches 0.10 wave for an aperture of 0.2 m.

The immersion test in this form can also be applied to convex aspherics by

observing them through a plane back surface. In this case the optical material

replaces the immersion liquid. Puryayev (1971) analyzed an extension of this method

in which an immersion fluid is placed above the plane surface. Since the liquid must

extend to the retro-reflected image, this extension is practical only for small elements.

Puryayev’s equations reduce to those of Holleran when the immersion fluid is air.

A related test for convex hyperboloids, described by Norman (1957), makes use of

the fact that a planoconvex lens forms a stigmatic image of a collimated source on its

axis if the convex surface is a conicoid with eccentricity equal to the refractive index

of the material of which the lens is made. The autocollimated image of a point source

at a distance of one focal length from the convex surface of lens and reflected from its

plane surface, or from a flat mirror parallel to its plane surface, can then be examined

to determine the figure of the convex surface. As in the Holleran and Puryayev tests,

the range of conicoids that can be tested by this method is limited by the range of

refractive indices available. The test can be applied to hyperboloids with magnifica-

tions between 3.5 and 5 when the range of glass indices is restricted to 1.5 to 1.8.

Holleran (1966) showed that a spherical back surface can provide a null test

compensator for a concave oblate spheroid when the latter is tested from the back,

through the spherical surface.

12.11. INTERFEROMETERS USING REAL HOLOGRAMS

Many different experimental setups can be used for the holographic testing of optical

elements. Because a hologram is simply an interferogram with a large tilt angle

between the reference and object wavefronts, holographic tests can be performed

either with standard interferometers or with setups having a larger angle between the

object and reference beams. Figures 12.42 and 12.43 show interferometers that can

be used with a hologram for testing of a concave mirror.

The hologram is made in a plane conjugate to the test mirror. Once the hologram is

made, it can be replaced in the same location and reconstructed by illuminating with

a planewave and by imaging onto a viewing screen.When the object beam is blocked

and the reference mirror is tilted so that the plane reference wave interferes with the
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first-order diffraction from the hologram, the wavefront due to the mirror will be

reconstructed. Because several diffraction orders are produced by the hologram, it is

usually necessary to select one of the diffraction orders using a spatial filter. The

imaging lens and spatial filter are necessary only for the reconstruction of the

hologram.

Holograms can be recorded on photographic plates, thermoplastic materials, or in

photorefractive crystals. Photographic plates provide the highest resolution; how-

ever, they require a lot of chemicals for processing and unless they are processed in

situ, they are hard to replace in the correct location for real-time techniques

(Biedermann, 1975). Thermoplastic materials provide up to 1000 lines/mm resolu-

tion and can be erased and reprocessed hundreds of times (Leung et al., 1979;

Friesem et al., 1980). They also have a very fast turnaround time. Photorefractive

crystals have a lot of potential as a high-resolution recording medium (Lam et al.,

1984; Uhrich and Hesselink 1988); however, the optical setup is more complex, and

getting a high-quality crystal is not as easy as getting other recording materials. A

very promising recording medium is the use of high-resolution detector arrays or

charge-coupled device (CCD) cameras to record a hologram directly.
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FIGURE 12.42. Twyman–Green interferometer with a holographic compensator.
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FIGURE 12.43. Mach–Zehnder interferometer with a holographic compensator.
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12.11.1. Holographic Wavefront Storage

Sometimes it is convenient to holographically store a wavefront produced by an

optical system and analyze the wavefront later without the test system present

(Hildebrand et al., 1967; Hansler, 1968).

Care must be taken to ensure that the reconstructed wavefront is identical to the

wavefront used to record the hologram. Errors are possible from differences between

the reconstructing geometry and the recording geometry, recording material defor-

mation, and aberrations introduced by the recording-material substrate. Errors

introduced because of the differences in the recording and reconstructing geometries

are greatly reduced if the reference wavefront is collimated and the object wavefront

is collimated as well as possible. Collimated wave fronts are particularly important

if the reconstruction wavelength is different from the recording wavelength.

Recording-material deformation can change the shape of the recorded interference

fringes and thereby change the shape of the reconstructed wavefront. It is possible to

keep the root-mean-square (rms) wavefront error less than l=40 by using Kodak

649F photographic plates (Wyant and Bennett 1972). Glass substrates used for

photographic plates generally show optical-thickness variations of at least one fringe

per inch. For wavefront storage, this magnitude of error is not acceptable. This

problem can be solved by either putting the hologram in a fluid gate or index

matching the two surfaces to good optical flats. Thickness variations can also be

minimized by sending both beams through the hologram to cancel the errors.

Stored holograms can be used to test for symmetry in optical components

(Greivenkamp, 1987). A hologram is made of the test surface, and then the test

surface is rotated with respect to the hologram. The fringes from the interference

between the stored wavefront and the wavefront produced by the rotated test surface

will correspond to symmetry deviations in the test surface. Care must be taken not

to translate the test surface while it is rotated because unwanted fringes will affect

the test.

12.11.2. Holographic Test Plate

If an ideal optical system is available, the wavefront produced by the system can be

stored holographically and used to test other optical systems. This is very similar to the

use of a test plate in the testing of optical components (Hansler, 1968; Pastor, 1969;

Snow and Vandewarker, 1970; Lurionov et al., 1972; Broder-Bursztyn and Malacara,

1975). After processing the hologram, it is placed in its original position and themaster

mirror is replaced with a test mirror. The wavefront stored in the hologram is

interferometrically compared with the wavefront produced by the mirror under test.

The secondary interference between the stored wavefront and the test wavefront

should be recorded in a plane conjugate to the exit pupil of the test surface. If the

hologram is made in a plane conjugate to the exit pupil of the mirror under test, the

amount of tilt in the resulting interferogram can be selected by simply changing the tilt

of the wavefront used in the hologram reconstruction process. If the hologram is not

made in a plane conjugate to the exit pupil of the test surface, tilting the reference beam
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not only adds tilt to the interferogram, it also causes a displacement between the image

of the exit pupil of the test surface and the exit pupil stored by the hologram.

The holographic test plate interferometer can also be thought of in terms of moiré

patterns (Pastor, 1969). Interference fringes, resulting from the wavefront stored in

the hologram and thewavefront coming from the optics under test, can be regarded as

the moiré pattern between the interference fringes recorded on the hologram plate

(formed by the wavefront produced by the master optics and a plane wave) and the

real-time interference fringes formed by the wavefront under test and a plane

wavefront. The contrast in this moiré pattern is increased with spatial filtering by

selecting only the wavefront produced by the mirror under test and the diffraction

order from the hologram, giving the stored wavefront produced by the master optics.

In addition to the error sources already mentioned, there can be error due to

improper positioning of the hologram in the interferometer. Any translation or

rotation of the hologram will introduce error. If the hologram is made conjugate to

the exit pupil of the master optical system, the exit pupil of the system under test must

coincide with the hologram. If the test wavefront in the hologram plane is described

by the function f(x, y), a displacement of the hologram by a distance �x in the x

direction produces an error

�fðx; yÞ � @fðx; yÞ
@x

�x ð12:37Þ

where @f=@x is the slope of the wavefront in the x direction. Similarly, for a

wavefront described by f(r,y), the rotational error �y is given by

�fðr; yÞ � @fðr; yÞ
@y

�y ð12:38Þ

Phase-shifting techniques can be used to measure the phase of the secondary

interference fringes by placing a phase shifter in the reference beam of the inter-

ferometer and shifting the phase of the secondary interference fringes (Hariharan et al.,

1982; Hariharan, 1985). Because the secondary interference fringe spacing corre-

sponds to one wavelength of OPD between the stored wavefront and the live test

surface wavefront, a p=2 phase shift of the fringes for the test surface will cause a p=2
phase shift in the secondary interference fringes. The calculated phase surface will

correspond to the difference between themaster optical component and the test optical

component. To ensure that the fringes actually correspond to the test surface, the

hologrammust be made in the image plane of the test surface, and the hologram plane

must be imaged onto the detector array when the phase measurement is performed.

12.12. INTERFEROMETERS USING SYNTHETIC HOLOGRAMS

When master optics are not available to make a real hologram, a computer generated

(or synthetic) hologram (CGH) can be made (Pastor, 1969; Lee, 1970, 1974;
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MacGovern andWyant, 1971;Wyant and Bennett, 1972; Schwider and Burow, 1976;

Caulfield et al., 1981; Ono and Wyant, 1984; Dörband and Tiziani, 1985; Beyerlein

et al., 2002; Reichelt et al., 2004; Pruss et al., 2004). A CGH is a binary representa-

tion of the actual interferogram (hologram) that would be obtained if the ideal

wavefront from the test system is interfered with a tilted plane wavefront. The test

setup is the same as that for a real hologram used as a holographic test plate. CGHs

are an alternative to null optics when testing aspheric optical components.

12.12.1. Fabrication of Computer-Generated Holograms (CGHs)

To make a CGH, the test setup must be ray traced to obtain the fringes in the

hologram plane that result from the interference of the tilted plane wave and the

wavefront that would be obtained if the mirror under test were perfect. Just like a real

hologram used as a test plate, the CGH should be made in a plane conjugate to the

exit pupil of the system under test. These fringes are then represented as a binary

grating, commonly having a 50% duty cycle. Methods for calculating these fringes

are outlined by Wyant and Bennett (1972), Lee (1974), and Arnold (1989). A

procedure that encodes the fringes as a series of exposure rectangles is discussed

by Leung et al., (1980). The process of breaking fringes into rectangles or polygons

reduces the amount of computer storage necessary and the time needed to plot the

CGH. The procedure used to make a CGH can be employed for any general optical

system as long as all the optics in the interferometer are known and can be ray traced.

A typical CGH is shown in Figure 12.44. An example of an interferometer used to

test a steep aspheric optical element is shown in Figure 12.45. If the deviation of the

test surface from a sphere is substantial, the marginal rays (not the paraxial rays) will

follow a different path back through the divergent lens after they have reflected off

the test surface. When the surface under test is properly imaged at the observation

FIGURE 12.44. Computer generated hologram.
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plane, the marginal rays will arrive at the observation plane at the same point where

the corresponding ray following the path through the reference mirror arrives, as

when there is no aspherical deformation, even if the path followed by the ray is

different. By Fermat’s principle, the optical path from any point on the surface under

test to the observation plane is the same for all possible paths, automatically

correcting the error. In conclusion, when there is no proper imaging of the surface

being tested over the detector, there will be an additional aberration added to the final

interferogram. However, in this case, when the entire system is ray traced, the

hologram can be designed to correct these extra aberrations if a null test is performed.

Another important consideration is that the test element may deviate the rays so

much that the light reflected from the test surface will not get back through the

interferometer. In this case, a partial null lens must be used to ensure that light will

get back through the system. This is discussed in more detail in the section on the

combination of CGHs with null optics.

Once the fringes are calculated, they are either plotted directly on a holographic

substrate, or plotted and photographically reduced onto a holographic substrate. The

techniques of plotting have been substantially improved over the years. Early work

utilized pen plotters to make an enlarged version of the hologram that was then

photographically reduced to the appropriate size (MacGovern and Wyant, 1971;

Wyant and Bennett, 1972; Wyant and O’Neill, 1974). The large format enabled

a high-resolution CGH to be formed. However, problems due to plotter irregularities

such as line thickness, pen quality, plotter distortion, and quantization caused errors

in the reconstructed wavefront. Nonlinearities inherent in the photographic process

and distortion in the reduction optics caused further degradation. With the advent

of laser-beam recorders, resolution improved due to machine speed and an increased

number of distortion-free recording points (Wyant et al., 1974). The most recent

advances in the recording of CGHs have been made using the electron beam (e-beam)

recorders used for producingmasks in the semiconductor industry (Emmel andLeung,

1979; Leung et al., 1980; Arnold, 1989). These machines write onto photoresist

deposited on an optical quality glass plate and currently produce the highest quality
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FIGURE 12.45. Aspheric test surface in interferometer showing rays not following same path after

reflection off the test surface.
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CGHs. Patterns with as many as 108 data points can be produced in a hologram of the

desired size. Typical e-beam recorders will write a 1-mm area with a resolution of

0.25 mm. Large patterns are generated by stitching a number of 1-mm scans together.

Errors in this technique are due to aberrations in the electron optics, beam drift,

instabilities in the controlling electronics, and positioning of the stepper stage. For in-

line holograms a thermochemical method with selective oxidation of a Cr coated

substrate has been used by Burge et al. (1994). Then, a special writing machine with a

rotary air-bearing spindle rotates the substrate to selectively oxidize some rings with

an Arþ laser. After writing the pattern, the substrate with its coating is immersed in a

liquid that removes all non oxidized Cr.

Many of the errors in CGHs are reproducible and can be compensated for in the

software controlling the recorder (Chang and Burge 1999 and Arnold and Kestner

1995). Plotter errors can be evaluated by generating a hologram that is composed of

straight lines in orthogonal directions forming a grid (Wyant et al., 1974). This test

hologram is then illuminated with two plane waves as shown in Figure 12.46 to

interfere the þN and �N orders. Deviations of the fringes from straight lines will

correspond to errors in the plotting process. The resulting aberration in the inter-

ferogram is 2N times that of the first order.

12.12.2. Using a CGH in an Interferometer

ACGH test is performed by interfering the test wavefront with a reference wavefront

stored in the hologram. This entails overlapping the zero-order test beam and the

first-order reference beam form the hologram in the Fourier plane of the hologram.

The test can also be performed by interfering the minus first-order test beam with the

zero-order reference beam to compare the two plane waves instead of the two

aspheric wavefronts. When the test wavefront departs from the reference wavefront,

fringes corresponding to the difference between thewavefronts appear. In the Fourier

plane of the hologram, the zero- and first-order diffracted spots of the reference

wavefront will overlap the minus first- and zero-order diffracted spots of the test

wavefront when the interferometer is correctly aligned. Both outputs yield the same

interferogram. Spatial filtering can be used to improve the fringe contrast if the tilt of

the plane reference wavefront used for the hologram is large enough.

The CGH compensator can be used off axis as well as in line, with different

advantages and disadvantages, as we will show in the next sections.

Plane
waves

CGH
Spatial
filter

Observing
screen

+N order beam 1 &
–N order beam 2

FIGURE 12.46. Test setup with
 N orders of hologram interfering to test the quality of a CGH plotter.
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Also, the position where the CGH is located can be different. There are two

possibilities, one is to place the hologram in the testing space where only the

wavefront under test passes through the hologram. A second possibility is to place

it in the observation space, where both interfering wavefronts pass through the

hologram. Let us analyze these two cases with some detail. A CGH is sensitive to

the same errors as real holograms. Because of this, the CGH should be placed in the

interferometer, so that thickness variations in the hologram substrate have no effect

on the results. The importance of this will depend on where the CGH is located.

(a) If the hologram is placed in the observation space, both the reference

wavefront and the wavefront under test pass through the hologram. Each wavefront

generates its own diffracted wavefronts. Proper spatial filtering should be performed

so that the interference pattern is generated with the diffracted reference wavefront

(aspheric) and the wavefront under test or with the nondiffracted reference wavefront

(flat) and the compensated wavefront under test (nearly plane). Since the CGH is

traversed by both interfering wavefronts, any small imperfection in the glass plate of

the CGH is unimportant.

In this case, the superposition of the hologram and the interference pattern can be

considered as a moiré pattern. If this pattern is spatially filtered, the interferogram

representing the wavefront deviations with respect to the aspheric surface (not with

respect to a plane) is obtained. If desired, this procedure can even be carried out by

the superposition of two transparencies of the interferogram and the hologram, as

illustrated in Figure 12.47.

(b) If the hologram is placed in the interferometer test space only the wavefront

under test will pass through the hologram, but it will pass twice through it. Let us

represent the diffracted beams after the first pass by their order of diffraction number

(. . .� 2, �1, 0, 1, 2 . . .). Since all these beams come back to the hologram after

reflection on the aspheric surface under test, they can now be represented by a pair of

numbers, the first one being the order of diffraction on the first pass and the second

one the order of diffraction on the second pass. These beams are ordered as follows:

ð�1;�1Þ ð�1; 0Þ ð�1; 1Þ
ð0;�1Þ ð0; 0Þ ð0; 1Þ

ð1;�1Þ ð1; 0Þ ð1; 1Þ

Each column here corresponds to a different diffracted angle. Proper spatial

filtering should then be performed to isolate and observe only the desired beams,

for example (1, 0) with (0, �1) or (0, 1) with (1, 0). Since only the wavefront under

test passes through the hologram, the CGH must be made in a good glass plate, with

flat faces and homogeneous refractive index, otherwise its aberrations will be added

to the diffracted wavefronts.

In addition to the error sources associated with a real hologram, a CGH has

additional error sources due to plotter distortion, incorrect hologram size, and

photoreduction distortion if the hologram is photographically reduced in size. These
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errors are proportional to the maximum slope of the departure of the test wavefront

from a spherical or plane wavefront. These errors can be minimized when the test

wavefront is calculated relative to the spherical wavefront, which minimizes the

slope of the test wavefront departure from a spherical wavefront. Errors due to

photographic reduction can be eliminated by writing a hologram of the correct size

directly onto a glass substrate using an e-beam recorder.

One source of error is incorrect hologram size. If the aberrated test wavefront in

the plane of the hologram is given by f(r, y), a hologram of incorrect size will be

given by f(r=M,y), where M is a magnification factor. The error due to incorrect

hologram size will be given by the difference f(r=M, y)� f(r, y) and can be written

in terms of a Taylor expansion as

f

�
r

M
; y

�

� fðr; yÞ ¼ f r þ 1

M
� 1

� �

r; y

	 


� fðr; yÞ

¼ @fðr; yÞ
@r

	 

1

M
� 1

� �

r þ . . .:
ð12:39Þ

FIGURE12.47. Moiré analysis of an interferogramwith a large tilt (linear carrier). (a) Interferogram tobe

analyzed, (b) ideal computer generated interferogram, (c) superposition of the interferogramwith the ideal

reference interferogram and, (d) low pass filtered interferogram combination.
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where terms higher than first order can be neglected ifM is sufficiently close to 1 and

a small region is examined. Note that this error is similar to a radial shear. When the

CGH is plotted, alignment aids, which can help in obtaining the proper hologram

size, must be drawn on the hologram plot.

The largest source of error is distortion in the hologram plotter (Wyant et al.,

1974). The CGH wavefront accuracy depends on the number of plotter resolution

points and the maximum slope of the aspheric wavefront being tested. Assuming that

the plotter has P� P resolution points, there are P=2 resolution points across the

radius of the hologram. Since the maximum error in plotting any point is half a

resolution unit, any portion of each line making up the hologram can be displaced by

a distance equal to 1=P. If the maximum difference between the slope of the test

wavefront and the tilted plane wave is 4Swaves per hologram radius, the phase of the

plane wave at the hologram lines can differ from that of the required wavefront at the

same lines by as much as 4S=P waves (1980). The maximum error in the recon-

structed wavefront will be 4S=P waves, and since the final interferogram is recorded

in the image plane of the hologram, the quantization due to the finite number of

resolution points causes a peak error in the final interferogram of 4S=P waves. It is

important to note that the peak wavefront error of 4S=P waves is really a worst-case

situation; it occurs only if, in the region of the hologram where the slope difference is

maximum, the plotter distortion is also a maximum. This systematic error due to

plotter distortion can be calibrated when the plotter distortion is known (Wyant et al.,

1974). When the maximum plotting error is equal to one-half of the resolution spot

size, the sensitivity of the CGH test �W is given by 4S=P, where P is the number of

distortion-free plotter points. Using an e-beam recorder with 0.25-mm resolution over

a l0-mm-diameter hologramwould enable the measurement of an aspheric wavefront

with a maximum wavefront slope of 1000 waves per radius to be tested to a

sensitivity of l/10 (assuming a perfect plotter).

12.12.3. Off-Axis CGH Aspheric Compensator

To ensure that there is no overlapping of the first and second orders in the Fourier

plane (where the spatial filter is located), the tilt angle of the reference plane wave

needs to be greater than three times the maximum wavefront slope of the aberrated

wave. (Note that there are no even orders for a grating with a 50% duty cycle.) A

photograph of the diffracted orders from the hologram in the Fourier plane is shown

in Figure 12.48, and a diagram detailing the necessary separations of the orders in the

Fourier plane is shown in Figure 12.49. The bandwidth of the Nth order is given by

2NS, where S is the maximum wavefront slope in waves per radius of the wavefront

to be reconstructed. This bandwidth (diameter of the diffracted beam in the Fourier

plane) determines the size of the spatial-filtering aperture. By moving the spatial-

filtering aperture, the output of the interferometer can either be the interference of

two plane waves or two aspheric waves.

If the hologram is recorded on a very high-quality optical flat or used in reflection,

it can be placed in a single beam of the interferometer, as illustrated in Figure 12.50

using a Fizeau configuration. As we mentioned before, with a pinhole we can isolate
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FIGURE 12.48. Diffracted order in Fourier plane of CGH.

3S

4S
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FIGURE 12.49. Diffracted orders in Fourier plane of CGH.
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FIGURE 12.50. Fizeau interferometer utilizing a CGH in one beam.
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either the diffracted orders (�1, 0) with (0, �1) or the orders (0,1) with (1,0). The

whole wavefront compensation is performed in only one of the two passes through

the CGH.

Figure 12.51 shows the results of measuring a l0-cm-diameter F=2 parabola using
a CGH generated with an e-beam recorder (Leung et al., 1980). The fringes obtained

in a Twyman–Green interferometer using a helium–neon source without the CGH

present are shown in Figure 12.51(a). After the CGH is placed in the interferometer, a

much less complicated interferogram is obtained as shown in Figure 12.51(b). The

CGH corrects for about 80 fringes of spherical aberration and makes the test much

easier to perform.

12.12.4. In-Line CGH Aspheric Compensator

In-line CGHs have the disadvantage with respect to off-axis CGHs that high-order

images cannot be completely separated. In this hologram, the separation is made

taking advantage that they are focused at different planes, but the isolation of the

desired first order cannot be complete. However, they have two great advantages.

First, that the alignment is much simpler and second, that since the lateral carrier is

not introduced, the degree of asphericity that can be measured is higher. In-line CGH

compensators have been described by Mercier et al., (1980), Fercher (1976), and

Tiziani et al. (2001). They can be used in a Twyman–Green or Fizeau interferometer,

as shown in Figure 12.50.

To avoid asymmetry, so that the paths in and out of the system formed by the CGH

and surface under test are the same, the beam to be isolated to produce the inter-

ference pattern with the reference beam is the (1, �1).

To test an aspheric convex surface, the arrangement shown in Figure 12.52 can be

used. However, to reduce the required size of the auxiliary reference concave surface,

the separation between the reference surface and the convex surface can be reduced

to a small distance, as suggested by Burge (1995), by engraving the hologram rings

on the concave reference surface, as illustrated in Figure 12.53. Notice that the light

rays arrive perpendicularly to the concave reference surface, and then, after diffrac-

tion, they become perpendicular to the surface under test. Thus, even if the reference

FIGURE12.51. Results of testing a 10-cmdiameterF/2 paraboloid (a) without and (b) with a CGHmade

using an e-beam recorder.
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surface and the surface under test are placed in contact at the vertex, they would not

have exactly the same curvature.

12.12.5. Combination of CGH with Null Optics

Although a CGH can be designed for any optical system, a point is reached where the

time and expense required tomake a CGH are unreasonable. Also, given enough time

and money, null optics, either reflective or refractive, can be designed and built to test

almost any arbitrarily complicated optical system.

It is possible to replace the complicated CGH or the complicated null optics

required to test complicated optical surfaces (notably aspherical surfaces) with a

combination of relatively simple null optics and a relatively simple CGH.

To illustrate the potential of the combined test, results for a CGH-null-lens test of

the primary mirror of an eccentric Cassegrain system with a departure of approxi-

mately 455 waves (at 514.5 nm) and a maximum slope of approximately 1500 waves

per radius are shown in Figure 12.54 (Wyant and O’Neill, 1974). The mirror was a
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FIGURE 12.52. Testing a convex aspheric surface with an in-line CGH compensator used in a Fizeau

interferometer.
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FIGURE 12.53. Testing a convex aspheric surface with a test plate with an in-line CGH compensator on

its concave surface.
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69-cm-diameter off-axis segment whose center lies 81 cm from the axis of symmetry

of the parent aspheric surface. The null optics was a Maksutov sphere (as illustrated

in Figure 12.55), which reduces the departure and slope of the aspheric wavefront

from 910 to 45 waves and from 3000 to 70 waves per radius, respectively. A

hologram was then used to remove the remaining asphericity.

Figure 12.55(a) shows interferograms obtained using the CGH-Maksutov test of

the mirror under test. Figure 12.55(b) shows the results when the same test was

performed using a rather expensive refractive null lens. When allowance is made for

the fact that the interferogram obtained with the null lens has much more distortion

than the CGH-Maksutov interferogram, and for the difference in sensitivity

(l ¼ 632:8 nm for the null lens test and 514.5 nm for the CGH-Maksutov test),

the results for the two tests are seen to be very similar. The ‘‘hills’’ and ‘‘valleys’’ on

the mirror surface appear the same for both tests, as expected. The peak-to-peak

surface error measured using the null lens was 0.46 waves (l ¼ 632:8 nm), while for

the CGH-Maksutov test it was 0.39 waves (514.5 nm). The rms surface error

measured was 0.06 waves (632.8 nm) for the null lens, while the CGH-Maksutov

test gave 0.07 waves (l ¼ 514:5 nm). These results certainly demonstrate that

expensive null optics can be replaced by a combination of relatively inexpensive

null optics and a CGH.

FIGURE 12.54. Setup to test the primary mirror of a Cassegrain telescope using a Maksutov sphere as a

partial null with a CGH.
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The difficult problem of testing aspheric surfaces, which are becoming increas-

ingly popular in optical design, is made easier by the use of CGHs. The main problem

with testing aspheric optical elements is reducing the aberration sufficiently to ensure

that light gets back through the interferometer. Combinations of simple null optics

with a CGH to perform a test enable the measurement of almost any optical surface.

The making and use of a CGH are analogous to using an interferometer setup that

yields a large number of interference fringes and measuring the interferogram at a

large number of data points. Difficulties involved in recording and analyzing a high-

density interferogram and making a CGH are very similar. In both cases, a large

number of data points are necessary, and the interferometer must be ray traced so that

the aberrations due to the interferometer are well known. The advantage of the CGH

technique is that once the CGH is made, it can be used for testing a single piece of

optics many times or for testing several identical optical components (Greivenkamp,

1987). In addition, it is much easier for an optician to work with a null setup.

12.13. ASPHERIC TESTING WITH TWO-WAVELENGTH

HOLOGRAPHY

The surface under test is often not known close enough to perform a null test. Even if

a null test is attempted, the resulting interferogram may contain too many fringes to

analyze. Since high accuracy may not be needed, a longer wavelength light source

could be used in the interferometer to reduce the number of fringes. Unfortunately, a

long wavelength light source creates problems because film and detector arrays may

not be available to record the interferogram directly, and the inability to see the
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FIGURE 12.55. Results of testing using setup of Figure 12.55 (a) CGH-Maksutov test (l ¼ 514:5 nm)

and using null lens (l ¼ 632:8 nm). (FromWyant and O’Neill, 1974.)
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radiation causes considerable experimental difficulty. Two-wavelength and multiple-

wavelength techniques provide a means of synthesizing a long effective wavelength

using visible light to obtain an interferogram identical to the one that would be

obtained if a longer wavelength source were used as shown by several authors,

among others byWyant (1971); Wyant et al. (1984); Cheng andWyant (1984, 1985);

Creath et al. (1985); Creath and Wyant (1986); and Wyant and Creath (1989).

Two-wavelength holography is performed by first photographing the fringe

pattern obtained by testing an optical element using a wavelength l1 in an inter-

ferometer such as the interferometer shown in Figure 12.55. This photographic

recording of the fringe pattern (hologram) is then developed, replaced in the inter-

ferometer in the exact position it occupied during exposure, and illuminated with

the fringe pattern obtained by testing the optical element using a different wavelength

l2. The resulting two-wavelength fringes can either be thought of as the moiré

between the interference fringes stored in the hologram (recorded at l1 and replayed

at l2) and the live interference fringes (at l2), or as the secondary interference

between the test wavefront stored in the hologram and the live test wavefront. These

fringes are identical to those that would be obtained if the optical element was tested

using a long effective wavelength given by (Wyant, 1971)

le ¼
l1l2

jl1 � l2j
ð12:40Þ

Table 12.6 lists the values of le that can be obtained using various pairs of

wavelengths from an argon-ion and a helium–neon laser. By the use of a dye laser,

a large range of equivalent wavelengths can be obtained. Tunable helium–neon lasers

with four or five distinct wavelengths ranging from green to red are also available.

The contrast in the final interferogram can be increased by spatial filtering. If the

filtering is to be effective, the angle between the two interfering beams in the

interferometer must be such that only the object beam, not the reference beam,

passes through the spatial filter (aperture) shown in Figure 12.55. The spatially

filtered pattern yields the interference between the wavefront produced by illuminat-

ing (with wavelength l2) the hologram recorded at wavelength l1 and the wavefront

TABLE 12.6. Possible effective wavelengths in mm obtainable with argon–ion

and helium–neon lasers.

l in nm 459.7 476.5 488.0 496.5 501.7 514.5 632.8

459.7 — 11.73 9.95 5.89 5.24 4.16 1.66

476.5 11.73 — 20.22 11.83 9.49 6.45 1.93

488.0 9.95 20.22 — 28.50 17.87 9.47 2.13

496.5 5.89 11.83 28.50 — 47.90 14.19 2.30

501.7 5.24 9.49 17.87 47.90 — 20.16 2.42

514.5 4.16 6.45 9.47 14.19 20.16 — 2.75

632.8 1.66 1.93 2.13 2.30 2.42 2.75 —
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obtained from the optical element using wavelength l2. Since the two-wavelength

holography interferogram provides the difference between the two interfering beams

only in the plane of the hologram, the fringe pattern (hologram) must be recorded in

the plane conjugate to the test surface. The final photograph of the interferogram

should be recorded in the image plane of the hologram.

Figure 12.56(a) shows an interferogram of an optical element tested using a

wavelength of 488.0 nm. The other interferograms were obtained using two-

wavelength holography to test the same optical element. The interferograms in

Figures 12.56(b) to 12.56(e) were obtained by recording an interferogram (holo-

gram) using a wavelength of 514.5 nm and illuminating the recording with the fringe

pattern obtained using a wavelength of 476.5 nm for Figures 12.56(b,c) and of

488.9 nm for Figures 12.56(d,e). The interferograms were spatially filtered, and

the amount of tilt shown was adjusted in real time by changing the angle at which

the reference wavefront was incident on the hologram during the reconstruction. The

interferograms in Figures 12.56(f,g) were obtained by recording an interferogram

using a wavelength of 488.0 nm and illuminating this recording with the fringe

pattern obtained using a wavelength of 476.5 nm and of 496.5 nm, respectively.

In two-wavelength holography, the final interferogram gives the difference

between a fringe pattern recorded at one instant of time and a fringe pattern existing

at some later instant of time. If the two fringe patterns are different for reasons other

than wavelength change (e.g., air turbulence), incorrect results are obtained. This

means that if air turbulence causes a one-fringe change between the fringe pattern

obtained using l1 ¼ 488:0 nm and the fringe pattern obtained using l2 ¼ 514:5 nm,

the final interferogram will contain one fringe of error corresponding to 9.47 mm.

FIGURE 12.56. Interferograms of an optical element at a number of different effective wavelengths: (a)

l ¼ 488 nm, (b) le ¼ 6:45 mm, (c) le ¼ 6:45mm, (d) le ¼ 9:47 mm, (e) le ¼ 9:47 mm, (f) le ¼ 20:22mm,

(g) le ¼ 28:50 mm. (FromWyant, 1971.)
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The effect of air turbulence can be reduced by simultaneously recording the

interferograms resulting from the two wavelengths. If the recording process is

sufficiently nonlinear and the interferograms have sufficiently high contrast, the

interferogram obtained shows the moiré pattern described earlier. Generally, this

moiré pattern is too low in contrast to be useful. However, when this interferogram

(hologram) is illuminated with a plane wave, is spatially filtered, and is reimaged in

the manner shown in Figure 12.55, the result is a high-contrast interferogram,

identical to that obtained using the two-wavelength holography method described

earlier. Since both fringe patterns are recorded simultaneously, and air dispersion is

small, the sensitivity of the interferometer to air turbulence is essentially the same as

if a long wavelength light source were used in the interferometer.

More details on the applications of two-wavelength and multiple-wavelength

interferometry will be given in Chapter 15.

12.14. WAVEFRONT STITCHING

When the wavefront is strongly aspheric and even with zero tilt in the refer-

ence wavefront the minimum fringe spacing is too small, an option to measure the

wavefront is segmenting the complete aperture in small regions where the Nyquist

condition is not violated, so that the minimum fringe spacing is larger than twice the

pixel spacing. There are many approaches to dividing the aperture, but they can be

classified in three broad categories.

12.14.1. Annular Zones

One obvious procedure to is to use several different defocussing values, as

described by Liu et al. (1988) and by Melozzi et al. (1993). Then, for several

rings where the fringe spacing never exceeds, the Nyquist limit are obtained. This

is clearly illustrated in Figure 12.57 where three different defocusing values are

used. The useful ring where the fringes can be processed has a much larger contrast

than the rest.

FIGURE 12.57. Interferograms of an aspheric surface with three different defocusing values. The useful

ring where the fringes can be processed has a larger contrast than the rest.
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FIGURE 12.58. Schematics of the system to produce a dynamic tilt switching of the referencewavefront

in a Mach–Zehnder interferometer.
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FIGURE 12.59. Detail of the device used to the dynamic tilt switching.

FIGURE 12.60. Interferograms with three different tilts. The zone to be processed is that with the large

fringe spacing, not exceeding the Nyquist limit for the detector being used.
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12.14.2. Circular Zones

Another method to measure an aspherical surface by stitching is to divide the

aperture in many circular zones where the tilt as well as the defocusing is optimized

to maximize the minimum fringe spacing. For example, the evaluation of an aspheric

surface can be made with many small glass test plates, each one optimized for a

different region (Jensen et al., 1984).

This method is also useful when measuring large optical surfaces whose size is

much larger than the interferometer aperture (Sjödahl and Oreb, 2002), for example,

when testing an extremely large plane (Negro, 1984). Special techniques must be

used to insure the continuity of the different apertures, for example with some

overlapping and polynomial fitting of the apertures to join them.

12.14.3. Dynamic Tilt Switching

Still another approach, described by Liesener and Tiziani (2004) and Liesener et al.

(2004), is to change the tilt in a dynamic manner. Here, again, the useful zone has a

much better contrast than the undersampled zone, where the fringes cannot be

processed.

To change the tilt of the reference wavefront in a Twyman–Green interferometer

in a dynamic manner, the arrangement in Figure 12.58 is used, where the tilted

reference beam is generated by electronically selecting different point light sources

in a rectangular array. This array, called a phase shifting point source array consists

of a high resolution liquid crystal display, followed by a microlens array and an

array of pinholes in front of it, at the foci of the microlenses. When a small zone in

front of a pinhole is made transparent, all the rest are opaque. However, even if all

zones are made transparent, the light from a microlens enter a pinhole only if the

light passing thorough a diffraction grating generated on the desired zone diffracts

the light so that the first order diffracted light falls on the pinhole. This is illustrated

in Figure 12.59. Once a tilt has been selected, the interferograms to be processed are

like those in Figure 12.60.
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13

Zernike Polynomials and Wavefront Fitting

Virendra N. Mahajan

13.1. INTRODUCTION

Optical imaging systems generally have an axis of rotational symmetry, and their

pupil is circular or annular, as in the case of the systems with mirrors. The wave

aberration function of such systems can be expanded in a power series or a complete

set of orthogonal polynomials. Although introduced by Zernike (1934a,b) for testing

the figure of a circular mirror by a knife edge test or his phase contrast method,

Zernike circle polynomials were studied extensively by Nijboer (1943, 1947) and

Nienhuis and Nijboer (1949) to describe the diffraction theory of aberrations. We

show that these polynomials, which are orthogonal over a circular pupil, represent

balanced aberrations that yield minimum variance. For small aberrations, a minimum

of aberration variance yields a maximum of Strehl ratio (Mahajan, 1982, 1983,

1993). Relationships between the coefficients of a power-series expansion and those

of a Zernike-polynomial expansion are given. In particular, the conversion of Seidel

coefficients into Zernike coefficients or vice versa is discussed. Similarly, Zernike

annular polynomials representing balanced aberrations with minimum variance for

systems with annular pupils are discussed (Mahajan, 1981a,b; 1984; 1994). Balanced

aberrations that yield minimum ray aberration variance, often called the root mean

square spot radius, are different and are not discussed here (Braat, 1987). Finally, the

determination of Zernike coefficients from a discrete set of wavefront error data

obtained by ray tracing, as in optical design, or by measurement, as in optical testing,

is discussed, regardless of the shape of the pupil. The procedure described is thus

applicable, for example, to elliptical pupils obtained in off-axis imaging, odd-shaped

vignetted pupils, and hexagonal pupils of a segmented mirror with hexagonal

segments.
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13.2. ABERRATIONS OF A ROTATIONALLY SYMMETRIC SYSTEM

WITH A CIRCULAR PUPIL

13.2.1. Power Series Expansion

Consider a rotationally symmetric optical system imaging a point object P as

illustrated in Figure 13.1. The axis of the rotational symmetry, namely, the optical

axis, lies along the z axis. Let the position vector of the object point be ~h with

Cartesian coordinates ðxo; yoÞ in a plane orthogonal to the optical axis. Similarly, let~r
be the position vector of a pointQwith Cartesian coordinates ðx; yÞ in the plane of the
exit pupil of the system, which is also orthogonal to the optical axis. The origins of

ðxo; yoÞ and ðx; yÞ lie on the optical axis and we assume, for example, that the xo and x

axes are coplanar. The polar coordinates ðh; yoÞ and ðr; yÞ of the object and pupil

points are related to their Cartesian coordinates according to

ðxo; yoÞ ¼ hðcos yo; sin yoÞ; ð13:1aÞ

and

ðx; yÞ ¼ ðr cos y; sin yÞ: ð13:1bÞ

It should be evident from Figure 13.2 that we are using the standard convention for a

polar angle as the angle of a position vector with the x axis.

It is quite common in the optics literature to consider a point object lying along the

y axis.When using polar coordinates of a point in the plane of the exit pupil, the polar

angle y in that case is defined as the angle made by the position vector of the point

with the y axis, contrary to the standard convention as the angle with the x axis. We

choose a point object along the x axis so that, for example, coma aberration is

expressed as xðx2 þ y2Þ and not as yðx2 þ y2Þ. A positive value of our coma aberra-

tion yields a diffraction point spread function that is symmetric about the x axis (or

symmetric in y) with its peak and centroid shifted to positive values of x with respect

to the Gaussian image point.

The aberration function of a rotationally symmetric system depends on the four

coordinates ðxo; yoÞ and ðx; yÞ through three rotational invariants h2, r2, and

hr cosðy� yoÞ. Without loss of generality, we assume that the point object lies along

the xo axis, so that yo ¼ 0. A power-series expansion of the aberration function

Wðh0; r; yÞ in that case may be written (Mahajan, 2001) as

Wðh0; r; yÞ ¼
X1

l¼0

X1

p¼0

X1

m¼0

Clpmðh2Þlðr2Þpðhr cos yÞm

¼
X1

l¼0

X1

p¼0

X1

m¼0

Clpmh
2lþmr2pþm cosm y

¼
X1

l¼0

X1

n¼0

Xn

m¼0

2lþmanmh
02lþmrn cosm y ð13:2Þ
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where Clpm and 2lþmanm are the expansion coefficients; and l, p, and m are positive

integers, including zero, and n ¼ 2pþ m. Note that n� m � 0 and even. A term with

n ¼ 0 ¼ m, called piston aberration, is also included although such a term does not

constitute an aberration (since it corresponds to the chief ray, which by definition has

a zero aberration associated with it). The aberration function is defined with respect

to a Gaussian reference sphere of radius of curvature R that passes through the center

of the exit pupil and whose center of curvature lies at the Gaussian image point P0 at a
height h0 from the optical axis. The magnification of the image is M ¼ h0=h. The
wave aberration Wðx; yÞ of a ray passing through a point Qðx; yÞ in the plane of the

exit pupil represents the difference of its optical path length from that of the chief ray,

which passes through the centers of the entrance and exit pupils. It is positive or

negative depending on whether it travels a longer or a shorter optical path length

compared to the chief ray in reaching the reference sphere.

Q(r,q)

Q(x,y)

y

y

O x
x

q 

r

FIGURE 13.2. Cartesian and polar coordinates ðx; yÞ and ðr; yÞ, respectively, of a pupil point Q in the

plane of the exit pupil.

P

(–)h

h´

EnP ExPAs
P´

CR

CR
CR

OA

PO

P´O
O

FIGURE 13.1. Schematic diagram of an optical imaging system. A point object P at a height h from the

optical axisOA is imaged at P0 at a height h0. AS is the aperture stop, EnP is the entrance pupil, ExP is the exit
pupil, and CR is the chief ray.
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The order i of an aberration term, which is equal to its degree in the object and

pupil coordinates, is given by i ¼ 2lþ mþ n. The order i is always even, and the

number of terms Ni of this order is given by

Ni ¼ ðiþ 2Þðiþ 4Þ=8 ð13:3Þ

The aberration terms are referred to as the classical aberrations. Since the ray

aberration of a ray, representing the coordinates of the point of its intersection

with the image plane with respect to the Gaussian image point, is related to its

wave aberration by a spatial derivative according to (Welford, 1974; Malacara and

Malacara, 1994; Mouroulis and Macdonald, 1997; Mahajan, 2001)

ðxi; yiÞ ¼
R

ni

@W

@x
;
@W

@y

� �

ð13:4Þ

where Wðx; yÞ is the wave aberration in the Cartesian coordinates and ni is the

refractive index of the image space (which is generally unity in practice), its order is

one less than that of thewave aberration. For example, a fourth-order wave aberration

yields a third-order ray aberration.

If the aberration terms having different dependencies on the object coordinates but

the same dependence on pupil coordinates are combined so that there is only one

term for each pair of ðn;mÞ values, Eq. (13.2) for the power-series expansion of the

aberration function may be written as

Wðr; yÞ ¼
X1

n¼0

Xn

m¼0

anmr
n cosm y ð13:5aÞ

where r ¼ r=a is a radial variable normalized by the radius a of the exit pupil, and an

expansion coefficient

anm ¼ an
X1

l¼0

2lþmanmh
02lþm ð13:5bÞ

represents the peak value of an aberration term. The number of terms through a

certain order i in the reduced power-series expansion of the aberration function is

also given by Eq. (13.3). The terms of Eq. (13.2) through a certain order i correspond

to those terms of Eq. (13.4) for which nþ m � i. It should be evident that when a

system is tested interferometrically for its aberrations, the explicit dependence of an

aberration term on h0 is lost.

13.2.2. Primary or Seidel Aberration Function

The primary or Seidel aberration function corresponds to i ¼ 4 and consists of five

terms given by

WPðh0; r; yÞ ¼ 0a40r
4 þ 1a31h

0r3 cos yþ 2a22h
02r2 cos2 yþ 2a20h

02r2 þ 3a11h
03r cos y

ð13:6Þ
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where 0a40; 1a31; 2a22; 2a20, and 3a11 represent the coefficients of spherical aberra-

tion, coma, astigmatism, field curvature, and distortion. The primary aberration

function ðnþ m � 4Þ in the reduced form is given by

WPðr; yÞ ¼ a40r
4 þ a31r

3 cos yþ a22r
2 cos2 yþ a20r

2 þ a11r cos y ð13:7Þ

The primary aberrations are listed in Table 13.1. The distortion term has the same

dependence on the pupil coordinates ðr; yÞ as a wavefront tilt aberration, but its

coefficient a11 varies with h0 as h03. Similarly, the field curvature term has the same

dependence on the pupil coordinates as a wavefront defocus aberration, but its

coefficient a20 varies with h0 as h02.
To simplify the notation further, we write the primary aberration function in the

form

Wðr; y; h0Þ ¼ asr
4 þ ach

0r3 cos yþ aah
02r2 cos2 yþ adh

02r2 þ ath
03r cos y ð13:8Þ

or

Wðr; yÞ ¼ Asr
4 þ Acr

3 cos yþ Aar
2 cos2 yþ Adr

2 þ Atr cos y ð13:9Þ
It should be evident that an aberration coefficient Ai represents the peak value of the

corresponding aberration term. For spherical aberration As, the ray geometrical spot

radius in the Gaussian image plane is equal 8FAs and the corresponding longitudinal

spherical aberration is 16F2As, where F is the focal ratio of the image-forming light

cone (Mahajan, 2001). For coma Ac, the tangential and sagittal coma, representing

the length and half width of the coma spot pattern, are given by 6FAc and 2FAc,

respectively. For astigmatism Aa, the sagittal and tangential line images have a length

of 8FAa separated by a distance 8F2Aa, called the longitudinal astigmatism. The

effect of distortion is to displace the image along the axis by 2FAt.

The field curvature coefficient generally consists of two terms according to

Ad ¼
1

2
Aa þ Ap ð13:10Þ

where Ap is the coefficient of Petzval field curvature. Whereas the coefficient Aa of

astigmatism depends on the object location, Ap is independent of it. The astigmatism

TABLE 13.1 Primary aberrations in a simplified form; i ¼ 4,

nþm � 4.

Aberration term

n m anmr
n cosm y Aberration name

1 1 a11r cos y Distortion

2 0 a20r
2 Field curvature

2 2 a22r
2 cos2 y Astigmatism

3 1 a31r
3 cos y Coma

4 0 a40r
4 Spherical
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and field curvature terms can be combined as follows:

Waþdðr; yÞ ¼ Aar
2 cos2 yþ Adr

2

¼ 1

2
Aað3x2n þ y2nÞ þ Apðx2n þ y2nÞ

¼ Atax
2
n þ Asay

2
n ð13:11Þ

where ðxn; ynÞ ¼ ðx; yÞ=a are the normalized Cartesian coordinates, and

Ata ¼
3

2
Aa þ Ap

� �

¼ Aa þ Ad ð13:12aÞ

and

Asa ¼
1

2
Aa þ Ap

� �

¼ Ad ð13:12bÞ

are called the tangential and sagittal astigmatism wave aberrations, respectively. The

corresponding ray aberrations are given by 4FAta and 4FAsa. The sagittal, tangential,

and Petzval images lie at distances 8F2Ad, 8F
2ðAa þ AdÞ, and 8F2Ap, respectively,

from the Gaussian image point. The radii of curvature of the corresponding image

surfaces are given by Rs ¼ h02=16F2Ad, Rt ¼ h02=16F2ðAa þ AdÞ, and

Rp ¼ h02=16F2Ap. They are related to each other according to (Malacara and

Malacara, 1994; Mahajan, 2001)

3

Rs

� 1

Rt

¼ 2

Rp

ð13:13Þ

It has the consequence that the Petzval surface is three times as far from the tangential

surface as it is from the sagittal surface. Moreover, the sagittal surface always lies

between the tangential and Petzval surfaces. It should be evident that a field curvature

of Ap implies a spot radius of 4FAp in the Gaussian image plane or a point image on

the Petzval surface.

The aberration function can also be written in terms of Seidel sums for a point

object with maximum image height h0max according to (Welford, 1974; Malacara and

Malacara, 1994; Mouroulis and Macdonald, 1997; Mahajan, 2001)

Wðr; y; h0Þ ¼ 1

8
SIr

4 þ 1

2
SII

h0

h0max
r3 cos yþ 1

2
SIII

h0

h0max

� �2

r2 cos2 y

þ 1

4
ðSIII þ SIVÞ

h0

h0max

� �2

r2 þ 1

2
SV

h0

h0max

� �3

r cos y

ð13:14Þ

where SI , SII , SIII , SIV , and SV are called the Seidel sums for spherical aberration,

coma, astigmatism, Petzval field curvature (also called simply the Petzval sum), and
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distortion, respectively. For h0 ¼ h0max, the multiplication of a Seidel sum by F gives

the spot radius in the Gaussian image plane in the case of SI , sagittal coma in the case

of SII , radius of the circle of least confusion in the case of SIII (lying half way between

the sagittal and tangential line images), spot radius in the case of SIII þ SIV , and the

image displacement in the case of SV .

The various aberration coefficients are related to each other according to

As  a40 ¼ asa
4 ¼ 1

8
SI ; Ac  a31 ¼ ach

0a3 ¼ 1

2

h0

h0max

SII

Aa  a22  aah
02a2 ¼ 1

2

h0

h0max

� �2

SIII

Ad  a20 ¼ adh
02a2 ¼ 1

4

h0

h0max

� �2

ðSIII þ SIVÞ; At  a11 ¼ ath
03a ¼ 1

2

h0

h0max

� �3

SV

ð13:15Þ
New aberrations arise when the elements of a rotationally symmetric system are

misaligned with respect to each other. The misalignment of an element may be the

decentering of its vertex and/or tilting of its optical axis (Mahajan, 2001). A

misalignment introduces axial coma, which depends on the pupil coordinates as

does the primary coma. However, unlike primary coma, it does not depend on the

image height h0, that is, it is constant across the entire image of an extended object. A

misalignment also introduces astigmatism and field curvature which vary linearly

with h0, and distortion varies as h02. Thus, the degree or the power with which each

aberration term introduced by a misalignment varies with h0 is one less than that for

the corresponding terms for an aligned system. Accordingly, the degree of each new

aberration term in the image (or object) and pupil coordinates is three, that is, one less

than the nominal four for a primary aberration. When one or more surfaces of a

system is warped so that it is curvedmore in one plane than in an orthogonal plane, as

a toric surface in the case of an astigmatic human eye, it yields (axial) astigmatism

independent of h0, that is, even for an axial point object.

13.2.3. Secondary or Schwarzschild Aberration Function

The secondary or Schwarzschild aberration function corresponding to i ¼ 6 consists

of nine terms given by

WSðh0; r; yÞ ¼ 0a60r
6 þ 1a51h

0r5 cos yþ 2a42h
02r4 cos2 yþ 2a40h

02r4 þ 3a33h
03r3 cos3 y

þ 3a31h
03r3 cos yþ 4a22h

04r2 cos2 yþ 4a20h
04r2 þ 5a11h

05r cos y

ð13:16Þ

where the first four terms with l ¼ 0 are referred to as the secondary aberrations

[spherical, coma, astigmatism (also called wings), and arrows], and the last five are

called the lateral aberrations [spherical, coma, astigmatism, field curvature, and

distortion]. The lateral aberrations are similar to the primary aberrations except for

their dependence on the image height h0. The lateral spherical aberration 2a40h
02r4 is
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also called the oblique spherical aberration. The aberration function through the sixth

order ðnþ m � 6Þ according to Eq. (13.4) consists of nine terms given by

Wðr; yÞ ¼ a11r cos yþ a20r
2 þ a22r

2 cos2 yþ a31r
3 cos yþ a33r

3 cos3 y

þ a40r
4 þ a42r

4 cos2 yþ a51r
5 cos yþ a60r

6 ð13:17Þ

Since the dependence of a term on the image height h0 is contained in the coefficient
anm, the coefficients in Eqs. (13.7) and (13.17) that seem to be the same are actually

different from each other. For example, a11 is equal to 3a11h
03a in Eq. (13.7) but equal

to ð3a11h03 þ 5a11h
05Þa in Eq. (13.17). Similarly, the coefficient a40 now consists of

both the Seidel and lateral spherical aberrations.

13.2.4. Zernike Circle Polynomial Expansion

The aberration function of a system with a circular exit pupil can be expanded in

terms of a complete set of Zernike circle polynomials Rm
n ðrÞ cosmy that are ortho-

gonal over a unit circle in the form (Born and Wolf, 1999; Mahajan, 2004)

Wðr; yÞ ¼
X1

n¼0

Xn

m¼0

cnmZ
m
n ðr; yÞ ð13:18Þ

where cnm are the expansion coefficients that depend on the location of the point

object, n and m are positive integers including zero, n� m � 0 and even, and

Zm
n ðr; yÞ ¼ ½2ðnþ 1Þ=ð1þ dm0Þ�1=2Rm

n ðrÞ cosmy ð13:19aÞ

is an orthonormal Zernike polynomial. Here, dij is a Kronecker delta, and

Rm
n ðrÞ ¼

Xðn�mÞ=2

s¼0

ð�1Þsðn� sÞ!
s! nþm

2
� s

� �
! n�m

2
� s

� �
!
rn�2s ð13:19bÞ

is a polynomial of degree n in r containing terms in rn; rn�2; . . ., and rm. The radial
circle polynomials Rm

n ðrÞ are even or odd in r, depending on whether n (orm) is even
or odd. Also, Rn

nð1Þ ¼ 1, Rn
nðrÞ ¼ rn, and Rm

n ð0Þ ¼ dm0 for even n=2 and �dm0 for

odd n=2. The Zernike polynomials are orthogonal according to

1

p

Z1

0

Z2p

0

Zm
n ðr; yÞZm0

n0 ðr; yÞrdrdy ¼ dmm0dnn0 ð13:20aÞ

Z2p

0

cosmy cosm0y dy ¼ pð1þ dm0Þdmm0 ð13:20bÞ
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and

Z1

0

Rm
n ðrÞRm

n0ðrÞrdr ¼ 1

2ðnþ 1Þ dnn0 ð13:20cÞ

The Zernike expansion coefficients are given by

cnm ¼ 1

p

Z1

0

Z2p

0

Wðr; yÞZm
n ðr; yÞrdrdy ð13:21Þ

as may be seen by substituting Eq. (13.18) and utilizing the orthogonality relations.

The Zernike circle polynomials are unique in that they are the only polynomials in

two variables r and y, which (a) are orthogonal over a unit circle, (b) are invariant in

TABLE 13.2. Orthonormal Zernike circle polynomials and balanced aberrations.

Orthonormal Zernike polynomial

n m Zm
n ðr; yÞ ¼

2ðnþ1Þ
1þdm0

h i1=2
Rm
n ðrÞ cosmy Aberration Namea

0 0 1 Piston

1 1 2r cos y Distortion (tilt)

2 0
ffiffiffi
3

p
ð2r2 � 1Þ Field curvature (defocus)

2 2
ffiffiffi
6

p
r2 cos 2y Primary astigmatism

3 1
ffiffiffi
8

p
ð3r3 � 2rÞ cos y Primary coma

3 3
ffiffiffi
8

p
r3 cos 3y

4 0
ffiffiffi

5
p

ð6r4 � 6r2 þ 1Þ Primary spherical

4 2
ffiffiffiffiffi
10

p
ð4r4 � 3r2Þ cos 2y Secondary astigmatism

4 4
ffiffiffiffiffi
10

p
r4 cos 4y

5 1
ffiffiffiffiffi
12

p
ð10r5 � 12r3 þ 3rÞ cos y Secondary coma

5 3
ffiffiffiffiffi

12
p

ð5r5 � 4r3Þ cos 3y
5 5

ffiffiffiffiffi
12

p
r5cos5y

6 0
ffiffiffi
7

p
ð20r6 � 30r4 þ 12r2 � 1Þ Secondary spherical

6 2
ffiffiffiffiffi
14

p
ð15r6 � 20r4 þ 6r2Þ cos 2y Tertiary astigmatism

6 4
ffiffiffiffiffi
14

p
ð6r6 � 5r4Þ cos 4y

6 6
ffiffiffiffiffi
14

p
r6 cos 6y

7 1 4ð35r7 � 60r5 þ 30r3 � 4rÞ cos y Tertiary coma

7 3 4ð21r7 � 30r5 þ 10r3Þ cos 3y
7 5 4ð7r7 � 6r5Þcos5y
7 7 4r7cos7y

8 0 3ð70r8 � 140r6 þ 90r4 � 20r2 þ 1Þ Tertiary spherical

aThe words ‘‘orthonormal Zernike’’ are to be associated with these names, for example, orthonormal

Zernike primary astigmatism.
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form with respect to rotation of the coordinate axes about the origin, and (c) include a

polynomial for each permissible pair of n andm values (Bhatia andWolf, 1954; Born

and Wolf, 1999).

The orthonormal Zernike polynomials and the names associated with some of

them when identified with aberrations are listed in Table 13.2 for n � 8. The number

of Zernike (or orthogonal) aberration terms in the expansion of an aberration function

through a certain order n is given by

Nn ¼
n

2
þ 1

� �2

for even n ð13:22aÞ

¼ ðnþ 1Þðnþ 3Þ=4 for odd n ð13:22bÞ

Consider a typical Zernike aberration term in Eq. (13.18):

Wm
n ðr; yÞ ¼ cnmZ

m
n ðr; yÞ ð13:23Þ

Unless n ¼ m ¼ 0 its mean value is zero; i.e.,

Wm
n ðr; yÞ

� �
¼ 1

p

Z1

0

Z2p

0

Wm
n ðr; yÞrdrdy

¼ 0; n 6¼ 0;m 6¼ 0 ð13:24Þ

Form ¼ 0, this may be seen with the help of Eq. (13.20b) and the fact that R0
0ðrÞ ¼ 1

is a member of the polynomial set. The orthogonality Eq. (13.20c) yields the result

that the mean value of R0
nðrÞ is zero. The presence of the constant term in R0

nðrÞ
yields a zero mean value.Whenm 6¼ 0, the average value of cosmy is zero. Similarly,

the mean square value of the aberration is given by

h½Wm
n ðr; yÞ�

2i ¼ 1

p

Z1

0

Z2p

0

½Wm
n ðr; yÞ�

2
rdrdy ¼ c2nm ð13:25Þ

Hence, its variance is given by

s2nm ¼ hðWm
n Þ

2i � hWm
n i

2

¼ c2nm; n 6¼ 0; m 6¼ 0 ð13:26Þ

Thus, each expansion coefficient, with the exception of c00, represents the standard

deviation of the corresponding aberration term. The variance of the aberration

function is accordingly given by

s2W ¼ hW2ðr; yÞi � hWðr; yÞi2 ¼
X1

n¼1

Xn

m¼0

c2nm ð13:27Þ

Unless the mean value of the aberration hWi ¼ c00 ¼ 0, sW 6¼ WRMS, whereWRMS ¼
hW2i1=2 is the root-mean-square (rms) value of the aberration.

The utility of Zernike polynomials comes from the fact that they are orthogonal

over a circular pupil and represent balanced aberrations yielding minimum variance

(Born and Wolf, 1999; Mahajan, 2004). The advantage of using orthonormal
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polynomials is that the standard deviation of an aberration term cnmZ
m
n ðr; yÞ is simply

equal to the Zernike coefficient cnm. Moreover, because of the orthogonality, the

value of a coefficient cnm given by Eq. (13.21) is independent of the number of terms

used to expand an aberration function. Thus, the coefficients are not affected if one or

more orthogonal terms are added or subtracted from the aberration function. Accord-

ingly, the addition of tilt or defocus aberration to the aberration function of a system,

as is done often in optical testing, does not change the other aberration coefficients.

Figure 13.3 shows how a radial circle polynomial Rm
n ðrÞ varies with r. As stated

earlier, its value at the edge of the pupil r ¼ 1 is unity, that is, Rm
n ð1Þ ¼ 1. For defocus

and spherical aberrations, that is, for m ¼ 0, its value at the origin r ¼ 0 is 1 or �1

depending on whether n=2 is even or odd. Its value at the origin in the case of tilt,

coma, and astigmatism aberrations is zero.

13.2.5. Zernike Circle Polynomials as Balanced Aberrations

for Minimum Wave Aberration Variance

Zernike polynomials represent balanced aberrations such that an aberration of a

certain order in pupil coordinates in the power series expansion is balanced with

aberrations of lower or equal order to minimize its variance (Born and Wolf, 1999;

Mahajan, 2001; Mahajan, 2004). For example, consider spherical aberration Asr
4

combined with defocus aberration Bdr
2:

WðrÞ ¼ Asr
4 þ Bdr

2 ð13:28Þ

The defocus aberration is obtained by observing the image in a defocused image

plane. If R is the radius of curvature of the Gaussian reference sphere with respect to

which the aberration is defined, then an observation in a defocused image plane at a

distance z implies a defocus wave aberration of Bdr
2, where the defocus coefficient is

given by Bd ¼ ðz�1 � R�1Þa2=2. The variance of the combined aberration is given by

s2W ¼ 4A2
s

45
þ B2

d

12
þ AsBd

6
ð13:29Þ

Letting @s2W=@Bd ¼ 0, we find that the aberration variance is minimum when

Bd ¼ �As, that is, equal and opposite amount of defocus. The standard deviation

sW is reduced by a factor of 4 from 2As=3
ffiffiffi

5
p

to As=6
ffiffiffi

5
p

. The balanced aberration

Asðr4 � r2Þ is similar to the Zernike polynomial Z0
4 ðrÞ. The constant (independent of

r and y) or the piston term represented by 1 (and multiplied by
ffiffiffi

5
p

) in the expression

for Z0
4ðrÞ does not change the standard deviation of the balanced aberration. How-

ever, it makes the mean value of the aberration zero. Similarly, coma can be

combined with tilt

Wðr; yÞ ¼ Acr
3 cos yþ Btr cos y ð13:30Þ

where Bt is the coefficient of tilt wave aberration. The variance is minimized when

Bt ¼ �2Ac=3 and the standard deviation is reduced by a factor of 3 from Ac=2
ffiffiffi

2
p

to
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Ac=6
ffiffiffi

2
p

. It implies that the aberration variance is minimum when the aberration is

measured with respect to the point ð4FAc=3; 0Þ. The balanced aberration

Ac½r3 � ð2=3Þr� cos y is similar to the Zernike polynomial Z1
3ðr; yÞ. When we

balance astigmatism Aar
2 cos2 y with defocus, we find that its standard deviation

is reduced by a factor of 1.225 from Aa=4 to Aa=2
ffiffiffi

6
p

when combined with a defocus

FIGURE 13.3. Variation of a radial circle polynomial Rm
n ðrÞ with r. (a) Defocus and spherical

aberrations. (b) Tilt and coma. (c) Astigmatism.
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aberration of Bd ¼ �Aa=2. The balanced aberration ð1=2ÞAar
2 cos 2y is similar to

the Zernike polynomial Z2
2ðr; yÞ. Moreover, the field curvature (or defocus) and

distortion (or wavefront tilt) aberrations can be identified with Z0
2ðrÞ and Z1

1ðr; yÞ,
respectively. Again, there is a piston term in Z0

2 ðrÞ, which does not affect the

variance. The piston polynomial Z0
0ðr; yÞ is simply equal to unity.

The higher-order aberrations can be balanced in a similar manner. For example,

when secondary spherical aberration varying as r6 is combined with primary

spherical aberration and defocus to minimize its variance, the balanced aberration

obtained has the same form as the Zernike polynomial Z0
6ðrÞ (except for a constant

term). Similarly, when secondary coma varying as r5 cos y is combined with primary

coma and tilt to minimize its variance, the balanced aberration obtained is the same

as the Zernike polynomial Z1
5ðr; yÞ. In the case of secondary astigmatism r4 cos2 y,

the balancing aberrations are primary spherical aberration, primary astigmatism, and

defocus, as may be seen from the identity

r4 cos2 y� 1

2
r4 � 3

4
r2 cos2 yþ 3

8
r2 ¼ 1

2
r4 � 3

4
r2

� �

cos 2y ð13:31Þ

The balanced aberration has the form of the Zernike polynomial Z2
4 ðr; yÞ. Thus,

Zernike polynomials can be identified with balanced aberrations; that, in fact, is their

advantage over another complete set that is orthogonal over a circular pupil.

Moreover, the fundamental aberrations of wavefront tilt and defocus are members

of the polynomial set; without their inclusion, the expansion would be incomplete.

13.2.6. Relationships Between Coefficients of Power-Series

and Zernike-Polynomial Expansions

A classical aberration term of Eq. (13.5a) has the form rn cosm y and an orthogonal

aberration of Eq. (13.18) has the form Rm
n ðrÞ cosmy. Thus, the radial variation rn is

replaced by Rm
n ðrÞ and the angular variation cosm y is replaced by cosmy. To relate

the power-series coefficients anm of Eq. (13.5a) to the Zernike coefficients cnm of

Eq. (13.18), we first change the indices n andm of coefficients anm to k and l [not to be

confused with the l used earlier in Eq. (13.2)], respectively, and write the power-

series expansion of the aberration function in the form

Wðr; yÞ ¼
X1

k¼0

Xk

l¼0

aklr
k cosl y ð13:32Þ

where k and l are positive integers including zero, and k � l � 0 and even. The

coefficients akl and cnm can be related to each other by comparing Eqs. (13.18) and

(13.32) and using the identities

cosmy ¼ ð1þ dm0Þ2m�1 cosm yþ m
Xm�1

q¼1

ð�1Þqðm� q� 1Þ!2m�2q�1

qðq� 1Þ!ðm� 2qÞ! ðcos yÞm�2q

ð13:33Þ
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and

cosl y ¼ 1

2l

Xl

q¼0

l!

q!ðl� qÞ! cosðl� 2qÞy ð13:34Þ

If the Zernike coefficients cnm are known, the power-series coefficients akl can be

obtained from them as follows (Tyson, 1982; Mahajan, 2001). Substituting

Eqs. (13.19b) and (13.33) into Eq. (13.18) and equating the coefficient of the term

containing the factor rk cosl y in the equation thus obtained to the corresponding

coefficient in Eq. (13.32), we find that

a00 ¼ c00 ð13:35Þ

and

akl ¼
X1

n¼0

Xn

m¼0

bklnmcnm ð13:36Þ

where

bklnm ¼
½2ðnþ 1Þð1þ dm0Þ�1=2

ð�1Þn�k
2 nþk

2

� �
!2m�1

n�k
2

� �
! kþm

2

� �
! k�m

2

� �
!
; m ¼ l ð13:37aÞ

2ðnþ 1Þ
1þ dm0

	 
1=2 ð�1Þn�k
2 nþk

2

� �
!m

n�k
2

� �
! kþm

2

� �
! k�m

2

� �
!

2lð�1Þm�l
2 mþl

2
� 1

� �
!

l!ðm� lÞ m�l
2

� 1
� �

!
; m 6¼ l ð13:37bÞ

8

>>>>><

>>>>>:

The values of bklnm for k � 8 and n � 8 are given in Table 13.3. Note that only those

coefficients exist, for which k � l, n� m, n� k, k � m, and m� l are all positive

even integers including zero.

If the power-series coefficients akl are known, the Zernike coefficients cnm can be

obtained from them as follows (Conforti, 1983; Mahajan, 2001). Substituting

Eq. (13.34) into Eq. (13.32) and then substituting the equation thus obtained and

Eq. (13.19b) into Eq. (13.21), we obtain

cnm ¼
X1

k¼0

X1

l¼0

dnmklakl ð13:38Þ

where

dnmkl ¼
2ðnþ 1Þ
1þ dm0

	 
1=2
l!

2l l�m
2

� �
! lþm

2

� �
!

Xðn�mÞ=2

s¼0

ð�1Þsðn� sÞ!
s! nþm

2
� s

� �
! n�m

2
� s

� �
!ðn� 2sþ k þ 2Þ

ð13:39Þ
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TABLE 13.3. Values of bklnm used for obtaining power-series aberration coefficients akl from Zernike aberration coefficients cnm.

k 0 1 2 2 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8

l 0 1 0 2 1 3 0 2 4 1 3 5 0 2 4 6 1 3 5 7 0

n m

0 0 1
1 1 2
2 0 �

ffiffiffi
3

p
2
ffiffiffi
3

p

2 2 �
ffiffiffi

6
p

2
ffiffiffi

6
p

3 1 �4
ffiffiffi

2
p

6
ffiffiffi

2
p

3 3 �6
ffiffiffi

2
p

8
ffiffiffi

2
p

4 0
ffiffiffi

5
p

�6
ffiffiffi

5
p

6
ffiffiffi

5
p

4 2 3
ffiffiffiffiffi
10

p
�6

ffiffiffiffiffi
10

p
�4

ffiffiffiffiffi
10

p
8
ffiffiffiffiffi
10

p

4 4
ffiffiffiffiffi
10

p
�8

ffiffiffiffiffi
10

p
8
ffiffiffiffiffi
10

p

5 1 6
ffiffiffi
3

p
�24

ffiffiffi
3

p
20

ffiffiffi
3

p

5 3 24
ffiffiffi
3

p
�32

ffiffiffi
3

p
�30

ffiffiffi
3

p
40

ffiffiffi
3

p

5 5 10
ffiffiffi
3

p
�40

ffiffiffi
3

p
32

ffiffiffi
3

p

6 0 �
ffiffiffi
7

p
6
ffiffiffi
7

p
�30

ffiffiffi
7

p
20

ffiffiffi
7

p

6 2 �6
ffiffiffiffiffi
14

p
12

ffiffiffiffiffi
14

p
20

ffiffiffiffiffi
14

p
�40

ffiffiffiffiffi
14

p
�15

ffiffiffiffiffi
14

p
30

ffiffiffiffiffi
14

p

6 4 �5
ffiffiffiffiffi
14

p
40

ffiffiffiffiffi
14

p
�40

ffiffiffiffiffi
14

p
6
ffiffiffiffiffi
14

p
�48

ffiffiffiffiffi
14

p
48

ffiffiffiffiffi
14

p

6 6 �
ffiffiffiffiffi

14
p

18
ffiffiffiffiffi

14
p

�48
ffiffiffiffiffi

14
p

32
ffiffiffiffiffi

14
p

7 1 �16 120 �240 140
7 3 �120 160 360 �480 �252 336

7 5 �120 480 �384 140 �560 448

7 7 �28 224 �448 256

8 0 3 �60 270 �420 210

5
1
2



The values of dnmkl for n � 8 and k � 8 are given in Table 13.4. Note that only those

coefficients exist for which n� m, k � l, and l� m are all positive even integers

including zero.

13.2.7. Conversion of Seidel Aberrations into Zernike Aberrations

From Table 13.4 or by inspection, each Seidel aberration term in Eq. (13.7) can be

written in terms of the orthonormal Zernike polynomials Zm
n ðr; yÞ as follows:

a11r cos y ¼ a11

2
Z1
1ðr; yÞ ð13:40aÞ

a20r
2 ¼ a20

Z0
2

2
ffiffiffi

3
p þ Z0

0

2

� �

ð13:40bÞ

a22r
2 cos2 y ¼ a22

Z2
2

2
ffiffiffi

6
p þ Z0

2

4
ffiffiffi

3
p þ Z0

0

4

� �

ð13:40cÞ

a31r
3 cos y ¼ a31

Z1
3

6
ffiffiffi

2
p þ Z1

1

3

� �

ð13:40dÞ
and

a40r
4 ¼ a40

Z0
4

6
ffiffiffi

5
p þ Z0

2

2
ffiffiffi
3

p þ Z0
0

3

� �

ð13:40eÞ

Accordingly, the Seidel aberration function of Eq. (13.7) can be written in terms of

Zernike polynomials

WPðr; yÞ ¼ c00Z
0
0 þ c11Z

1
1 þ c20Z

0
2 þ c22Z

2
2 þ c31Z

1
3 þ c40Z

0
4 ð13:41Þ

where

c00 ¼
a20

2
þ a22

4
þ a40

3
; c11 ¼

a11

2
þ a31

3
; c20 ¼

a20

2
ffiffiffi
3

p þ a22

4
ffiffiffi
3

p þ a40

2
ffiffiffi
3

p ð13:42aÞ

c22 ¼
a22

2
ffiffiffi

6
p ; c31 ¼

a31

6
ffiffiffi

2
p ; and c40 ¼

a40

6
ffiffiffi

5
p ð13:42bÞ

Its mean and mean square values are given by

hWPi ¼ c00 ¼
a20

2
þ a22

4
þ a40

3
ð13:43aÞ

and

hW2
Pi ¼

X4

n¼0

X2

m¼0

c2nm ð13:43bÞ

¼ hWPi2 þ
a11

2
þ a31

3

� �2

þ a20

2
ffiffiffi

3
p þ a22

4
ffiffiffi

3
p þ a40

2
ffiffiffi

3
p

� �2

þ a222
24

þ a231
72

þ a240
180

ð13:43cÞ
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TABLE 13.4. Values of dnmkl for obtaining Zernike aberration coefficients cnm from the power-series aberration coefficients akl.

k 0 1 2 2 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8

l 0 1 0 2 1 3 0 2 4 1 3 5 0 2 4 6 1 3 5 7 0

n m

0 0 1 1
2

1
4

1
3

1
6

1
8

1
4

1
8

3
32

5
64

1
5

1 1 1
2

1
3

1
4

1
4

3
16

5
32

1
5

3
20

1
8

7
64

2 0 1

2
ffiffi
3

p 1

4
ffiffi
3

p 1

2
ffiffi
3

p 1

4
ffiffi
3

p
ffiffi
3

p

16
3
ffiffi
3

p

20
3
ffiffi
3

p

40
9
ffiffi
3

p

160
3
ffiffi
3

p

64
2

5
ffiffi
3

p

2 2 1

2
ffiffi
6

p 1
8

ffiffi
3
2

q
1
8

ffiffi
3
2

q
1
10

ffiffi
3
2

q
1
10

ffiffi
3
2

q
3
32

ffiffi
3
2

q

3 1 1

6
ffiffi
2

p 1

8
ffiffi
2

p 1

5
ffiffi
2

p 3

20
ffiffi
2

p 1

8
ffiffi
2

p 1

5
ffiffi
2

p 3

20
ffiffi
2

p 1

8
ffiffi
2

p 7

64
ffiffi
2

p

3 3 1

8
ffiffi
2

p 1

10
ffiffi
2

p 1

8
ffiffi
2

p 1

12
ffiffi
2

p 5

48
ffiffi
2

p 7

64
ffiffi
2

p

4 0 1

6
ffiffi
5

p 1

12
ffiffi
5

p 1

16
ffiffi
5

p 1

4
ffiffi
5

p 1

8
ffiffi
5

p 3

32
ffiffi
5

p
ffiffi
5

p

64
2

7
ffiffi
5

p

4 2 1

8
ffiffiffiffi
10

p 1

8
ffiffiffiffi
10

p 1

6
ffiffiffiffi
10

p 1

6
ffiffiffiffi
10

p 1
32

ffiffi
5
2

q

4 4 1

8
ffiffi
5

p
ffiffi
5

p

48

ffiffi
5

p

32

5 1 1

20
ffiffi
3

p
ffiffi
3

p

80
1

32
ffiffi
3

p
ffiffi
5

p

35
3
ffiffi
3

p

140

ffiffi
3

p

56

ffiffi
3

p

64

5 3 1

40
ffiffi
3

p 1

32
ffiffi
3

p 5

140
ffiffi
3

p 5

112
ffiffi
3

p
ffiffi
3

p

64

5 5 1

32
ffiffi
3

p
ffiffi
3

p

112

ffiffi
3

p

64

6 0 1

20
ffiffi
7

p 1

40
ffiffi
7

p 1

160
ffiffi
7

p 1

64
ffiffi
7

p 1

10
ffiffi
7

p

6 2 1

30
ffiffiffiffi
14

p 1

30
ffiffiffiffi
14

p 1

32
ffiffiffiffi
14

p

6 4 1

40
ffiffiffiffi
14

p 1

32
ffiffiffiffi
14

p

6 6 1

32
ffiffiffiffi
14

p

7 1 1
140

3
560

1
224

1
256

7 3 1
336

5
1344

1
256

7 5 1
448

1
256

7 7 1
256

8 0 1
210

5
1
4



Hence, its variance is given by

s2W ¼ hW2
Pi � hW2

Pi ¼
X4

n¼1

X2

m¼0

c2nm

¼ a211
4

þ a220
12

þ a222
16

þ a231
8

þ 4a240
45

þ a11a31

3
þ a20a40

6
þ a22a40

12
ð13:44Þ

13.2.8. Conversion of Zernike Aberrations into Seidel Aberrations

Just as a Seidel aberration is made up of more than one Zernike aberrations [see

Eqs. (13.40)], similarly, a given Zernike aberration is made up of more than one

Seidel aberration. For example, Zernike astigmatism c22Z
2
2ðr; yÞ consists of Seidel

astigmatism r2 cos2 y and defocus r2. Similarly, Zernike coma c31Z
1
3ðr; yÞ consists

of Seidel coma r3 cos y and tilt r cos y, and Zernike spherical aberration c40Z
0
4ðrÞ

consists of Seidel aberration r4, defocus, and piston. Of course, higher-order Zernike

aberrations also consist of Seidel aberrations. For example, secondary Zernike

spherical aberration c60Z
0
6ðrÞ consists of secondary spherical aberration r6, Seidel

spherical aberration r4, defocus, and piston. Since a Seidel term is contained in

several Zernike terms, the value of a Seidel coefficient as obtained from the Zernike

coefficients depends on the number of Zernike terms used to represent an aberration

function. For example, the Seidel spherical aberration, which varies as r4, is con-

tained in Zernike polynomials Z0
4ðrÞ, Z2

4ðr; yÞ, Z4
4 ðr; yÞ, Z0

6ðrÞ, etc. Given a set of

Zernike coefficients cnm of an aberration function, the corresponding Seidel coeffi-

cients can be written easily using Table 13.2

a00 ¼ c00 �
ffiffiffi

3
p

c20 þ
ffiffiffi

5
p

c40 �
ffiffiffi

7
p

c60 þ 3c80 þ � � � ð13:45aÞ
a11 ¼ 2c11 � 4

ffiffiffi

2
p

c31 þ 6
ffiffiffi

3
p

c51 � 16c71 þ � � � ð13:45bÞ
a20 ¼ 2

ffiffiffi

3
p

c20 �
ffiffiffi

6
p

c22 � 6
ffiffiffi

5
p

c40 þ 3
ffiffiffiffiffi

10
p

c42 þ 6
ffiffiffi

7
p

c60 � 6
ffiffiffiffiffi

14
p

c62 � 60c80 þ � � �
ð13:45cÞ

a22 ¼ 2
ffiffiffi

6
p

c22 � 6
ffiffiffiffiffi

10
p

c42 þ 12
ffiffiffiffiffi

14
p

c62 þ � � � ð13:45dÞ
a31 ¼ 6

ffiffiffi

2
p

c31 � 6
ffiffiffi

2
p

c33 � 24
ffiffiffi

3
p

c51 þ 24
ffiffiffi

3
p

c53 þ 120c71 � 120c73 þ � � � ð13:45eÞ

and

a40 ¼ 6
ffiffiffi

5
p

c40 � 4
ffiffiffiffiffi

10
p

c42 þ
ffiffiffiffiffi

10
p

c44 � 30
ffiffiffi

7
p

c60 þ � � � ð13:45fÞ

Once again, the tilt component in the coefficient a11 cannot be distinguished from

distortion, the defocus component in the coefficient a20 cannot be distinguished from

the field curvature, and the spherical aberration component in the coefficient a40
cannot be distinguished from the lateral spherical aberration.
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13.3. ABERRATION FUNCTION OF A SYSTEM WITH A CIRCULAR

PUPIL, BUT WITHOUT AN AXIS OF ROTATIONAL SYMMETRY

13.3.1. Zernike Circle Polynomial Expansion

The aberration function for a system without an axis of rotational symmetry will

consist of terms not only in cosmy but in sinmy as well. This is true also of

aberrations resulting from fabrication errors as well as those introduced by atmo-

spheric turbulence (Noll, 1976). In such cases the aberration function can be

expanded in terms of orthonormal Zernike circle polynomials Zjðr; yÞ in the form

Wðr; yÞ ¼
X

j

ajZjðr; yÞ ð13:46Þ

where aj are the expansion coefficients. The polynomials may be written

Zeven jðr; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðnþ 1Þ
p

Rm
n ðrÞ cosmy; m 6¼ 0 ð13:47aÞ

Zodd jðr; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðnþ 1Þ
p

Rm
n ðrÞ sinmy; m 6¼ 0 ð13:47bÞ

Zjðr; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

R0
nðrÞ; m ¼ 0 ð13:47cÞ

where Rm
n ðrÞ are the radial polynomials given by Eq. (13.19b). As stated earlier, n

and m are positive integers (including zero), and n� m � 0 and even. The index n

represents the radial degree or the order of the polynomial since it represents the

highest power of r in the polynomial, and m may be called the azimuthal frequency.

The index j is a polynomial-ordering number and is a function of n and m. The

orthonormal polynomials and the relationship among the indices j, n, andm are given

in Table 13.5. The polynomials are ordered such that an even j corresponds to a

symmetric polynomial varying as cosmy, while an odd j corresponds to an antisym-

metric polynomial varying as sinmy. A polynomial with a lower value of n is ordered

first, while for a given value of n, a polynomial with a lower value ofm is ordered first.

The number of terms for a given value of n is nþ 1. The number of terms up to and

including a certain order n is given by

Nn ¼ ðnþ 1Þðnþ 2Þ=2 ð13:48Þ

The orthonormality of Zernike polynomials implies that

Z1

0

Z2p

0

Zjðr; yÞZj0ðr; yÞrdrdy
Z1

0

Z2p

0

rdrdy ¼ djj0

,

ð13:49Þ
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TABLE 13.5. Orthonormal Zernike circle polynomials Zjðq; hÞ. The indices j, n, and m

are called the polynomial number, radial degree, and azimuthal frequency, respectively.

The polynomials Zj are ordered such that an even j corresponds to a symmetric poly-

nomial varying as cosmh, while an odd j corresponds to an antisymmetric polynomial

varying as sinmh. A polynomial with a lower value of n is ordered first, and for a given

value of n, a polynomial with a lower value of m is ordered first.

j n m Zjðr; yÞ Aberration name

1 0 0 1 Piston

2 1 1 2r cos y x tilt

3 1 1 2r sin y y tilt

4 2 0
ffiffiffi
3

p
ð2r2 � 1Þ Defocus

5 2 2
ffiffiffi
6

p
r2 sin 2y Primary astigmatism at 45�

6 2 2
ffiffiffi
6

p
r2 cos 2y Primary astigmatism at 0�

7 3 1
ffiffiffi
8

p
ð3r3 � 2rÞ sin y Primary y coma

8 3 1
ffiffiffi
8

p
ð3r3 � 2rÞ cos y Primary x coma

9 3 3
ffiffiffi
8

p
r3 sin 3y

10 3 3
ffiffiffi
8

p
r3 cos 3y

11 4 0
ffiffiffi

5
p

ð6r4 � 6r2 þ 1Þ Primary spherical

12 4 2
ffiffiffiffiffi
10

p
ð4r4 � 3r2Þ cos 2y Secondary astigmatism at 0�

13 4 2
ffiffiffiffiffi
10

p
ð4r4 � 3r2Þ sin 2y Secondary astigmatism at 45�

14 4 4
ffiffiffiffiffi
10

p
r4 cos 4y

15 4 4
ffiffiffiffiffi
10

p
r4 sin 4y

16 5 1
ffiffiffiffiffi

12
p

ð10r5 � 12r3 þ 3rÞ cos y Secondary x coma

17 5 1
ffiffiffiffiffi
12

p
ð10r5 � 12r3 þ 3rÞ sin y Secondary y coma

18 5 3
ffiffiffiffiffi
12

p
ð5r5 � 4r3Þ cos 3y

19 5 3
ffiffiffiffiffi
12

p
ð5r5 � 4r3Þ sin 3y

20 5 5
ffiffiffiffiffi

12
p

r5 cos 5y

21 5 5
ffiffiffiffiffi
12

p
r5 sin 5y

22 6 0
ffiffiffi
7

p
ð20r6 � 30r4 þ 12r2 � 1Þ Secondary spherical

23 6 2
ffiffiffiffiffi

14
p

ð15r6 � 20r4 þ 6r2Þ sin 2y Tertiary astigmatism at 45�

24 6 2
ffiffiffiffiffi
14

p
ð15r6 � 20r4 þ 6r2Þ cos 2y Tertiary astigmatism at 0�

25 6 4
ffiffiffiffiffi
14

p
ð6r6 � 5r4Þ sin 4y

26 6 4
ffiffiffiffiffi

14
p

ð6r6 � 5r4Þ cos 4y
27 6 6

ffiffiffiffiffi
14

p
r6 sin 6y

28 6 6
ffiffiffiffiffi
14

p
r6 cos 6y

29 7 1 4ð35r7 � 60r5 þ 30r3 � 4rÞ sin y Tertiary y coma

30 7 1 4ð35r7 � 60r5 þ 30r3 � 4rÞ cos y Tertiary x coma

31 7 3 4ð21r7 � 30r5 þ 10r3Þ sin 3y
32 7 3 4ð21r7 � 30r5 þ 10r3Þ cos 3y
33 7 5 4ð7r7 � 6r5Þ sin 5y
34 7 5 4ð7r7 � 6r5Þ cos 5y
35 7 7 4r7 sin 7y

36 7 7 4r7 cos 7y

37 8 0 3ð70r8 � 140r6 þ 90r4 � 20r2 þ 1Þ Tertiary spherical
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The orthogonality of the angular functions is described by

Z2p

0

df

cosmf cosm0f; j and j0 are both even

cosmf sinm0f; j is even and j0 is odd

sinmf cosm0f; j is odd and j0 is even

sinmf sinm0f; j and j0 are both odd

8

>>><

>>>:

¼
pð1þ dm0Þdmm0 ; j and j0 are both even

pdmm0 ; j and j0 are both odd

0; otherwise

8

><

>:

ð13:50Þ

The expansion coefficients are given by

aj ¼
1

p

Z1

0

Z2p

0

Wðr; yÞZjðr; yÞrdrdy ð13:51Þ

as may be seen by substituting Eq. (13.46) and utilizing the orthogonality relations.

The aberration variance is given by

s2W ¼ hW2ðr; yÞi � hWðr; yÞi2 ¼
X

j¼2

a2j ð13:52Þ

Because of the orthonormality of the Zernike polynomials, an expansion coefficient

aj of an aberration term ajZjðr; yÞ, with the exception of a1, represents its standard

deviation. Moreover, its value is independent of the values of the other coefficients or

the number of polynomials used to represent the aberration function. Accordingly, if

one or more aberration terms are added or subtracted from the aberration function,

the values of these coefficients do not change.

The orthonormal Zernike circle polynomials Zjðx; yÞ in Cartesian coordinates

ðx; yÞ, which are normalized by the pupil radius a, are given in Table 13.6. The

subscript n on the coordinates is omitted for simplicity.

13.3.2. Relationships Among the Indices n, m, and j

For a given value of n, the number of polynomials Nn represents the largest value of j.

Since the number of polynomials with the same value of n but different values of m is

equal to nþ 1, the smallest value of j for a given value of n isNn � n. For a given value

of n andm, there are two j values,Nn � nþ m� 1 andNn � nþ m. The evenvalue of j

represents the cosmy polynomials and the odd value of j represents the sinmy

polynomials. The value of j with m ¼ 0 is Nn � n. For example, for n ¼ 5, Nn ¼ 21

and j ¼ 21 represents the sin 5y polynomials. The number of the corresponding cos 5y

polynomials is j ¼ 20. The two polynomials withm ¼ 3, for example, have j values of

18 and 19, representing the cos 3y and the sin 3y polynomials, respectively.
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For a given value of j, n is given by

n ¼ ½ð2j� 1Þ1=2 þ 0:5�integer � 1 ð13:53Þ

where the subscript integer implies the integer value of the number in brackets. Once

n is known, the value of m is given by

m ¼
2f½2jþ 1� nðnþ 1Þ�=4ginteger when n is even ð13:54aÞ
2f½2ðjþ 1Þ � nðnþ 1Þ�=4ginteger � 1 when n is odd ð13:54bÞ

(

TABLE 13.6. Orthonormal Zernike circle polynomials Zjðx; yÞ in Cartesian coordinates

ðx; yÞ, which are normalized by the pupil radius a. The subscript n on the coordinates

indicating the normalization is omitted for simplicity. Note that x ¼ q cos h, y ¼ q sin h,

and 0 � q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

� 1.

Polynomial Zjðx; yÞ
Z1 1

Z2 2x

Z3 2y

Z4
ffiffiffi
3

p
ð2r2 � 1Þ

Z6 2
ffiffiffi

6
p

xy

Z6
ffiffiffi
6

p
ðx2 � y2Þ

Z7
ffiffiffi
8

p
yð3r2 � 2Þ

Z8
ffiffiffi
8

p
xð3r2 � 2Þ

Z9
ffiffiffi
8

p
yð3x2 � y2Þ

Z10
ffiffiffi
8

p
xðx2 � 3y2Þ

Z11
ffiffiffi

5
p

ð6r4 � 6r2 þ 1Þ
Z12

ffiffiffiffiffi
10

p
ðx2 � y2Þð4r2 � 3Þ

Z13 2
ffiffiffiffiffi
10

p
xyð4r2 � 3Þ

Z14
ffiffiffiffiffi
10

p
ðr4 � 8x2y2Þ

Z15 4
ffiffiffiffiffi
10

p
xyðx2 � y2Þ

Z16
ffiffiffiffiffi
12

p
xð10r4 � 12r2 þ 3Þ

Z17
ffiffiffiffiffi
12

p
yð10r4 � 12r2 þ 3Þ�

Z18
ffiffiffiffiffi

12
p

xðx2 � 3y2Þð5r2 � 4Þ
Z19

ffiffiffiffiffi
12

p
yð3x2 � y2Þð5r2 � 4Þ

Z20
ffiffiffiffiffi
12

p
xð16x4 � 20x2r2 þ 5r4Þ

Z21
ffiffiffiffiffi
12

p
yð16y4 � 20y2r2 þ 5r4Þ

Z22
ffiffiffi
7

p
ð20r6 � 30r4 þ 12r2 � 1Þ

Z23 2
ffiffiffiffiffi
14

p
xyð15r4 � 20r2 þ 6Þ

Z24
ffiffiffiffiffi
14

p
ðx2 � y2Þð15r4 � 20r2 þ 6Þ

Z25 4
ffiffiffiffiffi

14
p

xyðx2 � y2Þð6r2 � 5Þ
Z26

ffiffiffiffiffi
14

p
ð8x4 � 8x2r2 þ r4Þð6r2 � 5Þ

Z27
ffiffiffiffiffi
14

p
xyð32x4 � 32x2r2 þ 6r4Þ

Z28
ffiffiffiffiffi

14
p

ð32x6 � 48x4r2 þ 18x2r4 � r6Þ
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For example, suppose we want to know the values of n and m for the polynomial

j ¼ 10. From Eq. (13.53), n ¼ 3 and from Eq. (13.54b), m ¼ 3. Hence, it is a cos 3y

polynomial. Similarly, for example, for j ¼ 25, we find that n ¼ 6 and m ¼ 3,

representing the sin 3y polynomial.

13.3.3. Isometric, Interferometric, and PSF Plots for a Zernike Circle

Polynomial Aberration

The Zernike circle polynomials for n � 6 are shown in the form of a pyramid in

Figure 13.4. If we number the rows in the pyramid from top to bottom, the row

number represents the value of n for the polynomials in that row. The number of

polynomials in a certain row is nþ 1, representing different values of m and the fact

that, for a given value of m, there is a cosine polynomial with an even j number and a

sine polynomial with an odd j number. Each polynomial is illustrated in three

different but equivalent ways. For each polynomial, the isometric plot at the top

illustrates its shape as produced, for example, in a deformable mirror. The standard

deviation of each polynomial aberration in the figure is one wave. An interferogram,

as in optical testing, is shown on the left. The number of fringes, which is equal to the

FIGURE 13.4. Zernike circle polynomials pyramid showing isometric plot on the top, interferogram on

the left, and PSF on the right for each polynomial. The standard deviation of each polynomial aberration is

one wave.
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number of times the aberration changes by one wave as we move from the center to

the edge of the pupil, is different for the different polynomials. Each fringe represents

a contour of constant phase or aberration. The fringe is dark when the phase is an

odd multiple of p or the aberration is an odd multiple of l=2. In the case of tilts,

for example, the aberration changes by one four times, which is the same as the peak-

to-valley value of 4 waves. Hence, 4 straight line fringes symmetric about the

center are obtained. The x-tilt polynomial Z2 yields vertical fringes and y-tilt

polynomial Z3 yields horizontal fringes. Similarly, defocus aberration Z4 yields

about 3.5 fringes. In the case of spherical aberration Z11, the aberration starts at a

value of
ffiffiffi

5
p

, decreases to zero, reaches a negative value of �
ffiffiffi

5
p

=2, and then

increases to
ffiffiffi

5
p

. Hence, the total number of times the aberration changes by unity

is equal to 6.7, and approximately seven circular fringes are obtained.

On the right for each polynomial are shown the PSFs (point-spread function),

which represent the images of a point object in the presence of a polynomial

aberration. Thus, for example, piston yields the aberration-free PSF (since it has

no effect on the PSF), and the x- and y-tilts displace the aberration-free PSF along the

x and y axes, respectively. More light has been introduced into some of the PSFs to

display their details.

13.3.4. PrimaryZernikeAberrations andTheirRelationshipswith Seidel

Aberrations

The names of some of the Zernike aberrations are given in Table 13.5. The Zernike

tilt aberration

a2Z2ðr; yÞ ¼ 2a2r cos y ð13:55Þ

represents x tilt and corresponds to a displacement of the center of the reference

sphere along the x axis by 4Fa2 or a tilt of the wavefront about the y axis by an angle

b ¼ 2a2=a. Similarly, the Zernike tilt aberration

a3Z3ðr; yÞ ¼ 2a3r sin y ð13:56Þ

represents y tilt and corresponds to a displacement of the center of the reference

sphere along the y axis by 4Fa3 or a tilt of the wavefront about the x axis by an angle

a ¼ 2a3=a. The Zernike primary astigmatism

a6Z6ðr; yÞ ¼
ffiffiffi

6
p

a6r
2 cos 2y ð13:57Þ

is referred to as the x or 0� astigmatism. It consists of Seidel astigmatism r2 cos2 y

balanced with defocus aberration r2 to yield minimum variance. It yields a uniform

circular spot diagram, but a line sagittal image along the x axis (i.e., in a plane that

zeros out the defocus part). The Zernike primary astigmatism

a5Z5ðr; yÞ ¼
ffiffiffi

6
p

a5r
2 sin 2y ð13:58Þ
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can be written

a5Z5ðr; yÞ ¼
ffiffiffi

6
p

a5r
2 cos½2ðyþ p=4Þ� ð13:59Þ

Comparing with Eq. (13.57), it is equivalent to changing y to yþ p=4. Accordingly,
it is called the 45� astigmatism or astigmatism at 45�. The secondary Zernike

astigmatism given by

a12Z12ðr; yÞ ¼
ffiffiffiffiffi

10
p

ð4r4 � 3r2Þ cos 2y

does not yield a line image in any plane. However, it is referred to as the x or the 0�

astigmatism in conformance with the primary x astigmatism, because of its variation

with y as cos 2y. Similarly, the other forms of astigmatism are referred to as indicated

in Table 13.2. The Zernike coma terms a8Z8ðr; yÞ and a7Z7ðr; yÞ are called the x and
y Zernike comas. They yield PSFs that are symmetric about the x and y axes,

respectively. Similarly, the names for the secondary and tertiary coma can be

explained.

It should be evident that when the cosine and sine terms of a certain aberration are

present simultaneously, as in optical testing, their combination represents the aberra-

tion whose orientation depends on the value of the component terms (Wyant and

Creath, 1992; Mahajan and Swantner, 2006). For example, if both x and y Zernike

tilts are present in the form

Wðr; yÞ ¼ a2Z2ðr; yÞ þ a3Z3ðr; yÞ ð13:60aÞ
¼ 2a2r cos yþ 2a3r sin y ð13:60bÞ

it can be written as

Wðr; yÞ ¼ 2ða22 þ a23Þ
1=2

r cos½y� tan�1ða3=a2Þ� ð13:61Þ

Thus, it represents a wavefront tilt of 2ða22 þ a23Þ
1=2

about an axis that is orthogonal to

a line making an angle of tan�1ða3=a2Þ with the x axis.

It is easy to see that when both a2 and a3 are negative, ða22 þ a23Þ
1=2

in Eq. (13.61)

must be replaced by�ða22 þ a23Þ
1=2

. However, when one of the coefficients is positive

and the other is negative, then tan�1ða3=a2Þ of a negative argument has two solutions:

a negative acute angle or its complimentary angle. The choice is made depending on

whether a2 or a3 is negative according to

tan�1ða3=a2Þ ¼
� tan�1ðja3=a2jÞ for positive a2 and negative a3 ð13:62aÞ
p� tan�1ðja3=a2jÞ for negative a2 and positive a3 ð13:62bÞ

(

An alternative when a2 is negative is to let the angle be� tan�1ðja3=a2jÞ, as when a2
is positive, but also replace ða22 þ a23Þ

1=2
by �ða22 þ a23Þ

1=2
.
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When both x and y Zernike comas are present, the aberration may be written as

Wðr; yÞ ¼ a8Z8ðr; yÞ þ a7Z7ðr; yÞ ð13:63aÞ
¼

ffiffiffi

8
p

a8ð3r3 � 2rÞ cos yþ
ffiffiffi

8
p

a7ð3r3 � 2rÞ sin y ð13:63bÞ
¼ ða27 þ a28Þ

1=2
ffiffiffi

8
p

ð3r3 � 2rÞ cos½y� tan�1ða7=a8Þ� ð13:63cÞ

which is equivalent to a Zernike coma of magnitude ða27 þ a28Þ
1=2

inclined at an angle

of tan�1ða7=a8Þ with the x axis. Similarly, if both x and 45� astigmatisms are present

so that

Wðr; yÞ ¼ a6Z6ðr; yÞ þ a5Z5ðr; yÞ ð13:64aÞ
¼

ffiffiffi

6
p

a6r
2 cos 2yþ

ffiffiffi

6
p

a5r
2 sin 2y ð13:64bÞ

we may write it in the form

Wðr; yÞ ¼ ða25 þ a26Þ
1=2

ffiffiffi

6
p

r2 cos 2 y� 1

2
tan�1ða5=a6Þ

	 
� �

ð13:65Þ

showing that it is Zernike astigmatism of magnitude ða25 þ a26Þ
1=2

at an angle of

ð1=2Þ tan�1ða5=a6Þ.
It should be noted that the wavefront tilt aberration given by given by Eq. (13.61)

represents the tilt aberration obtained from Zernike tilt aberrations. However, there

are other Zernike aberrations that also contain tilt aberration built into them, for

example, Zernike primary, secondary, or tertiary coma. Similarly, the Seidel coma

3
ffiffiffi
8

p
ða27 þ a28Þ

1=2
in Eq. (13.63c) at an angle of tan�1ða7=a8Þ is only from the primary

Zernike comas. But the secondary and tertiary Zernike comas also contain Seidel

coma. Hence, only if the higher-order Zernike comas are zero or negligible, the PSF

aberrated by primary Zernike coma will be symmetric about a line making angle of

tan�1ða7=a8Þ with the x axis. Similarly, only if the secondary and tertiary astigma-

tisms are zero or negligible, the Seidel astigmatism is 2
ffiffiffi

6
p

ða25 þ a26Þ
1=2

, as in

Eq. (13.65). It yields an aberrated PSF which is symmetric about two orthogonal

axes one of which is along a line that makes an angle of ð1=2Þ tan�1ða5=a6Þ with the
x axis. In the case of coma and astigmatism, the same rules apply for determining the

angle tan�1ð�Þ, as in the case of a wavefront tilt aberration.

It should be evident that there is ambiguity in determining astigmatism, since it

can be written in different but equivalent forms by separating defocus aberration

from it. For example, a 0� astigmatism can be written as

a6Z6ðr; yÞ ¼ a6ð
ffiffiffi

6
p

r2 cos 2yÞ ð13:66aÞ
¼ a6

ffiffiffi

6
p

ð2r2 cos2 y� r2Þ ð13:66bÞ
¼ a6

ffiffiffi

6
p

ð�2r2 sin2 yþ r2Þ ð13:66cÞ

It is clear that a 0� Zernike astigmatism given by Eq. (13.66a) can be written as a

combination of 0� positive Seidel astigmatism and a negative defocus, as in

Eq. (13.66b), or a 90� negative Seidel astigmatism and a positive defocus, as in

Eq. (13.66c).
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To illustrate how a wrong Seidel coefficient can be inferred unless it is obtained

from all of the significant Zernike terms, we consider an axial image aberrated by one

wave of secondary spherical aberration r6. In terms of Zernike polynomials it will be

written as

WðrÞ ¼ a22Z22ðrÞ þ a11Z11ðrÞ þ a4Z4ðrÞ þ a1Z1ðrÞ ð13:67aÞ

where

a22 ¼ 1=20
ffiffiffi

7
p

; a11 ¼ 1=4
ffiffiffi

5
p

; a4 ¼ ð9=20
ffiffiffi

3
p

Þ; a1 ¼ 1=4 ð13:67bÞ

If we infer the Seidel spherical aberration from only the primary Zernike aberration

a11Z11ðrÞ, its amount would be 1.5 waves. Such a conclusion is obviously incorrect,

since in reality the amount of Seidel spherical aberration is zero. Needless to say, if

we expand the aberration function up to the first, say, as many as 21 terms, we will in

fact incorrectly conclude that the amount of Seidel spherical aberration is 1.5 waves.

However, the Seidel spherical aberration will correctly reduce to zero when at least

the first 22 terms are included in the expansion. For an off-axis image, there are

angle-dependent aberrations, for example, Z14, that also contain Seidel aberrations.

Hence, it is important that the expansion be carried out up to a certain number of

terms such that any additional terms do not change significantly the mean square

difference between the function and its estimate. Otherwise, the inferred Seidel

aberrations will be erroneous.

If we approximate a certain aberration function by the primary Zernike aberra-

tions only, we may write

Wðr; yÞ ¼
Xj¼8

j¼1

ajZjðr; yÞ þ a11Z11ðrÞ ð13:68aÞ

¼ Ap þ Atr cosðy� btÞ þ Adr
2 þ Aar

2 cos2ðy� baÞ
þ Acr cosðy� bcÞ þ Asr

4 ð13:68bÞ

where Ap is the piston aberration, other coefficients Ai represent the peak value of the

corresponding Seidel aberration term, and bi is the orientation angle of the Seidel

aberration. They are given by

Ap ¼ a1 �
ffiffiffi

3
p

a4 þ
ffiffiffi

5
p

a11 ð13:69aÞ

At ¼ 2½ða2 �
ffiffiffi

8
p

a8Þ2 þ ða3 �
ffiffiffi

8
p

a7Þ2�1=2; bt ¼ tan�1 a3 �
ffiffiffi
8

p
a7

a2 �
ffiffiffi
8

p
a8

� �

ð13:69bÞ

Ad ¼ 2ð
ffiffiffi

3
p

a4 � 3
ffiffiffi

5
p

a11 � AaÞ ð13:69cÞ

Aa ¼ 2
ffiffiffi

6
p

ða25 þ a26Þ
1=2; ba ¼

1

2
tan�1ða5=a6Þ ð13:69dÞ

Ac ¼ 6
ffiffiffi

2
p

ða27 þ a28Þ
1=2; bc ¼ tan�1ða7=a8Þ ð13:69eÞ
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and

As ¼ 6
ffiffiffi

5
p

a11 ð13:69fÞ

The approximation is good only when the higher-order aberrations are negligible,

since they also contain Seidel aberration terms.

13.4. ZERNIKE ANNULAR POLYNOMIALS AS BALANCED

ABERRATIONS FOR SYSTEMS WITH ANNULAR PUPILS

13.4.1. Balanced Aberrations

For an annular pupil with an obscuration ratio of E, the radial variable E � r � 1.

Accordingly, the mean and mean square values of an aberrationWðr; y; EÞ are given
by (Mahajan, 1981a,b, 1984, 1994, 2003, 2004)

hWki ¼ 1

pð1� E2Þ

Z1

E

Z2p

0

Wkðr; y; EÞrdrdy ð13:70Þ

with k ¼ 1 and 2, respectively. Table 13.7 lists the standard deviation of primary

aberrations. Table 13.8 lists the corresponding balanced aberrations, their standard

deviation, and the diffraction focus (i.e., the point of maximum central irradiance in

the case of a small aberration). We note that the balancing defocus in the case of

spherical aberration or the balancing wavefront tilt in the case of coma depends on

the value of E. They both increase as E increases. The amount of balancing defocus is

larger by a factor of 1þ E2 compared to that for a circular pupil. The amount of

balancing defocus in the case of astigmatism, is independent of E. These results

reduce to those for circular pupils as E ! 0.

13.4.2. Zernike Annular Polynomials

The aberration function of a rotationally symmetric system with an annular pupil can

be expanded in terms of a complete set of Zernike annular polynomials

TABLE 13.7. Primary aberrations and their standard deviation

for systems with annular pupils.

Aberration Wðr; yÞ sW

Spherical Asr
4 ð4� E2 � 6E4 � E6 þ 4E8Þ1=2As=3

ffiffiffi

5
p

Coma Acr
3 cos y ð1þ E2 þ E4 þ E6Þ1=2Ac=2

ffiffiffi
2

p

Astigmatism Aar
2 cos2 y ð1þ E2Þ1=2Aa=4

Field curvature Adr
2 ð1� E2ÞAd=2

ffiffiffi
3

p

Distortion Atr cos y ð1þ E2Þ1=2At=2
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Rm
n ðr; EÞ cosmy that are orthogonal over the annulus in the form (Mahajan, 1981a,b,

1984, 1994, 2003, 2004)

Wðr; y; EÞ ¼
X1

n¼0

Xn

m¼0

cnmZ
m
n ðr; y; EÞ ð13:71Þ

where cnm are the expansion coefficients, n and m are positive integers, n� m � 0

and even, and

Zm
n ðr; y; EÞ ¼ ½2ðnþ 1Þ=ð1þ dm0Þ�1=2Rm

n ðr; EÞ cosmy ð13:72Þ

is an orthonormal Zernike annular polynomial obeying the orthonormality relation

1

pð1� E2Þ

Z 1

E

Z 2p

0

Zm
n ðr; y; EÞZm0

n0 ðr; y; EÞrdrdy ¼ dmm0dnn0 ð13:73Þ

Thus, the radial polynomials obey the orthogonality relation

Z 1

E

Rm
n ðr; EÞRm

n0ðr; EÞrdr ¼ 1� E2

2ðnþ 1Þ dnn0 ð13:74Þ

The Zernike annular polynomials can be obtained from the corresponding circle

polynomials by the Gram–Schmidt orthogonalization process according to (Korn

and Korn, 1968)

Rm
n ðr; EÞ ¼ Nm

n Rm
n ðrÞ �

Xðn�mÞ=2

i�1

ðn� 2iþ 1ÞhRm
n ðrÞRm

n�2iðr; EÞiRm
n�2iðr; EÞ

" #

ð13:75Þ

TABLE 13.8. Balanced primary aberrations, their standard deviation, and diffraction

focus for systems with annular pupils.

Balanced

aberration Wðr; yÞ sW Diffraction focus

Spherical As½r2 � ð1þ E2Þr2� 1

6
ffiffi
5

p ð1� E2Þ2As ½0; 0; 8ð1þ E2ÞF2As�

Coma Ac r3 � 2

3

1þ E2 þ E4

1þ E2
r

� �

cos y
ð1� E2Þð1þ 4E2 þ E4Þ1=2

6
ffiffiffi
2

p
ð1þ E2Þ1=2

Ac

4ð1þ E2 þ E4Þ
3ð1þ E2Þ FAc; 0; 0

	 


Astigmatism Aar
2ðcos2 y� 1=2Þ 1

2
ffiffiffi

6
p ð1þ E2 þ E4Þ1=2Aa ð0; 0; 4F2AaÞ
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where

hRm
n ðrÞRm

n0ðr; EÞi ¼
2

1� E2

Z 1

E

Rm
n ðrÞRm

n0ðr; EÞrdr ð13:76Þ

and Nm
n is a normalization constant such that the radial polynomials satisfy the

orthogonality Eq. (13.74). For m ¼ 0, the radial polynomials are equal to the

Legendre polynomials Pnð�Þ according to

R0
2nðr; EÞ ¼ Pn

2ðr2 � E2Þ
1� E2

� 1

	 


ð13:77Þ

Thus, they can be obtained from the circle radial polynomials R0
2nðrÞ by replacing r

by ½ðr2 � E2Þ=ð1� E2Þ�1=2; that is,

R0
2nðr; EÞ ¼ R0

2n

r2 � E2

1� E2

� �1=2
" #

ð13:78Þ

It can be seen from Eqs. (13.74) and (13.75) that

Rn
nðr; EÞ ¼ rn=

Xn

i¼0

E2i

 !1=2

ð13:79aÞ

¼ rnfð1� E2Þ=½1� E2ðnþ1Þ�g1=2 ð13:79bÞ

Moreover,

Rn�2
n ðr; EÞ ¼ nrn � ðn� 1Þ½ð1� E2nÞ=ð1� E2ðn�1ÞÞ�rn�2

fð1� E2Þ�1½n2ð1� E2ðnþ1ÞÞ � ðn2 � 1Þð1� E2nÞ2=ð1� E2ðn�1ÞÞ�g1=2

ð13:80Þ

It is evident that the annular radial polynomial Rn
nðr; EÞ differs from the correspond-

ing circle radial polynomial Rn
nðrÞ only in its normalization. We also note that

Rm
n ð1; EÞ ¼ 1; m ¼ 0 ð13:81aÞ

6¼ 1; m 6¼ 0 ð13:81bÞ

The annular polynomials are similar to the circle polynomials, except that they are

orthogonal over an annular pupil. Thus, Rm
n ðr; EÞ is a radial polynomial of degree n in

r containing terms in rn, rn�2; . . ., and rm with coefficients that depend on E. The

annular polynomials are unique in the same manner as the circle polynomials. The

radial Zernike annular polynomials for n � 6 are listed in Table 13.9.
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The expansion coefficients are given by

cnm ¼ 1

pð1� E2Þ

Z 1

E

Z 2p

0

Wðr; y; EÞZm
n ðr; y; EÞrdrdy ð13:82Þ

TABLE 13.9. Radial Zernike annular polynomials Rm
n ðq; EÞ, where E � q � 1.

n m Rm
n ðr; EÞ

0 0 1

1 1 r=ð1þ E2Þ1=2

2 0 ð2r2 � 1� E2Þ=ð1� E2Þ

2 2 r2=ð1þ E2 þ E4Þ1=2

3 1
3ð1þ E2Þr3 � 2ð1þ E2 þ E4Þr

ð1� E2Þ½ð1þ E2Þð1þ 4E2 þ E4Þ�1=2

3 3 r3=ð1þ E2 þ E4 þ E6Þ1=2

4 0 ½6r4 � 6ð1þ E2Þr2 þ 1þ 4E2 þ E4�=ð1� E2Þ2

4 2
4r4 � 3½ð1� E8Þ=ð1� E6Þ�r2

fð1� E2Þ�1½16ð1� E10Þ � 15ð1� E8Þ2=ð1� E6Þ�g1=2

4 4 r4=ð1þ E2 þ E4 þ E6 þ E8Þ1=2

5 1
10ð1þ 4E2 þ E4Þr5 � 12ð1þ 4E2 þ 4E4 þ E6Þr3 þ 3ð1þ 4E2 þ 10E4 þ 4E6 þ E8Þr

ð1� E2Þ2½ð1þ 4E2 þ E4Þð1þ 9E2 þ 9E4 þ E6Þ�1=2

5 3
5r5 � 4½ð1� E10Þ=ð1� E8Þ�r3

fð1� E2Þ�1½25ð1� E1=2Þ � 24ð1� E10Þ2=ð1� E8Þ�g1=2

5 5 r5=ð1þ E2 þ E4 þ E6 þ E8 þ E10Þ1=2

6 0 ½20r6 � 30ð1þ E2Þr4 þ 12ð1þ 3E2 þ E4Þr2 � ð1þ 9E2 þ 9E4 þ E6Þ�=ð1� E2Þ3

6 2

15ð1þ 4E2 þ 10E4 þ 4E6 þ E8Þr6 � 20ð1þ 4E2 þ 10E4 þ 10E6 þ 4E8 þ E10Þr4

þ 6ð1þ 4E2 þ 10E4 þ 20E6 þ 10E8 þ 4E10 þ E12Þr2
ð1� E2Þ2½ð1þ 4E2 þ 10E4 þ 4E6 þ E8Þð1þ 9E2 þ 45E4 þ 65E6 þ 45E8 þ

þ9E10 þ E12Þ�1=2

6 4
6r6 � 5½ð1� E12Þ=ð1� E10Þ�r4

fð1� E2Þ�1½36ð1� E14Þ � 35ð1� E12Þ2=ð1� E10Þ�g1=2

6 6 r6=ð1þ E2 þ E4 þ E6 þ E8 þ E10 þ E12Þ1=2
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as may be seen by substituting Eq. (13.71) and utilizing the orthogonality

Eq. (13.73). The aberration variance is given by

s2W ¼ hW2ðr; y; EÞi � hWðr; y; EÞi2 ¼
X1

n¼1

Xn

m¼0

c2nm ð13:83Þ

Once again, the balanced primary aberrations can be identified with the correspond-

ing Zernike annular polynomials. For example, balanced spherical aberration is

similar to the Zernike annular polynomial Z0
4ðr; y; EÞ. Similarly, balanced coma

and balanced astigmatism are similar to the polynomials Z1
3ðr; y; EÞ and

Z2
2ðr; y; EÞ, respectively. Moreover, the field curvature (and defocus) and distortion

(and wavefront tilt) aberrations can be identified with Z0
2ðr; y; EÞ and Z1

1ðr; y; EÞ,
respectively. The piston polynomial Z0

0ðr; y; EÞ is simply equal to unity.

Figure 13.5 shows how a radial annular polynomial Rm
n ðr; EÞ varies with r for

E ¼ 0:5, that is, for 0:5 � r � 1. Compared to a circle polynomial (see Figure 13.3),

the value of an annular polynomial at the outer edge of the pupil r ¼ 1 is unity only

when m ¼ 0. Its value in the case of tilt, coma, and astigmatism aberrations at the

inner edge of the pupil r ¼ 0:5 is, of course, not zero.

If a system has an annular pupil without an axis of rotational symmetry, for

example, an arbitrarily deformed annular mirror, then the polynomials with sinmy

terms are also included in the expansion of the aberration function. The orthonormal

Zernike annular polynomials Zjðr; y; EÞ in polar coordinates and their numbering are

listed in Table 13.10. Their numbering or sequencing is exactly as for the Zernike

circle polynomials given in Table 13.5. The corresponding polynomials Zjðx; y; EÞ in
Cartesian coordinates ðx; yÞ, which are normalized by the outer radius a of the pupil,

are given in Table 13.11. The subscript n on the coordinates is omitted for simplicity.

13.4.3. Isometric, Interferometric, and PSF Plots for a Zernike

Annular Polynomial Aberration

The Zernike annular polynomials for n � 6 are shown in the form of a pyramid in

Figure 13.6. As in Figure 13.4 for Zernike circle polynomials, the row number

represents the value of n and the number of terms in a certain row is nþ 1. Each

annular polynomial is illustrated in three different but equivalent ways. The value of E

in this figure is 0.5. For each polynomial, the isometric plot at the top illustrates its

shape as produced, for example, in a deformable mirror. The standard deviation of

each polynomial aberration in the figure is one wave. An interferogram, as in optical

testing, is shown on the left. Because of the obscuration, the number of fringes is

different from the corresponding number in the interferograms for a circular pupil.

The number of fringes in this case is equal to the number of times the aberration

changes by one wave as we move from the inner edge of the annular pupil to its outer

edge. The PSF (point-spread function) on the right represents the image of a point

object in the presence of the polynomial aberration. As in the case of PSFs for

circular pupils, more light has been introduced into some PSFs for annular pupils also

to display their details.
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13.5. DETERMINATION OF ZERNIKE COEFFICIENTS FROM

DISCRETE WAVEFRONT ERROR DATA

13.5.1. Introduction

We have seen that when the aberration function is known analytically, its aberration

coefficients can be determined by calculating the integral in Eqs. (13.21), (13.51), or

FIGURE 13.5. Variation of a radial annular polynomial Rm
n ðr; EÞ with r for E ¼ 0:5. (a) Defocus and

spherical aberrations. (b) Tilt and coma. (c) Astigmatism.
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(13.82), depending on whether the system is rotationally symmetric or not, or if the

pupil is circular or annular. Numerically efficient algorithms to evaluate these

integrals can be written that overcome the computational problems associated with

the oscillatory behavior of the Zernike polynomials (Wang and Silva, 1980; Prata and

TABLE 13.10. Orthonormal Zernike annular polynomials Zjðq; h; eÞ. The indices j, n,

and m are called the polynomial number, radial degree, and azimuthal frequency, respec-

tively. The polynomials Zj are ordered such that an even j corresponds to a symmetric

polynomial varying as cosmh, while an odd j corresponds to an antisymmetric polynomial

varying as sinmh. A polynomial with a lower value of n is ordered first, and for a given

value of n, a polynomial with a lower value of m is ordered first.

j n m Zjðr; y; EÞ Zernike aberration name

1 0 0 R0
0ðr; EÞ Piston

2 1 1 2R1
1ðr; EÞ cos y x tilt

3 1 1 2R1
1ðr; EÞ sin y y tilt

4 2 0
ffiffiffi
3

p
R0
2ðr; EÞ Defocus

5 2 2
ffiffiffi
6

p
R2
2ðr; EÞ sin 2y Primary astigmatism at 45�

6 2 2
ffiffiffi
6

p
R2
2ðr; EÞ cos 2y Primary astigmatism at 0�

7 3 1
ffiffiffi
8

p
R1
3ðr; EÞ sin y Primary y coma

8 3 1
ffiffiffi
8

p
R1
3ðr; EÞ cos y Primary x coma

9 3 3
ffiffiffi
8

p
R3
3ðr; EÞ sin 3y

10 3 3
ffiffiffi
8

p
R3
3ðr; EÞ cos 3y

11 4 0
ffiffiffi

5
p

R0
4ðr; EÞ Primary spherical

12 4 2
ffiffiffiffiffi
10

p
R2
4ðr; EÞ cos 2y Secondary astigmatism at 0�

13 4 2
ffiffiffiffiffi
10

p
R2
4ðr; EÞ sin 2y Secondary astigmatism at 45�

14 4 4
ffiffiffiffiffi
10

p
R4
4ðr; EÞ cos 4y

15 4 4
ffiffiffiffiffi
10

p
R4
4ðr; EÞ sin 4y

16 5 1
ffiffiffiffiffi
12

p
R1
5ðr; EÞ cos y Secondary x coma

17 5 1
ffiffiffiffiffi

12
p

R1
5ðr; EÞ sin y Secondary y coma

18 5 3
ffiffiffiffiffi
12

p
R3
5ðr; EÞ cos 3y

19 5 3
ffiffiffiffiffi

12
p

R3
5ðr; EÞ sin 3y

20 5 5
ffiffiffiffiffi
12

p
R5
5ðr; EÞ cos 5y

21 5 5
ffiffiffiffiffi
12

p
R5
5ðr; EÞ sin 5y

22 6 0
ffiffiffi
7

p
R0
6ðr; EÞ Secondary spherical

23 6 2
ffiffiffiffiffi
14

p
R2
6ðr; EÞ sin 2y Tertiary astigmatism at 45�

24 6 2
ffiffiffiffiffi
14

p
R2
6ðr; EÞ cos 2y Tertiary astigmatism at 0�

25 6 4
ffiffiffiffiffi
14

p
R4
6ðr; EÞ cos 4y

26 6 4
ffiffiffiffiffi
14

p
R4
6ðr; EÞ sin 4y

27 6 6
ffiffiffiffiffi
14

p
R6
6ðr; EÞ sin 6y

28 6 6
ffiffiffiffiffi

14
p

R6
6ðr; EÞ cos 6y
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TABLE 13.11. Orthonormal Zernike circle polynomials Zjðx; y; eÞ in Cartesian

coordinates ðx; yÞ, which are normalized by the pupil radius a. The subscript n on the

coordinates indicating the normalization is omitted for simplicity. Note that x ¼ q cos h,

y ¼ q sin h, and e � q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2þ y2
p

� 1.

Polynomial Zf ðx; y; EÞ
Z1 1

Z2 2x=ð1þ E2Þ1=2

Z3 2y=ð1þ E2Þ1=2

Z4
ffiffiffi
3

p
ð2r2 � 1� E2Þ=ð1� E2Þ

Z5 2
ffiffiffi
6

p
xy=ð1þ E2 þ E4Þ1=2

Z6
ffiffiffi
6

p
ðx2 � y2Þ=ð1þ E2 þ E4Þ1=2

Z7

ffiffiffi
8

p
y½3ð1þ E2Þr2 � 2ð1þ E2 þ E4Þ�

ð1� E2Þ½1þ E2Þð1þ 4E2 þ E4Þ�1=2

Z8

ffiffiffi
8

p
x½3ð1þ E2Þr2 � 2ð1þ E2 þ E4Þ�

ð1� E2Þ½1þ E2Þð1þ 4E2 þ E4Þ�1=2

Z9
ffiffiffi
8

p
yð3x2 � y2Þ=ð1þ E2 þ E4 þ E6Þ1=2

Z10
ffiffiffi
8

p
xðx2 � 3y2Þ=ð1þ E2 þ E4 þ E6Þ1=2

Z11
ffiffiffi

5
p

½6r4 � 6ð1þ E2Þr2 þ ð1þ 4E2 þ E4Þ�=ð1� E2Þ2

Z12

ffiffiffiffiffi
10

p
ðx2 � y2Þ½4r2 � 3ð1� E8Þ=ð1� E6Þ�

fð1� E2Þ�1½16ð1� E10Þ � 15ð1� E8Þ2=ð1� E6Þ�g1=2

Z13
2
ffiffiffiffiffi
10

p
xy½4r2 � 3ð1� E8Þ=ð1� E6Þ�

fð1� E2Þ�1½16ð1� E10Þ � 15ð1� E8Þ2=ð1� E6Þ�g1=2

Z14
ffiffiffiffiffi
10

p
ðr4 � 8x2y2Þ=ð1þ E2 þ E4 þ E6 þ E8Þ1=2

Z15 4
ffiffiffiffiffi
10

p
xyðx2 � y2Þ=ð1þ E2 þ E4 þ E6 þ E8Þ1=2

Z16

ffiffiffiffiffi
12

p
x½10ð1þ 4E2 þ E4Þr4 � 12ð1þ 4E2 þ 4E4 þ E6Þr2�

þ 3ð1þ 4E2 þ 10E4 þ 4E6 þ E8Þ�
ð1� E2Þ2½ð1þ 4E2 þ E4Þð1þ 9E2 þ 9E4 þ E6Þ�1=2

Z17

ffiffiffiffiffi

12
p

y½10ð1þ 4E2 þ E4Þr4 � 12ð1þ 4E2 þ 4E4 þ E6Þr2�
þ 3ð1þ 4E2 þ 10E4 þ 4E6 þ E8Þ�

ð1� E2Þ2½ð1þ 4E2 þ E4Þð1þ 9E2 þ 9E4 þ E6Þ�1=2

Z18

ffiffiffiffiffi
12

p
xðx2 � 3y2Þ½5r2 � 4ð1� E10Þ=ð1� E8Þ�

fð1� E2Þ�1½25ð1� E12Þ � 24ð1� E10Þ2=ð1� E8Þ�g1=2

Z19

ffiffiffiffiffi

12
p

yð3x2 � y2Þ½5r2 � 4ð1� E10Þ=ð1� E8Þ�
fð1� E2Þ�1½25ð1� E12Þ � 24ð1� E10Þ2=ð1� E8Þ�g1=2

532 ZERNIKE POLYNOMIALS AND WAVEFRONT FITTING



Rusch, 1989). The variance of the aberration is given by the sum of the squares of the

aberration coefficients, with the exception of a1 which represents the mean value of

the aberration. Although, in principle, the number of polynomials representing the

aberration function is infinite, in practice, the number will be finite. This number is

determined by comparing the variance obtained by summing the squares of the finite

number of coefficients with the actual variance. The number of polynomials is

increased until the difference between the two variances is below a prechosen value,

which depends on the tolerance to which the aberration is being determined.

When the aberration function is known only at a discrete set of points, as in a

digitized interferogram, the integral for determining the aberration coefficients

reduces to a sum and the coefficients thus obtained may be in error, since the Zernike

polynomials Zjðx; yÞ, which are orthogonal over the full circular region, are not

orthogonal over the discrete points of the aberration data set. The magnitude of the

error decreases as the number of points increases. This is not a serious problem when

the wavefront errors are determined by, say, phase-shifting interferometry, since the

number of points can be very large. However, when the pupil is neither circular nor

annular, then the corresponding Zernike polynomials are not orthogonal over the data

set even if the number of points is large. Such cases are real and quite common.

For example, a system with a circular pupil for an axial point object yields an

approximately elliptical pupil for an off-axis point object. The pupil may even be

Z20
ffiffiffiffiffi
12

p
xð16x4 � 20x2r2 þ 5r4Þ=½1þ E2 þ E4 þ E6 þ E8 þ E10Þ1=2

Z21
ffiffiffiffiffi
12

p
yð16y4 � 20y2r2 þ 5r4Þ=½1þ E2 þ E4 þ E6 þ E8 þ E10Þ1=2

Z22
ffiffiffi
7

p
½20r6 � 30ð1þ E2Þr4 þ 12ð1þ 3E2 þ E4Þr2 � ð1þ 9E2 þ 9E4 þ E6Þ�=ð1� E2Þ3

Z23

2
ffiffiffiffiffi
14

p
xy½15ð1þ 4E2 þ 10E4 þ 4E6 þ E8Þr4 � 20ð1þ 4E2 þ 10E4 þ 10E6 þ 4E8 þ E10Þr2

þ 6ð1þ 4E2 þ 10E4 þ 20E6 þ 10E8 þ 4E10 þ E12Þ�
ð1� E2Þ2½1þ 4E2 þ 10E4 þ 4E6 þ E8Þð1þ 9E2 þ 45E4 þ 65E6 þ 45E8 þ 9E10 þ E12Þ�1=2

Z24

ffiffiffiffiffi

14
p

ðx2 � y2Þ½15ð1þ 4E2 þ 10E4 þ 4E6 þ E8Þr4 � 20ð1þ 4E2 þ 10E4

þ 10E6 þ 4E8 þ E10Þr2 þ 6ð1þ 4E2 þ 10E4 þ 20E6 þ 10E8 þ 4E10 þ E12Þ�
ð1� E2Þ2½1þ 4E2 þ 10E4 þ 4E6 þ E8Þð1þ 9E2 þ 45E4 þ 65E8 þ 45E8 þ 9E10 þ E12Þ�1=2

Z25
4
ffiffiffiffiffi
14

p
xyðx2 � y2Þ½6r2 � 5ð1� E12Þ=ð1� E10Þ�

fð1� E2Þ�1½36ð1� E14Þ � 35ð1� E12Þ2=ð1� E10Þ�g1=2

Z26

ffiffiffiffiffi
14

p
ð8x4 � 8x2r2 þ r4Þ½6r2 � 5ð1� E12Þ=ð1� E10Þ�

fð1� E2Þ�1½36ð1� E14Þ � 35ð1� E12Þ2=ð1� E10Þ�g1=2

Z27
ffiffiffiffiffi

14
p

xyð32x4 � 32x2r2 þ 6r4Þ=ð1þ E2 þ E4 þ E6 þ E8 þ E10 þ E12Þ1=2

Z28
ffiffiffiffiffi
14

p
ð32x6 � 48x4r2 þ 18x2r4 � r6Þ=ð1þ E2 þ E4 þ E6 þ E8 þ E10 þ E12Þ1=2

TABLE 13.11. (Continued)

Polynomial Zf ðx; y; EÞ
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irregular in shape due to vignetting. Hence, ray tracing or testing of the system yields

wavefront error data at an array of points across a region that may or may not be

circular or annular. Similarly, in the case of a segmented mirror, the segment under

test may be hexagonal in shape, as in the Keck telescope. When we test such systems,

we measure wavefront error data at an array of points, presumed regularly spaced,

either in reality or by interpolation. For interpolation schemes, see, for example,

Korn and Korn (1968). But invariably wewant to know howmuch of the aberration is

a focus error, spherical aberration, or astigmatism, etc. In such cases, we first

determine the coefficients of an expansion in terms of polynomials that are ortho-

gonal over the data set and obtained by the Gram–Schmidt orthogonalization

process, and then determine the Zernike coefficients of the aberration function

regardless of the shape of the pupil (Wang and Silva, 1980; Malacara et al., 1990;

Swantner and Chow, 1994; Upton and Ellerbroek, 2004; Mahajan and Dai, 2006).

This process is outlined with a numerical example where a hexagonal pupil is

considered (Mahajan and Dai, 2006; Dai and Mahajan, 2007). Since analytical

results for the orthonormal polynomials for such a pupil are available, it is easy to

compare the numerical results with the corresponding analytical ones and thereby

assess the validity of a software program.

It should be noted that the wavefront must be relatively smooth in order to consider

its Zernike aberration coefficients. It does not make sense, for example, to consider the

FIGURE 13.6. Zernike annular polynomials pyramid showing the isometric plot on the top, interfero-

gramon the left, and PSFon the right for each polynomial. Thevalue of E is 0.5, and the standard deviation of

each polynomial aberration is one wave.
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Zernike coefficients of a localized region of a pupil, such as the one resulting from a

narrow bump of a mirror. In principle, Zernike coefficients in such cases can also be

determined, but it may take a large number of polynomials to represent suchwavefronts.

The physical significance of these coefficients may not be of much use, however. The

use of Gaussian functions has been suggested for such cases (Montoya-Hernández

et. al., 1999). It should be evident that in the case of a segmented mirror, the segments

must be phased (Chanan and Ohara, 1998; Chanan and Troy, 1998), the subwavefronts

of the segments stitched to determine the overall wavefront of the mirror (Thunen and

Kwon, 1982; Jenson, Chow, and Lawerence, 1984; Fleig, Dumas, Murphy, and Forbes,

2003) and then determine the Zernike coefficients of the mirror.

13.5.2. Orthonormal Coefficients and Aberration Variance

Let N be the number of points at which the wavefront error Wn  Wðxn; ynÞ,
n ¼ 1; 2; 3; . . . ;N, is known by way of an interferogram. The variance of the

aberration is given by

s2N ¼ hW2i � hWi2

¼ 1

N

XN

n¼1

W2
n �

1

N

XN

n¼1

Wn

 !2

ð13:84Þ

Let the aberration data be approximated by an aberration function Ŵðxn; ynÞ in terms

of L polynomials Flðxn; ynÞ, l ¼ 1; 2; 3; . . . ; L, in the form

Ŵðxn; ynÞ ¼
XL

l¼1

alFlðxn; ynÞ ð13:85Þ

where al are the expansion or the aberration coefficients. The mean square difference

between the actual and the estimated wavefront errors is given by

E ¼ 1

N

XN

n¼1

ðWn � ŴnÞ2

¼ 1

N

XN

n¼1

Wn �
XL

l¼1

alFln

 !2

ð13:86Þ

The mean square difference is minimum if the coefficients al are such that

0 ¼ @E

@al
¼ 2

N

XN

n¼1

XL

k¼1

akFkn �Wn

 !

Fln

or

XL

k¼1

ak
XN

n¼1

FknFln ¼
XN

n¼1

WnFln ð13:87Þ
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If the polynomials Fl are orthonormal over the data set, that is, if

1

N

XN

n¼1

FknFln ¼ dkl ð13:88Þ

then Eq. (13.87) yields the coefficients

al ¼
1

N

XN

n¼1

WnFln ð13:89Þ

Note that the value of an orthonormal coefficient al is independent of the number L of

terms used to estimate the aberration data.

The aberration variance in terms of the aberration coefficients can be obtained

from the mean hŴi and the mean square hŴ2i values as follows:

hŴi ¼ 1

N

XN

n¼1

XL

l¼1

alFln

¼
XL

l¼1

al
1

N

XN

n¼1

Fln

¼ a1 ð13:90Þ

hŴ2i ¼ 1

N

XN

n¼1

XL

k¼1

akFkn

XL

l¼1

alFln

¼
XL

k¼1

ak
XL

l¼1

al
1

N

XN

n¼1

FknFln

¼
XL

l¼1

a2l ð13:91Þ

and

ŝ2 ¼ hŴ2i � hŴi2 ¼
XL

l¼2

a2l ð13:92Þ

In obtaining Eq. (13.90), we have used the orthonormality Eq. (13.88) subject to the

usual condition F1 ¼ 1. Thus, the variance of the estimated aberration is simply the

sum of the squares of the aberration coefficients al, with the exception of a1 which

represents the mean value of the aberration. The coefficient of each term of

Eq. (13.85), except l ¼ 1, represents its standard deviation. The addition or subtrac-

tion of one or more orthonormal terms does not affect the value of the coefficients al.

The number of polynomials L is again dictated by the tolerance on the difference

between the estimated variance ŝ2 and its actual value s2N . For example, wemay want

that ŝ be equal to sN within l=30.
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13.5.3. Orthonormal Polynomials

The orthonormal polynomials Flðxn; ynÞ may be obtained from the Zernike

polynomials Zf ðxn; ynÞ by the Gram–Schmidt orthogonalization process (Korn and

Korn, 1968):

G1 ¼ Z1 ¼ 1 ð13:93aÞ

Glþ1 ¼
Xl

k¼1

clþ1;kFk þ Zlþ1; l ¼ 1; 2; . . . ; L� 1 ð13:93bÞ

Flþ1 ¼
Glþ1

k Glþ1 k
¼ Glþ1

1

N

XN

n¼1

G2
lþ1;n

 !1=2
ð13:93cÞ

where

clþ1;k ¼ � 1

N

XN

n¼1

Zlþ1;nFkn ð13:93dÞ

Thus, the F-polynomials can be obtained recursively as follows:

G1 ¼ Z1 ¼ 1 ð13:94aÞ
G2 ¼ c21F1 þ Z2 ¼ c21Z1 þ Z2 ð13:94bÞ
G3 ¼ c31F1 þ c32F2 þ Z3

¼ c31 þ
c32c21

k G2 k

� �

Z1 þ
c32

k G2 k
Z2 þ Z3 ð13:94cÞ

G4 ¼ c41F1 þ c42F2 þ c43F3 þ Z4

¼ c41 þ
c42c21

k G2 k
þ c43

k G3 k
c31 þ

c32c21

k G2 k

� �	 


Z1

þ 1

k G2 k
c42 þ

c43c32

k G3 k

� �

Z2 þ
c43

k G3 k
Z3 þ Z4 ð13:94dÞ

etc. A general expression for a G-polynomial may be written in the form

Gl ¼
Xl�1

i¼1

Xl�i

j¼1

cl;l�j Ml�j;iZi þ Zl ð13:95aÞ

where

Mli ¼
1

k Gl k
Xl�i

j¼1

cl;l�jMl�j;i ð13:95bÞ

Each G- and, therefore, F-polynomial is thus a linear combination of the Zernike

polynomials. The orthonormal F-polynomials represent the unit vectors of an
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L-dimensional space for expressing the aberration data. They can be written in a

matrix form according to

Flðxn; ynÞ ¼
Xl

i¼1

MliZiðxn; ynÞ with Mll ¼
1

k Gl k
ð13:96Þ

While the diagonal elements of the M-matrix are simply equal to the normalization

constants of the G- polynomials, there are no matrix elements above the diagonal.

The matrix is triangular and the missing elements may be given a value of zero. The

orthonormal polynomials can be obtained nonrecursively with a matrix approach

(Dai and Mahajan, 2007).

13.5.4. Zernike Coefficients

Substituting Eq. (13.96) into Eq. (13.85), we obtain

Ŵðxn; ynÞ ¼
XL

l¼1

al
Xl

i¼1

MliZiðxn; ynÞ

¼
XL

l¼1

XL

i¼l

aiMilZlðxn; ynÞ ð13:97Þ

Writing the aberration function in terms of Zernike polynomials in the form

Ŵðxn; ynÞ ¼
XL

l¼1

blZlðxn; ynÞ ð13:98Þ

and comparing with Eq. (13.97) yields the Zernike coefficients

bl ¼
XL

i¼l

aiMil ð13:99Þ

Since the Zernike polynomials are not orthogonal over the data set, the aberration

coefficients bl are not independent of each other, the mean value of a polynomial is

not zero, b1 is not equal to the mean value a1 of Ŵðxn; ynÞ, the variance of the

aberration cannot be obtained by summing the squares of the aberration coefficients

bl with l ¼ 2; 3; . . . ; L, and the value of a coefficient changes as the number L of the

aberration terms changes. Hence, when one or more aberration terms are added or

subtracted from the aberration function, the coefficients bl change.

In practice, the F-polynomials are not known. What we know are the wavefront

errors at an array of points within a pupil of arbitrary shape, either by ray tracing, as in

optical design, or by measurement, as in optical testing, and wewant to determine the

Zernike coefficients that match these errors in a least squares sense. A summary of

the procedure for determining these coefficients is as follows.

1. Using the Zernike circle or annular polynomials, depending on the whether the

shape of the actual pupil is close to being circular or annular, determine the
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F-polynomials and the M-matrix recursively using Eqs. (13.93)–(13.95). In

this step, only the location of the data points is needed. The F-polynomials are

orthogonal over the data set, and they change as the data set changes.

2. The aberration coefficients al are determined from Eq. (13.89) by substituting

the F-polynomials and the wavefront error data.

3. Finally, the Zernike coefficients bl are obtained from Eq. (13.99).

The number L of the F- (or G-) and, therefore, the Zernike polynomials is

increased until the least square error is below a prechosen value. It should be

evident that, as the pupil approaches a circular (or an annular) shape and the

number of data points is sufficiently large, the F-polynomials approach the

orthonormal Zernike circle (or annular) polynomials, the matrix M approaches

a unity matrix (i.e., one with unity diagonal elements and zero others), and the

expansion coefficients al ! bl.

13.5.5 Numerical Example

As a numerical example, we consider a hexagonal pupil since analytical expressions

are available for the orthonormal polynomials and the M-matrix (Mahajan and Dai,

2006; Dai and Mahajan, 2007). Hence, numerical results can be compared with the

corresponding analytical ones. First we consider the analytical results. The first

eleven polynomials that are orthonormal over the hexagonal pupil are given in

Table 13.12. They can be obtained from the Zernike circle polynomials by multi-

plying them with the matrix M given in Table 13.13 according to Eq. (13.96).

TABLE 13.12. Orthonormal hexagonal polynomials in polar and Cartesian

coordinates, where ðx; yÞ ¼ qðcos h; sin hÞ and ðx; yÞ and q lie inside the hexagon.

j Hjðr; yÞ ¼ Hjðx; yÞ
1 1

2 2
ffiffiffiffiffiffiffiffi

6=5
p

r cos y ¼ 2
ffiffiffiffiffiffiffiffi

6=5
p

x

3 2
ffiffiffiffiffiffiffiffi

6=5
p

r sin y ¼ 2
ffiffiffiffiffiffiffiffi

6=5
p

y

4
ffiffiffiffiffiffiffiffiffiffi

5=43
p

ð12r2 � 5Þ
5 2

ffiffiffiffiffiffiffiffiffiffi

15=7
p

r2 sin 2y ¼ 4
ffiffiffiffiffiffiffiffiffiffi

15=7
p

xy

6 2
ffiffiffiffiffiffiffiffiffiffi

15=7
p

r2 cos 2y ¼ 2
ffiffiffiffiffiffiffiffiffiffi

15=7
p

ðx2 � y2Þ
7 24

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

42=3685
p

ð25r3 � 14rÞ sin y ¼ 24
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

42=3685
p

yð25r2 � 14Þ
8 24

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

42=3685
p

ð25r3 � 14rÞ cos y ¼ 24
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

42=3685
p

xð25r2 � 14Þ
9 ð4=3Þ

ffiffiffiffiffi
10

p
r3 sin 3y ¼ ð4=3Þ

ffiffiffiffiffi
10

p
yð3x2 � y2Þ

10 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

70=103
p

r3 cos 3y ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

70=103
p

xðx2 � 3y2Þ
11 ð3=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1072205
p

Þð6020r4 � 5140r2 þ 737Þ
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TABLE 13.13. Analytical matrix M for obtaining the Zernike coefficients bl from the orthonormal hexagonal coefficients al.

1 0 0 0 0 0 0 0 0 0 0

0
ffiffiffiffiffiffiffiffi

6=5
p

0 0 0 0 0 0 0 0 0

0 0
ffiffiffiffiffiffiffiffi

6=5
p

0 0 0 0 0 0 0 0
ffiffiffiffiffiffiffiffiffiffi

5=43
p

0 0 2
ffiffiffiffiffiffiffiffiffiffiffiffi

15=43
p

0 0 0 0 0 0 0

0 0 0 0
ffiffiffiffiffiffiffiffiffiffi

10=7
p

0 0 0 0 0 0

0 0 0 0 0
ffiffiffiffiffiffiffiffiffiffi

10=7
p

0 0 0 0 0

0 0 16
ffiffiffiffiffiffiffiffiffi
14

11055

q

0 0 0 10
ffiffiffiffiffiffiffi
35

2211

q

0 0 0 0

0 16
ffiffiffiffiffiffiffiffiffi
14

11055

q

0 0 0 0 0 10
ffiffiffiffiffiffiffi
35

2211

q

0 0 0

0 0 0 0 0 0 0 0 2
3

ffiffiffi

5
p

0 0

0 0 0 0 0 0 0 0 0 2
ffiffiffiffiffiffi
35
103

q

0
521ffiffiffiffiffiffiffiffiffiffiffiffi

1072205
p 0 0 88

ffiffiffiffiffiffiffiffiffiffiffi
15

214441

q

0 0 0 0 0 0 14
ffiffiffiffiffiffiffi
43
4987

q

TABLE 13.14. Analytical inverse matrix M�1 for obtaining the orthonormal hexagonal coefficients al from the Zernike coefficients bl.

1 0 0 0 0 0 0 0 0 0 0

0
ffiffiffiffiffiffiffiffi

5=6
p

0 0 0 0 0 0 0 0 0

0 0
ffiffiffiffiffiffiffiffi

5=6
p

0 0 0 0 0 0 0 0

�1=2
ffiffiffi
3

p
0 0

ffiffiffiffiffiffiffiffiffiffiffiffi

43=15
p

=2 0 0 0 0 0 0 0

0 0 0 0
ffiffiffiffiffiffiffiffiffiffi

7=10
p

0 0 0 0 0 0

0 0 0 0 0
ffiffiffiffiffiffiffiffiffiffi

7=10
p

0 0 0 0 0

0 0 �8=5
ffiffiffiffiffi

15
p

0 0 0
ffiffiffiffiffiffiffi
2211
35

q

=10 0 0 0 0

0 �8=5
ffiffiffiffiffi

15
p

0 0 0 0 0
ffiffiffiffiffiffiffi
2211
35

q

=10 0 0 0

0 0 0 0 0 0 0 0 3=2
ffiffiffi

5
p

0 0

0 0 0 0 0 0 0 0 0
ffiffiffiffiffiffi
103
35

q

=2 0

�1=2
ffiffiffi

5
p

0 0 �22=7
ffiffiffiffiffi
43

p
0 0 0 0 0 0

ffiffiffiffiffiffiffi
4987
43

q

=14

5
4
0



Since only 16 of the 121 matrix elements are zero, we obtain simple expressions

for the Zernike coefficients bl in terms of the orthonormal coefficients al:

b1 ¼ a1M11 þ a4M41 þ a11M11;1

¼ a1 þ
ffiffiffiffiffiffiffiffiffiffi

5=53
p

a4 þ ð521=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1072205
p

Þa11 ð13:100aÞ
b2 ¼ a2M22 þ a8M82

¼
ffiffiffiffiffiffiffiffi

6=5
p

a2 þ 16
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

14=11055
p

a8 ð13:100bÞ
b3 ¼ a3M33 þ a7M73

¼
ffiffiffiffiffiffiffiffi

6=5
p

a3 þ 16
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

14=11055
p

a7 ð13:100cÞ
b4 ¼ a4M44 þ a11M11;4

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

15=43
p

a4 þ 88
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

15=214441
p

a11 ð13:100dÞ

and

bl ¼ alMll; l ¼ 5; 6; . . . ; 11 ð13:100eÞ

Thus, for example, b11 ¼ a11M11; 11 ¼ 14
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

43=4987
p

a11 ¼ 1:3a11.
The orthonormal coefficients al can be obtained from Eq. (13.99) by inverting it.

Thus,

al ¼
XL

l¼i

blM
�1
il ð13:101Þ

where M�1
il is the inverse matrix given in Table 13.14. Hence, the orthonormal

coefficients are given by

a1 ¼ b1M11 þ b4M
�1
41 þ b11M

�1
11;1

¼ b1 � ð1=2
ffiffiffi

3
p

Þb4 � ð1=2
ffiffiffi

5
p

Þb11 ð13:102aÞ
a2 ¼ b2M

�1
22 þ b8M

�1
82

¼
ffiffiffiffiffiffiffiffi

5=6
p

b2 � ð8=5
ffiffiffiffiffi

15
p

Þb8 ð13:102bÞ
a3 ¼ b3M

�1
33 þ b7M

�1
73

¼
ffiffiffiffiffiffiffiffi

5=6
p

b3 � ð8=5
ffiffiffiffiffi

15
p

Þb7 ð13:102cÞ
a4 ¼ b4M

�1
44 þ b11M

�1
11;4

¼ ð1=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

43=15
p

b4 � ð22=7
ffiffiffiffiffi

43
p

Þb11 ð13:102dÞ
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and

al ¼ blM
�1
ll ; l ¼ 5; 6; . . . ; 11 ð13:102eÞ

Equations (100 e) and (102 e) holdwhen the aberration function is expanded in terms

of the first 11 polynomials. However, if say, the first 15 polynomials are used in the

expansion, then b5, for example, also depends on a13 and a15 (Dai and Mahajan, 2007).

It is evident from Eq. (13.51) that the orthonormal hexagonal coefficients al are

independent of the number L of the polynomials used in the expansion of an

aberration function. Moreover, a1 represents the mean value and the sum of the

squares of the coefficients al with l > 1 represents the variance of the aberration. This

is not true of the Zernike coefficients bl, since the Zernike circle polynomials are not

orthogonal over the hexagonal pupil. Thus, the values of the coefficients change as

the number of polynomials changes, the mean value of a Zernike polynomial is not

zero, b1 does not represent the mean value of the aberration, and the variance of the

aberration is not equal to the sum of the squares of the coefficients bl with l > 1.

Hence, these coefficients are not as useful as the orthonormal coefficients al.

Now we outline the procedure for simulating a numerical example. Consider an

interferogram represented by an aberration function consisting of some aberration

terms with coefficients bl. We calculate the corresponding orthonormal coefficients

al from Eqs. (13.102). The mean value of the aberration is given by a1 and the

variance by

s21 ¼
X

l¼2

a2l ð13:103Þ

where the subscript 1 indicates an infinite number of points since the variance has

been determined analytically. In practice, the calculation process is of course the

reverse of the above. We are given the aberration data at N points, we determine the

polynomials Fl that are orthonormal over the data, determine the estimated matrix M̂

and the orthonormal coefficients âl, and then determine the Zernike coefficients bl.

Given the simulated aberration function, we calculate the aberration valuesWn at

an array of N points distributed uniformly within a unit hexagon. The standard

deviation sN of the aberration is calculated using Eq. (13.84). This value approaches

s1as N increases. The polynomials Fl that are orthonormal over the chosen array of

points are determined by use of Eqs. (13.93)–(13.94). Suppose we approximate the

aberration data by 11 F-polynomials, then L ¼ 11, and we can determine the value of

each polynomial at the array of points, and compare with those obtained from the

analytical expressions for the F-polynomials given in Table 13.12.

The quantities that are calculated in the process of determining the orthonormal

F-polynomials also yield the elements of the M-matrix. For example, since

Fl ¼ Gl= k Gl k, from Eq. (13.94c)

M31 ¼
1

k G3 k
c31 þ

c32c21

k G2 k

� �

; M32 ¼
c32

k G3 kk G2 k
; M33 ¼

1

k G3 k
ð13:104Þ
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Of course, M3l ¼ 0 for l ¼ 4; 5; . . . ; 11. Because of the hexagonal symmetry of the

pupil, c21 and c31 are also equal to zero (Mahajan and Dai, 2006). Hence, even M31

andM32 are equal to zero. The full M̂-matrix thus obtained can be compared with the

corresponding analytical matrix given in Table 13.13.

Substituting the matrix elements and the orthogonal coefficients into Eq. (13.99),

we obtain the eleven estimated Zernike coefficients b̂l and compare them with the

coefficients bl used in simulating the interferogram. Substituting the aberration

values Wn and a polynomial Fl into Eq. (13.89), we calculate the estimated

orthonormal coefficient âl. The 11 coefficients thus obtained are substituted into

Eq. (13.92) to obtain the estimated standard deviation ŝN of the aberration and

compare it with the actual value sN .

If, for better estimation, the number of the data points is increased without

changing the number of polynomials L, then the values of the matrix elements

change somewhat. They becomemore nearly the same as those obtained analytically.

Accordingly, the calculated orthonormal polynomials match more closely their

analytical counterparts, and the precision of the orthonormal and Zernike coefficients

improves. If the number of polynomials is increased for a better fit of the data, say,

from L1 to L2, then the matrix elements of L1 are a subset of those of L2, that is, the

matrix elements for a given array of points do not change as new ones are added when

L is increased.

13.6. SUMMARY

Starting with a power-series expansion, the primary or Seidel, and secondary or

Schwarzschild aberrations are described. The Zernike circle and annular polynomials

representing balanced aberrations for minimum variance that are orthogonal over a

circular or an annular pupil, respectively, are discussed. These polynomials are written

in an orthonormal form, both in polar as well as in Cartesian coordinates, so that when

an aberration function is expanded in terms of them, each expansion coefficient

represents the standard deviation of the corresponding aberration term evaluated across

the pupil. Accordingly, the variance of the aberration function is given by the sum of

the squares of the aberration coefficients, with the exception of the piston coefficient.

The number of terms required to adequately represent an aberration function is

increased until the variance thus obtained equals the actual variancewithin a prechosen

tolerance. The value of an aberration coefficient, however, as determined by the

integral in Eq. (13.21), (13.51), or (13.82), is independent of the number of terms.

Similarly, the aberration coefficients are independent of each other. Equations for the

conversion of Seidel aberrations into Zernike aberrations and vice versa are given. It is

emphasized that the Seidel coefficients can be obtained from the primary Zernike

aberrations only if the higher-order Zernike terms are negligible.

When the aberration function is known only at a discrete array of points, which is

often the case in practice, for example, by ray tracing, as in optical design, or by

measurement, as in optical testing, then the integral reduces to a sum. The sum

approaches the integral as the number of points increases. However, the Zernike
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polynomials are not orthogonal over the data set, and, therefore, the coefficients are

not independent of each other or the number of terms used in the expansion.

Similarly, Zernike polynomials are not orthogonal when the pupil is neither circular

nor annular, regardless of the number of points. In such cases, a procedure is

described for determining the Zernike coefficients that match the data values in a

least squares sense. In this procedure, we first determine polynomials that are

orthogonal over the data set by the Gram–Schmidt orthogonalization process. The

Zernike coefficients of the expansion are then determined from the coefficients of

these orthogonal polynomials. These coefficients are not independent of each other

and their values change as the number of aberration terms changes. Moreover, the

variance of the aberration is not equal to the sum of the squares of the aberration

coefficients. A numerical example of a hexagonal pupil is outlined to illustrate these

concepts. Since analytical results are available for such a pupil, it is expected that it

will help verify the software program written by a user.
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14

Phase Shifting Interferometry

Horst Schreiber and John H. Bruning

14.1. INTRODUCTION

The single biggest change in all types of instrumentation over the past 30 years or so

has been the integration of computers into the measurement system. Interferometry is

no exception, and the prime manifestation of this situation has been the development

of phase shifting interferometry (PSI). Unlike many of the techniques discussed

elsewhere in this book, PSI is not a specific optical hardware configuration, but rather

a data collection and analysis method that can be applied to a great variety of testing

situations.

While the analysis of static interferograms has benefited from computerization, it

suffers from the need to find fringe centers, and the resulting trade-off between

precision and number of data points. Data is collected only along the fringe centers,

and most analyses need the data on a regular grid, therefore requiring interpolation.

This low spatial sampling along the fringe centers also limits the lateral resolution of

the method. With a static interferogram, an additional piece of information is also

required to determine the polarity of the wavefront.

PSI electronically records a series of interferograms while the reference phase

of the interferometer is changed. The wavefront phase is encoded in the variations

in the intensity pattern of the recorded interferograms, and a simple point-by-point

calculation recovers the phase. The need to locate the fringe centers is eliminated,

as are the associated problems. While the earliest reference to this technique dates

back to 1966 (Carré, 1966), the development of PSI techniques really began in the

early 1970’s (Crane, 1969; Bruning et al. 1974; Wyant, 1975; Johnson and Moore,

1977; Hardy et al. 1977; Stump, 1979; Bruning, 1978; Moore, 1973; Massie, et al.

1979). The applications for this early work included optical testing, real-time

wavefront sensing for active optics, and microscopy. With the advent of optical

lithography in the 80’s, PSI development received a push for higher accuracies,

and therefore a theory around algorithms less sensitive to error sources was

Optical Shop Testing, Third Edition Edited by Daniel Malacara
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developed (Schwider et al., 1983; Creath, 1988; Malacara, 1990; Larkin and Oreb,

1992; Schwider et al. 1993). In the 90s a more rigorous treatment of the PSI

approach resulted in several theories on how to develop custom PSI algorithms

tailored to the applications need (Surrel 1993, 1996, 1997, 1998, Phillon 1997,

Hibino et al. 1995, 1997, 1998, 2004 Malacara-Doblado et al. 2000, 2001, Zhu and

Gemma 2001).

Over the years, this general technique has been known by several names including

phase-measuring interferometry, fringe scanning interferometry, real-time interfero-

metry, AC interferometry and heterodyne interferometry. All describe the same basic

technique. In this chapter, we will review the fundamentals of PSI, show some of the

various algorithms that are used, consider repeatability issues and error sources,

examine some of the alternate implementations, and look at the future trends for this

technology.

14.2. FUNDAMENTAL CONCEPTS

The relatively simple (in retrospect, anyway) concept behind phase shifting inter-

ferometry is that a time-varying phase shift is introduced between the reference

wavefront and the test or sample wavefront in the interferometer. A time-varying

signal is then produced at each measurement point in the interferogram, and the

relative phase between the two wavefronts at that location is encoded in these

signals.

For simplicity in our discussions, wewill use thewavefront phase for our analysis.

This choice allows the analysis to be independent of the specific hardware config-

uration so that the conversion from phase to surface errors or optical path difference

(OPD) is straightforward. For example, a surface with height errors hðx; yÞ tested in

reflection will produce a wavefront error fðx; yÞ:

fðx; yÞ ¼ 4p hðx; yÞ=l ð14:1Þ

where x and y are the spatial coordinates and l is the wavelength. This expression is

for normal incidence, and the obliquity factors must be added in other situations.

General expressions for the reference and test wavefronts in the interferometer

are

wrðx; y; tÞ ¼ arðx; yÞei½frðx;yÞ�dðtÞ� ð14:2Þ

and

wtðx; yÞ ¼ atðx; yÞeifðx;yÞt ð14:3Þ

respectively, where arðx; yÞ and atðx; yÞ are the wavefront amplitudes, frðx; yÞ and
ftðx; yÞ are the wavefront phases, and dðtÞ is a time-varying phase shift introduced

into the reference beam. To be more precise, dðtÞ is the relative phase shift between
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the two beams; it can physically result from changes in either the reference or test

beams. The resulting intensity pattern is

Iðx; y; tÞ ¼ jwrðx; y; tÞ þ wrðx; yÞ2j ð14:4Þ

or

Iðx; y; tÞ ¼ I0ðx; yÞ þ I00ðx; yÞ cos½ftðx; yÞ � frðx; yÞ þ dðtÞ� ð14:5Þ

where I0ðx; yÞ ¼ a2r ðx; yÞ þ a2t ðx; yÞ is the average intensity, and I00ðx; yÞ ¼ 2arðx; yÞ
atðx; yÞ is the fringe or intensity modulation. If we now define fðx; yÞ to be the

wavefront phase difference ftðx; yÞ � frðx; yÞ, we obtain

Iðx; y; tÞ ¼ I0ðx; yÞ þ I00ðx; yÞ cos½fðx; yÞ þ dðtÞ� ð14:6Þ

which is the fundamental equation for PSI. The intensity at each point varies as a

sinusoidal function of the introduced phase shift dðtÞ with a temporal offset given by

the unknown wavefront phase.

This result can be visualized by looking at the intensity as a function of dðtÞ; for a
linear phase shift, this is equivalent to the variation of the intensity with time. The

intensity of the interferogram at an individual measurement point varies sinusoidally

with phase (or time) as shown in Figure 14.1, but more importantly, the three

unknowns in Eq. (14.6) are easy to identify in this signal. The constant term

I0ðx; yÞ is the intensity bias, I00ðx; yÞ is half the peak-to-valley intensity modulation,

and the unknown phase fðx; yÞ is related to the temporal phase shift of this sinusoidal

variation. The wavefront phase at this location can be easily computed from this

temporal delay. The entire map of the unknown wavefront phase fðx; yÞ can be

measured by monitoring and comparing this temporal delay at all the required

measurement points in the interferogram. In this manner, the intensity modulation

and bias terms are separated from this delay, and the measured wavefront phase is

therefore also decoupled from these terms.

FIGURE 14.1. The variation of intensity with the reference phase at a point in an interferogram.

14.2. FUNDAMENTAL CONCEPTS 549



If the interferogram is viewed during the phase shifting operation, the fringe

pattern will appear to move across the field. This is exactly analogous to the fringe

motion generated by pushing on the test flat to determine the high and low points

when observing Newton’s rings. It is important to note that this fringe motion is an

artifact of the sinusoidal intensity variations occurring at the same temporal fre-

quency but with different phases at each point in the interferogram. PSI does not use

this fringe motion to compute the wavefront; it does not find and track fringe centers.

PSI uses the intensity variations at each point for this computation.

14.3. ADVANTAGES OF PSI

Traditionally, interferograms have been analyzed by noting the straightness of the

fringes or by identifying the fringe centers and assigning a constant surface height

along each fringe. Adjacent fringes represent a height change of a half wave. Finding

the fringe centers has been the inherent limit to the precision of the technique and has

also restricted the amount of data processing that can be done with the results.

Visually, the location of the fringe centers can be identified to within a tenth or a

twentieth of a fringe spacing. It is difficult to precisely locate the maxima or minima

of the fringe intensity pattern. With a digitized interferogram produced by electronic

camera or an input scanner, the situation can be improved to about a fiftieth of a wave

under ideal situations. In a conventional interferometer, the observed fringes repre-

sent an ensemble of errors in the test part, the reference surface and optical errors in

the interferometer. Any one of these errors may be well below the inherent resolution

of the interferometer system. In addition, the apparent location of the fringe centers

can be influenced by the intensity variations across the interferogram, and spatial

sensitivity variations and fixed pattern noise in the detector. The best measurement

precision occurs for an interferogram with a few widely spaced fringes, but since the

data is collected only along the fringe centers, widely spaced data points are obtained

along with very limited information. The number of data points can be increased by

adding more tilt fringes to the interferogram pattern, but this is at the cost of reduced

repeatability in finding the fringe centers. This trade-off of precision and amount of

data is further complicated by the fact that data analysis programs require that the

input data be sampled on a regular grid, not along a few curved lines across the part.

An interpolation routine is needed to convert the fringe center data to a map of the

wavefront on a regular grid.

A further detail needed for analyzing static interferograms is defining the sense of

the part. Is it concave or convex? This determination requires another piece of

information; for example, the direction in which the fringes movewhen the reference

surface is pushed. With PSI, the phase between the reference and test wavefronts is

varied in a known manner and direction during the data collection, and the sense

of the part is automatically and unambiguously determined. One way to think of this

is that PSI requires that someone ‘‘push’’ on the reference mirror as the data is

collected. The use of programs that automatically locate fringe centers sometimes

place the requirement on the interferogram that it should contain no closed loop
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fringes. This is usually accomplished by adding tilt to the test setup and is needed so

that the program can order the fringes from the high point to the low point on the

surface.

Since the analysis required for PSI is not dependent on finding fringe centers or

following fringes, any type of fringe pattern can be used which is a more practical

situation. Even a fringe pattern with no fringes (one very broad fringe covering the

entire field of view) or with a complicated series of closed fringes is analyzed

correctly. As we will see later, more accuracy is obtained when the number of fringes

in the field is minimized. For the same reason, data can be collected and analyzed on

any sampling grid that is desired. The most common grid is the regular array of pixels

on a solid state sensor, which is compatible with most data processing programs and

packages. An irregular grid can also be used if the situation demands it.

Another advantage of PSI is that it is insensitive to spatial variations of inten-

sity, detector sensitivity and fixed pattern noise. This can be seen by modifying

Equation 14.6 to include these effects. Fixed pattern noise is a spatial variation in

the bias signal that is unrelated to the incident intensity. The detector sensitivity

and fixed pattern noise are denoted by sðx; yÞ and nðx; yÞ, respectively. The spatial

intensity variations are already included in the ðx; yÞ dependence of the terms I0ðx; yÞ
and I00ðx; yÞ. The resulting output from the detector �ðx; yÞ is

�ðx; y; tÞ ¼ sðx; yÞfI0ðx; yÞ þ I00ðx; yÞ cos½fðx; yÞ þ dðtÞ�g þ nðx; yÞ ð14:7Þ

which can easily be rewritten as

�ðx; y; tÞ ¼ ½sðx; yÞI0ðx; yÞ þ nðx; yÞ�
þ ½sðx; yÞI00ðx; yÞ� cos½fðx; yÞ þ dðtÞ� ð14:8Þ

These additional terms have changed the intensity bias and the intensity modula-

tion of the signal recorded at each measurement point, but have little effect on the

measured temporal delay. Since the unknown wavefront phase is encoded entirely in

this delay, the precision of the interferometric measurement is generally not degraded

by these types of spatial variations. The only reason for these last two statements not

being expressed as ‘‘no effect’’ is that there are signal-to-noise considerations that

may change the repeatability of the measurement. These effects are especially

important if the spatial variations are large or if the output signal modulation is

small relative to the bias. Since these detector spatial variations show up as terms

indistinguishable from the intensity bias and modulation terms already present in Eq.

(14.6), the discussion of algorithms and noise considerations in later sections will

include these terms implicitly in I0ðx; yÞ and I00ðx; yÞ. Time-varying noise sources,

such as detector dark current and photon noise, must also be included. These signal-

to noise considerations are discussed at greater length in Section 14.9.

It should not be surprising to learn that the repeatability or precision of PSI can be

much greater than that of static interferogram analysis. Since a series of data is

collected over time, some advantage is gained through averaging the sequentially

recorded interferograms, but this simple explanation does not give the full reason.
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The data collection and analysis procedure for PSI is fundamentally different from

that used for the analysis of a static interferogram and results in a large improvement

in the repeatability for PSI. The method used for PSI is much more analogous to that

used with lock-in amplifiers or any of the local-oscillator heterodyne detection

schemes used for electronic signals. Repeatabilities of a hundredth of a wavelength

are routine with PSI, and the values of a thousandth of a wavelength have been

reported and are fairly easy to obtain with today’s commercial equipment and a little

care. Once again, the particulars of this discussion can be found in Section 14.9.

In Eq. (14.6) and (14.8), we have assumed that the only term which has any time

dependence is dðtÞ, and any deviation from this assumption will introduce errors into

the PSI analysis. The unknown wavefront phase fðx; yÞ is encoded in the measured

time delay at each point, and temporal variations occurring during the measurement

interval will degrade the performance of a PSI system. In addition to random noise, a

common source of error is vibration and turbulence. This is a significant difference

from static interferometry where a snapshot of the interferogram can be obtained.

Another possible source of error is temporal laser intensity variations, but this is

usually not a large problem as a warmed-up laser is fairly stable over typical

measurement times, and stabilized lasers are available for exacting situations. A

third source of error unique to PSI is errors or variations in the phase shift dðtÞ. The
functional form must be correct, and the phase shift should be uniform over the

interferogram.

14.4. METHODS OF PHASE SHIFTING

By far the most common method used to introduce the time-varying phase shift in a

PSI system is to translate one of the mirrors or optical surfaces in the interferometer

with a piezoelectric transducer (Soobitsky, 1986; Hayes, 1989). Composed of Lead-

Zinc-Titanate (PZT) or other ceramic materials, these devices expand or contract

with an externally applied voltage. Depending on the configuration, up to a few

hundred volts may be needed to obtain the the required motion of a wavelength or

less. By discretely changing the applied voltage, the induced phase shift varies

through a series of steps. If the voltage is programmed to vary smoothly, a phase

shift of a desired functional form can be produced. Information from the interfero-

metric test can be used to calibrate the motion of the PZT, and this is further discussed

in Section 14.9.

The phase shift configurations for three common interferometer types (the

Twyman–Green, the Mach–Zehnder and the laser Fizeau) are shown in Figure

14.2. The first two achieve the phase shift by translating one of the mirrors in the

reference arm of the interferometer. At normal incidence in the Twyman–Green, a

phase shift of a full wavelength occurs for each half wavelength of translation.

Because of the non-normal angles in the Mach–Zehnder, the induced phase shift is

reduced by a factor of the cosine of the angle of incidence (Fig. 14.3). Since the

reference wavefront is plane, the small lateral displacement is ignored. In the laser

Fizeau interferometer, the transmissive reference objective or the test piece is
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translated for the phase shift. The reference surface is the final uncoated surface of

the objective, and this surface is concentric with the focus. For fast F-numbers, errors

or nonuniformities in the phase shift result because the ray directions at the edge of

the pupil are not parallel to the translation direction (Moore and Slaymaker, 1980).

FIGURE 14.2. Three common interferometer configurations: (a) Twyman–Green, (b) Mach–Zehnder,

and (c) laser Fizeau.
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An alternative method for producing either a stepped or continuous phase shift is

to use a tilted plane-parallel plate in the reference beam of the interferometer (Wyant

and Shagam, 1978). The optical path within the plate increases as the tilt angle is

increased. To avoid introducing aberrations into the reference beam, this method is

useful only for a collimated reference beam.

A different type of phase shift can be produced between the reference and test

beams by introducing an optical frequency difference between these two beams. If

the two optical frequencies are n and nþ�n, Eqs. (14.2) and (14.3) can be rewritten

as follows to include this time dependence:

wrðx; y; tÞ ¼ arðx; yÞei½frðx;yÞ�2pð�þ��Þt� ð14:9Þ

wtðx; y; tÞ ¼ atðx; yÞei½frðx;yÞ�2p�t� ð14:10Þ

No other temporal phase shift is included. The resulting interferogram intensity

pattern, analogous to Eq. (14.6), is

Iðx; y; tÞ ¼ I0ðx; yÞ þ I00ðx; yÞ cos½fðx; yÞ þ 2p��t� ð14:11Þ

The frequency difference gives rise to a linear phase shift between the test and

reference beams:

dðtÞ ¼ 2p��t ð14:12Þ

and the intensity at a given location varies sinusoidally at the difference in frequency

�n. As before, the wavefront phase fðx; yÞ is a spatially varying delay between

signals at the various measurement points.

FIGURE 14.3. The induced phase due to a mirror translation at nonnormal incidence.
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Since even a small optical frequency shift (as a fraction of the optical frequency)

can result in a large difference frequency, this phase shifting method is very useful for

situations where dynamic measurements are required. In these situations, the phase

shift must occur faster than the changes that are being monitored. Two important

applications are the measurement of turbulent flow and distance measuring inter-

ferometry. The two primary methods to produce a frequency shift are the Zeeman-

split laser and Doppler shifts introduced by moving gratings. The application and use

of this type of phase shift is discussed in Sections 14.14.3 and 14.16.1.

The output frequency of a laser can be split into two orthogonally polarized output

frequencies by the application of a DC magnetic field (Burgwald and Kruger, 1970).

The frequency separation of a Zeeman-split two-frequency laser is controlled by the

magnetic field, and the values of about 1.8–5 MHz are found for this effect in helium–

neon lasers.

When a diffraction grating is translated through a beam of light, a Doppler shift is

introduced in the diffracted beams (Suzuki and Hioki, 1967; Stevenson, 1970;

Bryngdahl, 1976). The translation direction is perpendicular to the propagation

direction (see Fig. 14.4). The frequency shift is proportional to the diffraction order

m and the velocity v, and inversely proportional to the grating period d, or

�� ¼ mv=d ð14:13Þ

The undiffracted beam has no frequency shift, beams diffracted in the same

direction as the translation see a positive frequency shift, and beams diffracted in

the opposite direction have their frequency decreased. One of the diffracted orders

is selected, and interfered with the original frequency to produce a phase shifting

interferometer.

Mechanical translations, including rotating a radial grating about its center, can be

used, but relatively low frequency shifts are obtained. Similarly, a small frequency

shift equal to 2v=l is produced by the reflection from a moving mirror. Frequency

shifts even larger than those of the Zeeman-split laser can be produced by an acousto-

optic (AO) Bragg cell (Massie and Nelson, 1978;Wyant and Shagam, 1978; Shagam,

1983). Acoustic waves traveling through the cell create periodic index of refraction

variations due to the sound pressure, and a moving diffraction grating is set up in the

cell. Since the velocity divided by the period of the waves is equal to the acoustic

frequency f, the frequency shift for this AO modulator is

�� ¼ mf ð14:14Þ

Extremely high phase shift rates are achievable with this type of device; some com-

mercially available instruments have operating frequencies of 20–30 MHz.

Phase shifts can also be obtained through the use of rotating polarizers (See

Fig. 14.5) or phase retarders, butmechanical limitations generally limit operation to a

few kilohertz, and this method is not widely used (Crane, 1969; Okoomian, 1969;

Bryngdahl, 1972a; Sommargren, 1975; Shagam and Wyant, 1978; Hu, 1983,

Kothiyal and Delisle, 1984, 1985a).
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An achromatic optical phase shifter-modulator was demonstrated by Zvyagin

(2001) based on a frequency-domain optical delay. The device able to maintain zero

group delay consisting of a grating, lens and a mirror. Tilting the mirror allows for

adjusting phase delay, without change to the group velocity of the beam as shown in

Figure 14.4(b). This especially is and advantage for multiple wavelength PSI as

described later.

FIGURE 14.4. Various modern phase-shifter implementations: (a) doppler frequency shifts introduced

by a moving grating or a accusto optical modulator; (b) frequency domain optical delay line; (c) phase-

shifter based on two accusto optical modulators; (d) optical delay using fiber-stretchers.
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The advances in fiber-optics around the turn of the century brought additional

approaches for introducing phase shifts. Improved accusto optical modulators allow

for a compact on axis device, that enables full control of the phase in a collimated

beam. An accusto optical modulator consists of a crystal that by applying a frequency

using a piezo-transducer exhibits density modulation in the crystal along the wave

propagation. The incoming beam orthogonal to the propagating wave nowwill defract

on these density modulations. A single accustom optical modulator can be used much

like a grating as described earlier, but the frequency of the grating can be changed, for

example, switched on and of and allows for modification of the otherwise static

grating behavior. By combining two accustom-optical modulators in series, the

addition of a positive and negative first diffraction order is on axis again and allows

for a compact achromatic phase shifter design as showed in Figure 14.4(c) (Li, 2005).

The use of optical fibers also allow for another method by adjusting the path inside

a fiber using stretching of the fiber itself for a small amount. Usually a fiber coil is

expanded using a piezoelectric transducer or a fiber coil is fixed to a piezoelectric

disc for allowing expansion or compression as shown in Figure 14.4(d). These

methods allows for fast scanning rate of 4 kHz and achieving up to 4.5 millimeters

of fiber stretch for a coil of 20 meter fiber (Henderson et al., 2004). Figure 14.5 shows

common phase shifter arrangements using polarization optical components like

quarter/half wave plates and polarizers, allowing a variable phase shift by changing

the selected directions of polarization.

Another recent advance is the direct modulation of the output wavelength of a

laser diode using temperature or current to produce phase shifts (Ishii et al., 1987;

Suzuki et al., 2001; Onodera and Ishii, 2003). The operation and implications for this

method are discussed in Section 14.6.1.3.

14.5. DETECTING THE WAVEFRONT PHASE

The major difference between the various PSI detection schemes is the manner in

which the reference phase is varied, and the number of times and the rate at which

the interference pattern is measured. All of the variations we will discuss aim to

FIGURE 14.5. Polarization phase shifter arrangements (a) for the interferometer input (b,c) for the ouput

of the interferometer (compare Kothiyal, 1985).
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find the ‘‘best’’ way to collect and analyze the interferometric data so that Eq. (14.6)

may be solved for the unknown wavefront phase. Of course, the best solution for a

particular application will depend on a number of factors including computational

complexity and speed, sensitivity to phase shift errors and noise, data rates, and

compatibility with the detection scheme. To generate a fundamental understanding

of the analysis process, we will start with a conceptionally and analytically simple

algorithm.

The four step algorithm requires that four separate interferograms of the part

under test are recorded and digitized. A 90� optical phase shift is introduced into the
reference beam between each of the sequentially recorded interferograms. Since

these are now discrete measurements, the time dependence has been changed to the

phase step index i. The function dðtÞ now takes on four discrete values:

di ¼ 0; p=2; p; 3p=2; i ¼ 1; 2; 3; 4 ð14:15Þ

Substituting each of these four values into Eq. (14.6) results in four equations

describing the four measured interferogram intensity patterns:

I1ðx; yÞ ¼ I0ðx; yÞ þ I00ðx; yÞ cos½fðx; yÞ� ð14:16Þ

I2ðx; yÞ ¼ I0ðx; yÞ þ I00ðx; yÞ cos½fðx; yÞ þ p=2� ð14:17Þ

I3ðx; yÞ ¼ I0ðx; yÞ þ I00ðx; yÞ cos½fðx; yÞ þ p� ð14:18Þ

and

I4ðx; yÞ ¼ I0ðx; yÞ þ I00ðx; yÞ cos½fðx; yÞ þ 3p=2� ð14:19Þ

A simple trigonometric identity yields

I1ðx; yÞ ¼ I0ðx; yÞ þ I00ðx; yÞ cos½fðx; yÞ� ð14:20Þ

I2ðx; yÞ ¼ I0ðx; yÞ � I00ðx; yÞ sin½fðx; yÞ� ð14:21Þ

I3ðx; yÞ ¼ I0ðx; yÞ � I00ðx; yÞ cos½fðx; yÞ� ð14:22Þ

and

I4ðx; yÞ ¼ I0ðx; yÞ þ I00ðx; yÞ sin½fðx; yÞ� ð14:23Þ

These four equations in three unknowns ½I0ðx; yÞ; I00ðx; yÞ and fðx; yÞ� can now be

solved for the value of fðx; yÞ at each point in the interferogram. As will be shown

later, three interferograms are all that is required to solve for the wavefront phase, but

the fourth is included for computational ease. The intensity bias term I0ðx; yÞ is

eliminated by subtracting the equations in pairs:
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I4 � I2 ¼ 2I00ðx; yÞ sin½fðx; yÞ� ð14:24Þ
and

I1 � I3 ¼ 2I00ðx; yÞ cos½fðx; yÞ� ð14:25Þ

Taking the ratio of these two equations eliminates the intensity modulation term

I00ðx; yÞ to produce a result that contains only the unknown phase fðx; yÞ and the four
measured intensities:

I4 � I2

I1 � I3
¼ sin½fðx; yÞ�

cos½fðx; yÞ� ¼ tan½fðx; yÞ� ð14:26Þ

This equation can now be rearranged to produce the result for the four step PSI

algorithm:

fðx; yÞ ¼ tan�1 I4 � I2

I1 � I3

	 


ð14:27Þ

This simple equation is evaluated at each measurement point to obtain a map of the

measured wavefront. To show the simplicity of the algorithm and to allow easier

comparison with other algorithms, the ðx; yÞ dependence of the four measurements

is implied. This wavefront can be easily related to the surface height of the part

(Eq. 14.1) or the optical path difference (OPD):

OPDðx; yÞ ¼ lfðx; yÞ=2p ð14:28Þ

The measurement array that is often used for PSI is the rectangular array of pixels on

a solid state imaging detector.

Figure 14.6 shows the photographs of four interferograms recorded with a 90�

phase shift. The fringes appear to walk across the frame, but more importantly, the

intensity at any point varies with phase. Since there is a 360� phase shift between the
first and fifth frames, they appear nominally identical.

At this point, the differences between PSI and conventional interferometric

analysis should be very apparent. PSI calculates the wavefront phase at every

FIGURE 14.6. Four interferograms recordedwith phase shifts of 90� and a horizontalLine-Scan through
their center.
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measurement location from the time varying intensity measured at that point. The

result at a point is the arctangent of the ratio of the intensities measured at that point,

and there is no need to find the fringe centers or to order the fringes. In fact, the fringe

pattern is somewhat irrelevant to PSI; there is no requirement on the minimum

number of fringes or their shape, and the system precision is relatively independent of

the fringe frequency in the interferogram. Since the data can be collected on a regular

grid, PSI is well suited for further analysis and processing.

If desired, the intensity data can also be evaluated to determine the data modula-

tion gðx; yÞ across the interferogram:

gðx; yÞ ¼ I00ðx; yÞ
I0ðx; yÞ ð14:29Þ

Starting with Eqs. (14.24) and (14.25) and also using Eqs. (14.20)–(14.23), we obtain:

gðx; yÞ ¼ 2½ðI4 � I2Þ2 þ ðI1 � I3Þ2�1=2
I1 þ I2 þ I3 þ I4

ð14:30Þ

where the ðx; yÞ dependence of the measurements is implied. The numerator is the

intensity modulation, and the denominator is the average intensity or the intensity

bias. Once again, all of the detector characteristics such as sensitivity and bias are

implicitly included in this analysis as part of I0ðx; yÞ and I00ðx; yÞ. This information is

useful for evaluating the quality of the data that has been collected. A data modula-

tion near one is good, and a low modulation is bad. Data points with modulations

below some threshold will have insufficient signal to noise, and the wavefront phase

cannot be reliably calculated at that point. These points are excluded from the

analysis, and typical data modulation thresholds are in the range of 5–10%. This

value is, of course, application dependent.

14.6. DATA COLLECTION

As described earlier, there are actually many ways to aquire the intensity signal. This

section summarizes several methods in common use. The fundamental idea behind

phase shifting is that a minimum of 3 different intensity patterns are required to

evaluate the desired phase. A phase shift can be created temporally by changing the

path difference between two interferometer arms or by changing the wavelength of

the light source. A phase shift can also be created instantaneously by spatial

displacement or by a change in optical path length over the aperature of the

interferometer resulting in a phase shifting spatially.

14.6.1. Temporal Methods

There are several ways to temporally change the reference phase. These are separated

into discrete stepping and continuous scanning by a phase shifter or stepping and

scanning of the wavelength.
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Stepping the Phase. To illustrate the phase stepping process, the four step algorithm

is used in Section 14.5. The reference phase is stepped through a series of discrete

values and an interferogram is recorded at each step, as shown in Figure 14.7. For a

clarity, Fig. 14.7 shows 8 steps within one period. The upper left picture shows phase

shifter steps. The upper right illustrates the intensity recorded by a detector pixel

corresponding to changes in the reference phase.

Scanning the Phase. For practical reasons, it is often desirable to vary the phase

smoothly between steps as the interferograms are recorded. One reason to do this is

that after a commanded phase step, the PZT transducer may tend to ‘‘ring,’’ where the

reference mirror position may oscillate until transients die out. (Seligson et al.,

1984). This is a likely situation when the reference surface has a large mass or the

control electronics are not well damped. It may therefore be necessary to wait after

each phase step before recording the data, which may greatly increase collection

time.

The integrating bucket data collection scheme, which was first proposed byWyant

(1975), allows the reference phase to vary linearly with time while a series of

interferograms are collected. The reference phase changes during the integration

time for a single measurement. This integration time may be chosen to equal the

frame rate of the sensor, or it could be the time required to collect adequate signal.

FIGURE 14.7. Stepping the phase (top) and integrating over a phase shift (bottom) are alternative

methods for temporal phase shifting.
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For this analysis, we first rewrite the general expression for an interferogram in

Eq. (14.6) as a function of the reference phase d instead of time:

Iðx; y; dÞ ¼ I0ðx; yÞ þ I00ðx; yÞ cos½fðx; yÞ þ d� ð14:31Þ

If the reference phase changes by an amount � during the integration or exposure

time, the recorded interferogram is found by integrating the intensity over this

interval (Greivenkamp, 1984):

Iiðx; yÞ ¼
1

�

Z diþ�=2

di��=2

fI0ðx; yÞ þ I00ðx; yÞ cos½fðx; yÞ þ d�gdd ð14:32Þ

where di is the phase shift at the center of the integration period, and Iiðx; yÞ is the
corresponding recorded interferogram. The term 1=� in this equation normalizes the

results so that the average recorded signal is independent of �. Integration yields

Iiðx; yÞ ¼ I0ðx; yÞ þ 1

�

� �

I00ðx; yÞ sin fðx; yÞ þ di þ
�

2

	 


� sin fðx; yÞ þ di �
�

2

	 
� �

ð14:33Þ

which, after the use of a trigonometric identity, can be rewritten as

Iiðx; yÞ ¼ I0ðx; yÞ þ I00ðx; yÞsinc½fðx; yÞ þ di� ð14:34Þ

where

sincðbÞ ¼ sinðpbÞ
pb

ð14:35Þ

Under this definition, the sinc function has a value of one at zero and goes to zero

whenever the argument is an integer. Comparing this result to the original expres-

sions in Equations 14.31 or 14.6 indicates that the only change due to integrating the

intensity while the phase is changing is to reduce the modulation of the recorded

intensity at each point in the interferogram by the value of the sinc function. This

expression is the most general of those we have discussed. Note that the value of

� must be the same for all frames recorded as part of a data set. The lower row of

Figure 14.7 illustrates the continuous movement of the phase and the recorded

intensity per detector pixel.

The same algorithms can be used for data collected by the phase step method or

the integrating bucket method. In fact, we can think of phase stepping as an

integrating bucket of zero width ð� ¼ 0Þ. In this case, the integrating bucket result

reduces to phase stepping result.

There are some signal-to-noise concerns with using the integrating bucket

approach since the PSI analysis depends on having data with good modulation.
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Some data points may fall below the threshold required for proper analysis as a result

of this reduction in modulation. The sinc function serves as a modulation transfer

function (MTF) for the measurement. As � increases, the MTF decreases.

For phase stepping ð� ¼ 0Þ, it is unity. Small integration periods have minimal

effects; for example, the modulation for � ¼ p=4 (45�) and p=2 (90�) are 97% and

90%, respectively. The� ¼ p=2 situation corresponds to collecting four contiguous
data frames while the reference phase changes by a full wave and approximates the

condition found in many available interferometers. Integrating the intensity over a

full period ð� ¼ 2pÞ of reference phase shift reduces the signal modulation to zero,

and there is no useful information about the wavefront phase in the resulting data.

To obtain good data modulation, we are usually restricted to integration periods

between 0 and p for each frame. There is no advantage to the integrating bucket

approach unless there are dynamic or control issues associated with the data collec-

tion. A 10% reduction in effective modulation is a price that must be weighed against

other factors.

Stepping or Scanning the Wavelength. For unequal path interferometers like a

laser-Fizeau or unequal path Twyman–Green configurations changing the wave-

lengths allows for a change of the phase in the interferogram pattern (de Groot, 2000,

Dunn, 2005). As shown by Deck (2001) for a given difference L between test and

reference arm in an interferometer, the resulting change in phase is a linear function

of the change in laser frequency:

�f ¼ ftest � freference ¼ 2
2p

l
n � L ¼ 4pn

c
L � v ) @�f

@t
¼ 4pn

c
L � @v

@t

ð14:36Þ

Therefore the wavelength change has to be large enough to allow enough phase

change for the given interferometer cavity length.

Figure 14.8 shows two of the most common external cavity feedback options

for tuning laser diodes (Duarte, 2003). In both cases, the laser beam emitted from

FIGURE 14.8. Two of the most common external feedback configurations for wavelength tuning using

laser-diodes.
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the laser diode is collimated before it hits the grating. In the Littrow configuration,

the zero order exits the cavity and the first order is reflected back into the laser. This

external feedback of the only wavelength at which dispersion angle is reflected back

into the cavity causes the diode laser to resonate at exactly that wavelength. By

turning the grating using a piezoelectric transducer the wavelength reflected back

into the laser can be changed and so allows to adjust the emitting wavelength.

In the Littman/Metcalf configuration the first-order beam is coupled out of the

laser, while the zero-order beam is coupled to a rotatable mirror which reflects

the beam back onto the grating. There, the first-order reflection reflects back into the

laser cavity. The changing of the mirror angle using a piezoelectric transducer allows

to tune the lasers resonant wavelength within the gain curve.

Both configurations have advantages and disadvantages. In the Littrow config-

uration, which delivers the higher output power, the exiting beam of the laser grating

combination changes angle when rotating the grating. In the Littman/Metcalf con-

figuration the exit angle stays constant; however, the zero order from the second

gratings reflection is lost and so limits the overall output power of the system.

The wavelength tuning method has significant advantages in Fizeau configurations,

because there are no moving parts in the system except for the ones in the light-source.

It especially allows to avoid the often used shifting of one of the collimation optics in

the interferometer and therefore it introduces decollimation in doing so.

The wavelength tuning approach allows to separate out different reflections from

different surfaces like front and back surface of optics under test as described by

Okada et al. (1990) and de Groot (1994). In principle, different surface reflections

will have a different phase change, because the wavelength change introduces a

phase change relative to the cavity length. And the cavity length for different surface

reflections is different.

14.6.2. Spatial Methods

Besides the previous described methods where temporally a phase change is intro-

duced, there are several methods which use a spatial approach to introduce the

required phase-difference. The spatial methods became increasingly popular when

higher resolution detectors became available. One advantage of the spatial methods

is that they do not require the signal phase to be stable over a specific time, because

usually they are instantaneous methods whose actual data taking time is only

determined by the integration time of the detector.

Spatial Dense Detection. Having a detector with sufficient resolution allows for

intruding a spatial carrier frequency into the detected intensity signal. This should not

be done physically using a large amount of tilt between the test and reference arm,

because the beam would propagate using different parts in the viewing system

introducing additional aberrations in the detected interferogram. Instead it can be

done directly in front of the detector by using left handed and right handed circular

polarized light in the test and reference arms and the placing an optical element
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introducing tilt between the orthogonal directions like aWollaston prism followed by

an analyzer in front of the detector.

If the wavefront slope in relation to the introduced tilt fringes is small, then the

wavefront can be locally considered flat, which results in a linear phase variation and

the phase difference between adjunct pixels is constant as described in Shough, 1990.

This allows to use phase-shift algorithms. To reduce the errors introduced by larger

wavefront slopes, which result in the phase difference between adjunct pixels not

being equal the error compensating algorithms, that allow for an error in the phase-

shift should be used. A comprehensive discussion is given in Kuechel’s publications

(1990, 1992a, 1992b) and Malacara-Doblado, Kuechel’s publication in 2001.

Figure 14.9 illustrates the spatial dense methods. The same wavefront as already

displayed in Figure 14.6 is now recorded with a significant amount of additional tilt.

If looking locally, the phase difference between adjunct pixels is nearly constant.

This allows to evaluate the phase for these pixels. Usually because error compensat-

ing algorithms should be used, this method uses just the 4 phase values more to

include and allow for thewide range-detuning insensitive algorithms. As described in

Kuechel’s publications (1990, 1992a, 1992b) this method can be implemented

electronically doing fast evaluations, resulting in video-realtime display of the

evaluated phase values, enabling fast averaging and vibration insensitivity. Because

the method calculates one phase point out of several neighboring pixels, the spatial

resolution in the axis of the carrier frequency is reduced.

Laterally Displaced Images. The first of these instantaneous systems uses polariz-

ing elements to produce the desired PSI signals (Smythe and Moore, 1984).

A polarization interferometer is used where the two polarizations are each sent

to one arm of the interferometer. The returning beams are sent to the decoding

module shown in Figure 14.10. The halfwave plate rotates both polarizations by 45�

so that they are at 45� with the axes of the polarizing components. An intensity

beamsplitter (BS) creates two beams, and the reflected beam is further split by a

polarizing beamsplitter (PBS). Two sets of interference fringes are formed with a

phase shift of 180� due to conservation of energy. The other beam from the intensity

FIGURE 14.9. Carrier frequency allows the use of spatial phase-shifting algorithms.
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beamsplitter goes through a quarterwave plate whose fast axis is aligned with one of

the orthogonal polarizations; this introduces a 90� phase shift between the two

polarizations. When this beam is analyzed by a second polarization beamsplitter,

the two interferograms will be 180� out of phase and also shifted by 90� from the first

set of fringe patterns. These four interferograms with 90� phase shifts can be

recorded and wavefront can be calculated with the four step algorithm (Eq. 14.27).

Similar polarization encoding schemes have been applied to distance measuring

interferometers (Dorsey et al., 1983; Crosdale and Palum, 1990).

Hettwer et al. showed in 2000, that the combination of a grating followed by

quarter-wave plates and a analyzer can be used to do instantaneous phase shifting on a

single detector (See also Sec. 2.8). The grating acts in this set-up as a beam splitter. A

lens in the right placement and focal length collimates the zero and plus/minus first

order diffracted beams back onto a detector. Before the detector, an analyzer is used to

select out a single interfering polarization. The plus and minus first orders have quarter

wave plates inserted that rotate the plus andminus first order in opposite directions 90�.
This results in 3 spatially separated beam on the detector with �90�, 0�, and þ90�

phase shift between them. In this arrangement if a phase grating is used, the diffraction

intensities can be engineered in a way that the first order beam with the analyzer in

place have the same intensities than the zero order beam without the analyzer.

FIGURE 14.10. Polarization decoding scheme for instantaneous PSI measurements.

FIGURE 14.11. Schematic set-up of inline lateral displaced phase shifted images using one detector

(Hettwer et al., 2000).Q6
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This three frame approach does not allow to use error compensating algorithms

nor are the usually square detectors used efficiently.

Millerd et al. (2004, 2005) published a very compact approach allowing for 4

phase shifted interferograms, enabling the use of error compensating algorithms and

also space wise using the detector geometry more effectively. They used a specially

designed holographic element to split the beam-up into 4 separate beams laterally

displaced in x and y. An additional phase offset and polarizer mask placed in front of

the detector allows introducing the desired phase shift in the interferogram pattern as

shown in Figure 14.12.

Pixel Displaced. Millerd et al. (2005) also showed that wire grid polarizers can be

used rotated for each pixel to introduce different phase shift. For 4 phase steps this

would be 4 different analyzer rotations. In this way, using a high resolution detector

4, instantaneous interferogram can be obtained without an additional holographic

optical element to split the beam. Figure 14.13 illustrates the basic principle of this

FIGURE 14.12. Simultaneous phase shifting using a holographic optical element (HOE) and 4 spatial

separated polarizers before the detector.

FIGURE 14.13. Wire grid polarizer array directly placed in front of camera.
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set-up. The polarizing interferometer has different left handed or right handed

polarization coming from test or reference arm respectively. Both beams then path

through an array with matching wire grid analyzers aligned to the detector pixels.

Every analyzer can have a different rotation per pixel, selecting a different phase-

difference between the interferometer arms and also resulting in different phase

shifts per pixel. In this way, four high-resolution instantaneous interferograms can be

recorded by sorting out the pixels belonging to 0�, 45�, 90�, and 135� analyzer

rotation.

14.7. PSI ALGORITHMS

In Section 14.6, we described several methods for collected phase-shifted intensity

patterns. A number of different data evaluation strategies or algorithms have been

developed, of which the four step algorithm (14.27) is just one example. All of these

algorithms share common characteristics: They require that a series of interfero-

grams are recorded as the reference phase is varied. Thewavefront phase, modulo 2p,

is then calculated at each measurement point as the arctangent of a function of the

interferogram intensities measured at that same measurement point. The final

wavefront map is then obtained by ‘‘unwrapping’’ the phases to remove the 2p

phase discontinuities. While there are many different approaches to calculating the

phase, the differences between the various algorithms relate to the number of

interferograms recorded, the phase shift between these interferograms, and the

susceptibility of the algorithm to the errors in the phase shift, environmental noise

such as vibration and turbulence as well as nonlinearities of the detector when

recording the intensities.

Since we have shown that the difference between the phase step and integrating

bucket methods relates to the effective modulation of the recorded intensities, all of

the algorithms that we will discuss are equally valid for both approaches. To simplify

the notation, we will rewrite the general expression in Eq. (14.34) as

Iiðx; yÞ ¼ I0ðx; yÞ þ I00ðx; y;�Þ cos½fðx; yÞ þ di� ð14:37Þ

where

I00ðx; y;�Þ ¼ I00ðx; yÞsincð�=2pÞ ð14:38Þ

The dependence of the modulation on the integration period � is now impli-

cit in I00ðx; y;�Þ. In this section, we are mainly concerned with algorithm devel-

opment and will highlight the sensitivity of each of the algorithms to the most

common error sources. Error sources themselves are more closely examined in

Section 14.10.

With these PSI algorithms, the starting value of the reference phase, while arbi-

trary, is often chosen to produce a simpler mathematical expression for the measured

wavefront phase. In practice, we do not know (or need to know) the absolute
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reference phase; what is important is the phase shift between measurements. We

merely define the starting position of the reference mirror to be at the first required

phase value, and proceed from there.

14.7.1. Three Step Algorithms

Since there are three unknowns in Eq. (14.39), the minimum number of measure-

ments of the interferogram intensity required to reconstruct the unknown wavefront

phase is three. The general case can be solved using equal phase steps of size a

(Creath, 1988). In this case,

di ¼ �a; 0; a; i ¼ 1; 2; 3 ð14:39Þ

and

I1 ¼ I0ðx; yÞ þ I00ðx; y;�Þ cos½fðx; yÞ � a� ð14:40Þ

I2ðx; yÞ ¼ I0ðx; yÞ þ I00ðx; y;�Þ cos½fðx; yÞ� ð14:41Þ

and

I3ðx; yÞ ¼ I0ðx; yÞ þ I00ðx; y;�Þ cos½fðx; yÞ þ a� ð14:42Þ

Using the trigonometric addition identities,

I1ðx; yÞ ¼ I0ðx; yÞ þ I00ðx; y;�Þfcos½fðx; yÞ� cosðaÞ þ sin½fðx; yÞ� sin ag ð14:43Þ

I2ðx; yÞ ¼ I0ðx; yÞ þ I00ðx; y;�Þ cos½fðx; yÞ� ð14:44Þ

and

I3ðx; yÞ ¼ I0ðx; yÞ þ I00ðx; y;�Þfcos½fðx; yÞ� cosðaÞ � sin½fðx; yÞ� sinðaÞg ð14:45Þ

These three equations can easily be solved for the unknown wavefront phase at each

location:

fðx; yÞ ¼ tan�1 1� cosðaÞ
sinðaÞ

	 

I1 � I3

2I2 � I1 � I3

� �

ð14:46Þ

The signal modulation can also be derived by first solving Eqs. (14.42)–(14.47) for

the unknowns I0ðx; yÞ and I00ðx; y;�Þ:

I0ðx; yÞ ¼ I1 þ I3 � 2I2 cosðaÞ
2½1� cosðaÞ� ð14:47Þ
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and

I00ðx; y;�Þ ¼ ff1� cosðaÞðI1 � I3Þg2 þ ½sinðaÞð2I2 � I1 � I3Þ�2g1=2
2 sinðaÞ½1� cosðaÞ� ð14:48Þ

The ratio of these two intensities gives the recorded signal modulation at each point

in the data set:

gðx; yÞ ¼ I00ðx; y;�Þ
I0ðx; yÞ

¼
f½1� cosðaÞ�ðI1 � I3Þg2 þ ½sinðaÞð2I2 � I1 � I3Þ�2
n o1=2

½I1 þ I3 � 2I2 cosðaÞ� sinðaÞ

ð14:49Þ

It is important to remember that the modulation being measured here is that of the

recorded signal, not the intensity incident on the detector, and it includes the MTF

reduction due to using the integrating bucket method and other terms such as fixed

pattern noise from the detector. This statement also applies to the modulation

previously calculated for the four step algorithm (Eq. 14.30). Calculation of the

modulation at each point allows data points with insufficient modulation to be

identified and excluded from the analysis.

Two commonly used phase step sizes with the three step algorithm are 90� and
120�. For these values of a, the solutions for the wavefront phase are, when a ¼ p=2:

fðx; yÞ ¼ tan�1 I1 � I3

2I2 � I1 � I3

� �

ð14:50Þ

where the signal modulation is

gðx; yÞ ¼ ½ðI1 � I3Þ2 þ ð2I2 � I1 � I3Þ2�1=2
I1 þ I3

ð14:51Þ

and when a ¼ 2p=3

fðx; yÞ ¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3
I1 � I3

2I2 � I1 � I3

r� �

ð14:52Þ

and the corresponding signal modulation for this value is easily determined by using

Eq. (14.49).

An interesting variation on the three step algorithm results from using 90�

phase steps and a phase offset of 45� (Wyant et al., 1984; Bhushan et al., 1985).

The phase offset is included to take advantage of a trigonometric identity and

for computational convenience. It is irrelevant for the operation of the interfe-

rometer since we are only interested in the relative phases of the steps. For these
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conditions, the phase steps are

di ¼ p=4; 3p=4; 5p=4; i ¼ 1; 2; 3 ð14:53Þ

and the resulting wavefront phase is

fðx; yÞ ¼ tan�1 I3 � I2

I1 � I2

� �

ð14:54Þ

The result for the signal modulation is identical to the result we obtained in

Eq. (14.51). This should not be surprising since the modulation of the signal is

independent of the starting value of the reference phase (�p/2 vs. p/4). Similarly, the

difference between analyzing the three intensity frames with Eq. (14.50) instead of

Eq. (14.54) is a constant wavefront phase offset of 3p=4. These later expressions are
useful as they are analytically less complex, and can be used for any set of three

measurements with p=2 phase shifts regardless of the starting phase. An unimportant

phase offset or piston term will appear in the result of the calculation.

The three step algorithm requires the minimum amount of data and is the simplest

to use. However, as wewill see later, this algorithm is also the most sensitive to errors

in the phase shift between frames.

14.7.2. Least-Squares Algorithms

As we have noted several times, the measured intensity at a given location in the

interferogram varies as a sinusoidal function of the reference phase with a known

period and three unknowns: the average signal, the data modulation and the unknown

reference phase. It should not be surprising that the wavefront phase can be deter-

mined through a least-squares fit of the measured intensities to a sinusoidal function.

The general least-squares solution for a series of N interferograms recorded at

phase shifts di was first discussed by Bruning, Herriott, Gallagher, Rosenfeld, White

and Brangaccio (1974) and more rigorously by Greivenkamp (1984). Eq. (14.37) is

first rewritten as

Iiðx; yÞ ¼ I0ðx; yÞ þ I00ðx; y;�Þ cos½fðx; yÞ� cosðdiÞ
� I00ðx; y;�Þ sin½fðx; yÞ� sinðdiÞ ð14:55Þ

or

Iiðx; yÞ ¼ a0ðx; yÞ þ a1ðx; yÞ cosðdiÞ þ a2ðx; yÞ sinðdiÞ ð14:56Þ

where

a0ðx; yÞ ¼ I0ðx; yÞ ð14:57Þ
a1ðx; yÞ ¼ I00ðx; y;�Þ cos½fðx; yÞ� ð14:58Þ
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and

a2ðx; yÞ ¼ �I00ðx; y;�Þ sin½fðx; yÞ� ð14:59Þ

Eq. (14.56) is in the proper form for a generalized least-squares fit to the measured

intensities Iiðx; yÞ at each location. The squared difference between the measured

intensities and the intensities predicted by Eq. (14.56) for a choice of the three

unknowns or variables a0ðx; yÞ; a1ðx; yÞ and a2ðx; yÞ is

E2 ¼
XN

i¼1

½Iiðx; yÞ � a0ðx; yÞ � a1ðx; yÞ cosðdiÞ � a2ðx; yÞ sinðdiÞ� ð14:60Þ

This error is minimized by differentiating with respect to each of the three unknowns

and equating these three results to zero. The simultaneous solution of these three

equations produces the least-squares result, and is given by the following matrix

equation:

a0ðx; yÞ
a1ðx; yÞ
a2ðx; yÞ

2

6
4

3

7
5 ¼ A�1ðdiÞBðx; y; diÞ ð14:61Þ

where the component matrices are

AðdiÞ ¼
N

P
cosðdiÞ

P
sinðdiÞ

P
cosðdiÞ

P
cos2ðdiÞ

P
cosðdiÞ sinðdiÞ

P
sinðdiÞ

P
cosðdiÞ sinðdiÞ

P
sin2ðdiÞ

2

6
4

3

7
5 ð14:62Þ

and

Bðx; y; diÞ ¼

P
Ii

P
Ii cosðdiÞ

P
Ii sinðdiÞ

2

6
4

3

7
5 ð14:63Þ

All of the summations are from 1 to N. The matrix AðdiÞ is a function of the

reference phase shifts only and incorporates the information about the data

collection scheme, and therefore, only needs to calculated and inverted once.

The matrix Bðx; y; diÞ is composed of weighted sums of the measured interfero-

gram intensities.

Once the values of the three unknowns a0ðx; yÞ; a1ðx; yÞ and a2ðx; yÞ are deter-

mined at each measurement location, the wavefront phase and the signal or data
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modulation can be easily found from Eqs. (14.61)–(14.63):

fðx; yÞ ¼ tan�1 �a2ðx; yÞ
a1ðx; yÞ

� �

ð14:64Þ

and

gðx; yÞ ¼ I00ðx; y;�Þ
I0ðx; yÞ ¼

a1ðx; yÞ2 þ a2ðx; yÞ2
h i1=2

a0ðx; yÞ
ð14:65Þ

One feature of PSI that this general algorithm illustrates is that any combination of

three or more reference phase values can be used to measure the wavefront. These

values need not to be evenly spaced and can be spread over a range greater than 2p.

However, the choice of the phase shift positions does influence the system signal-to-

noise performance and are specific to the AðdiÞ matrix.

A specific algorithm that follows from the least-squares analysis is for N evenly

spaced phase steps over one period of phase shift (Bruning et al., 1974; Morgan,

1982; Greivenkamp, 1984), or

di ¼ i2p=N; i ¼ 1; . . . ;N ð14:66Þ

In this special case, all of the off-diagonal terms in the matrix AðdiÞ are zero,

and the simple solution for the wavefront phase and the recorded data modu-

lation are

fðx; yÞ ¼ tan�1 �
P

Ii sinðdiÞ
P

Ii cosðdiÞ

� �

ð14:67Þ

and

gðx; yÞ ¼ 2f½
P

Ii cosðdiÞ�2 þ ½
P

Ii sinðdiÞ�2g1=2
P

Ii
ð14:68Þ

The similarity between these results and the four step algorithm in Eqs. (14.27) and

(14.30) should be apparent.

All of the three- and four-step algorithms presented in the previous sections of this

chapter are derived without the use of the least-squares criterion; they are analytic

solutions. However, these algorithms are precisely equivalent to the least squares

solutions and can be derived from Eqs. (14.61)–(14.66).

We will discuss additional families of algorithms later in this chapter, but

wish to mention here that Eq. (14.68) is already the basis for a series of PSI-

algorithms referred to as N-frame or N-bucket, where the 4-bucket is the most

common one.
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14.7.3. Carré Algorithm

In all of the PSI algorithms discussed so far, it is assumed that the phase shift between

measurements is known. As we will see later, if the actual phase shift differs from

the assumed value, errors are introduced into the reconstruction. An error of this sort

could result from a change in the slope of the PZT displacement versus voltage curve,

where all phase steps would be the same, but of incorrect size (i.e., 88� instead of

90�). Nonuniformities of the phase shift across the pupil can result when a linear

phase shift in a converging or diverging beam (as discussed in Section 14.4) are

another source of this type of error. Several PSI algorithms have been developed to

minimize the effects of these phase shift variations.

The first of these algorithms is the Carré algorithm (Carré, 1966). This algorithm

is a variation of the four-step algorithm, but instead of requiring that the data be

collected at 90� increments, the reference phase shift between measurements is

treated as an unknown and solved for in the analysis. A linear phase shift of 2a is

assumed between each step, so that the values of the reference phase are

di ¼ �3a;�a; a; 3a; i ¼ 1; 2; 3; 4 ð14:69Þ

As noted earlier, these four values are chosen to give simpler expression for the

result. The four measured intensity frames here are represented by

I1ðx; yÞ ¼ I0ðx; yÞ þ I00ðx; y;�Þ cos½fðx; yÞ � 3a� ð14:70Þ
I2ðx; yÞ ¼ I0ðx; yÞ þ I00ðx; y;�Þ cos½fðx; yÞ � a� ð14:71Þ
I3ðx; yÞ ¼ I0ðx; yÞ þ I00ðx; y;�Þ cos½fðx; yÞ þ a� ð14:72Þ

and

I4ðx; yÞ ¼ I0ðx; yÞ þ I00ðx; y;�Þ cos½fðx; yÞ þ 3a� ð14:73Þ

This series of four equations contains four unknowns, the three we have been

considering up to this point with the fourth, the unknown reference phase.

TABLE 14.1. Members of the N-bucket family of algorithms derived

from Eq. (14.61).

No. of frames Algorithm Phase shift

3 tanf ¼
ffiffiffi
3

p
ðI2 � I3Þ

�2I1 þ I2 þ I3
di ¼ ði� 1Þ 2p

3

4 tanf ¼ I2 � I4

I3 � I1
di ¼ ði� 1Þp

2

6 tanf ¼ �
ffiffiffi
3

p
ðI2 þ I3 � I5 � I6Þ

2I1 þ I2 � I3 � 2I4 � I5 þ I6
di ¼ ði� 1Þp

3

574 PHASE SHIFTING INTERFEROMETRY



The solution for the reference phase shift can be found by expanding these four

equations and applying the trigonometric identity for sine or cosine of 3a:

aðx; yÞ ¼ tan�1 3ðI2 � I3Þ � ðI1 � I4Þ
ðI1 � I4Þ þ ðI2 � I3Þ

	 
1=2

ð14:74Þ

Note that since this equation can be solved at each measurement point, the reference

phase shift 2aðx; yÞ can also be determined at each point. This allows spatial

variations of the phase shift to be identified. The solution for the wavefront phase

at each measurement location is

fðx; yÞ ¼ tan�1 tan½aðx; yÞ� ðI1 � I4Þ þ ðI2 � I3Þ
ðI2 þ I3Þ � ðI1 þ I4Þ

� �

ð14:75Þ

or combining these two results

fðx; yÞ ¼ tan�1 f½3ðI2 � I3Þ � ðI1 � I4Þ�½ðI1 � I4Þ þ ðI2 � I3Þ�g1=2
ðI2 þ I3Þ � ðI1 þ I4Þ

( )

ð14:76Þ

where the ðx; yÞ dependence of the measured intensities is implied. The value of this

algorithm is that it compensates for errors in the amount of phase shift as well as for

spatial variations of the phase shift. However, this algorithm requires that the phase

shift increments at a given location be equal.

The conversion of the result of the arctangent in the Carré algorithm to the

wavefront phase modulo 2p (see Section 14.5) is not as straight forward as for the

other algorithms discussed in this chapter. With these other algorithms, terms

proportional to the sine and cosine of the wavefront phase fðx; yÞ are contained in

the numerator and denominator of the arctangent, and these values are used with

Table 14.11 to correct the calculated phase. In the Carré algorithm (Eq. 14.76), the

square root in the numerator produces the absolute value of the sin½fðx; yÞ�, not the
sine. In fact, since the denominator can be either positive or negative, the sign of

the phase produced by this equation can be wrong. The conversion to the phase

modulo 2p for the Carré algorithm should therefore be based upon the absolute

value of this calculation, and the appropriate entries in the ‘‘Corrected Phase’’

column of Table 14.11 are 0, jfðx; yÞj; p=2, p� jfðx; yÞj; p; pþ jfðx; yÞj; 3p=2, and
2p� jfðx; yÞj. The entries that have changed their form are those where the sine

and cosine are of opposite sign. In addition, to use this revised table, terms

proportional to the sine and cosine of the wavefront phase must also be constructed

in order to determine the signs and select the appropriate table entries (Creath,

1985). One such set of terms is

sin½fðx; yÞ� / ðI2 � I3Þ
¼ 2I00ðx; y;�Þ sin½aðx; yÞ� sin½fðx; yÞ� ð14:77Þ
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and

cos½fðx; yÞ� / ðI2 þ I3Þ � ðI1 þ I4Þ
¼ 8I00ðx; y;�Þ sin2½aðx; yÞ� cos½aðx; yÞ� cos½fðx; yÞ� ð14:78Þ

With these values, the revised Table 14.11 can be used to calculate the wavefront

phase modulo 2p for the Carré algorithm. It should also be noted that this revised

correction table can be used with any of the other algorithms.

The most commonly used reference phase shift is 90� between measurements

ða ¼ 45�Þ, and the recorded data modulation can then be calculated with Eq. (14.30),

the result for the four step algorithm. (Once again, the modulation must be indepen-

dent of the initial value of the phase shift.) This expression can be used even in the

presence of fairly large variations in the size of the phase step as only small errors in

the calculated modulation will result. For a 
10% change in the phase shift, the

maximum error in the modulation is approximately 
5%. This is quite tolerable as

the modulation is generally only used to sort data points with insufficient modulation

from the analysis.

14.7.4. Family of Averaging Algorithms

As wewill see in Section 14.10, a linear phase shift error results in an sinusoidal error

in the reconstruction of the wavefront phase that has a frequency twice that of the

interferogram fringe frequency. Averaging two calculations of the wavefront phase

with a 90� reference phase offset between them can reduce this error (Schwider et al.,

1983;Wyant and Prettyjohns, 1987). This 90� phase shift will move the fringe pattern

by a quarter period, and the reconstruction error will also be shifted by this same

physical distance between the two calculations (Eq. (14.79)). Since this error occurs

at twice the fringe frequency, the periodic error between the two measurements will

be offset by half its period. The errors in the two calculations will therefore tend to

cancel when they are averaged together.

tanf ¼ N

D
¼ N0 þ Np=2

D0 þ Dp=2
ð14:79Þ

One implementation of this technique is to record one additional intensity

measurements with a p=2 phase shift to the 3 or 4 required intensities. The first

three or four of these frames are analyzed using the three-step algorithm (Equation

14.44) or 4-frame algorithms (Eq. (14.27)) to get the first measurement of the

wavefront phase. The second measurements are now analyzed with the same

equation, substituting I2 for I1, I3 for I2 and so on to get the second calculation of

the wavefront phase. These two results are then averaged at each measurement

location to obtain a result that is significantly less susceptible to phase shift errors

that may exist in either of the two individual calculations.
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For example Eq. (14.79) can also be used to derive new implicit error compensat-

ing algorithms from a 3 or 4 frame base algorithm (Schwider et al., 1993). If the

3-frame base algorithm is used, the first derived algorithm was shown by

tan fþ p

4

� �

¼ 2ðI3 � I2Þ
I1 � I2 � I3 þ I4

ð14:80Þ

and if the 4-frame base algorithm is used, the first derived algorithm is shown

(Schwider et al., 1983) to be

tanðfÞ ¼ 2ðI4 � I2Þ
I1 � 2I3 þ I5

ð14:81Þ

Schmit and Creath showed 1995 that the averaging technique can be extended to

obtain further compensations. Using this ‘‘extended averaging’’ technique, a N þ 2

bucket version can be obtained, meaning 2 additional buckets are needed relative to

the base algorithm:

tanf ¼ N

D
¼

ðN0 þ Np=2Þ þ ðN0 þ Np=2Þp=2
ðD0 þ Dp=2Þ þ ðD0 þ Dp=2Þp=2

¼ N0 þ 2Np=2 þ Np

D0 þ 2Dp=2 þ Dp

ð14:82Þ

In 1996, Schmit and Creath showed there is also a possibility to mix-and-match

different algorithms and to average them. This multiaveraging technique can be used

to derive several algorithms with optimized sampling window functions of the

intensities:

tanf ¼ N

D
¼

P

i

Ni

P

i

Di

ð14:83Þ

We summarize the various algorithms discussed above and others in Table 14.2 by

separating them into two classes. Class A is derived from the 4-frame algorithm using

a 90� phase step (Eq. (14.27)). Group B is derived using the 3-step base algorithm

(Eq. (14.52)).

14.7.5. Hariharan Algorithm

Another approach to producing the identical PSI algorithm to Eq. (14.81) that is

insensitive to reference phase shift calibration errors is provided by Hariharan et al.

(1987). They use five measurements of the interferogram intensity, and initially

assume a linear phase shift of a between frames:

di ¼ �2a;�a; 0; a; 2a; i ¼ 1; 2; 3; 4; 5 ð14:84Þ
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Then,

I1ðx; yÞ ¼ I0ðx; yÞ þ I00ðx; y;�Þ cos½fðx; yÞ � 2a� ð14:85Þ
I2ðx; yÞ ¼ I0ðx; yÞ þ I00ðx; y;�Þ cos½fðx; yÞ � a� ð14:86Þ
I3ðx; yÞ ¼ I0ðx; yÞ þ I00ðx; y;�Þ cos½fðx; yÞ� ð14:87Þ
I4ðx; yÞ ¼ I0ðx; yÞ þ I00ðx; y;�Þ cos½fðx; yÞ þ a� ð14:88Þ

and

I5ðx; yÞ ¼ I0ðx; yÞ þ I00ðx; y;�Þ cos½fðx; yÞ þ 2a� ð14:89Þ

These five equations are expanded and combined to produce the intermediate result:

tan½fðx; yÞ�
2 sinðaÞ ¼ I2 � I4

2I3 � I5 � I1
ð14:90Þ

Since the choice of the phase shift a is open, we can choose it tominimize the variation

of this expression to errors in the phase shift. This function is plotted in Figure 14.14

for fðx; yÞ ¼ p=4. Differentiating this equation with respect to a, we find

d

da

tan½fðx; yÞ�
2 sinðaÞ

� �

¼ � cosðaÞ tan½fðx; yÞ�
2 sin2ðaÞ

ð14:91Þ

which goes to zero when a ¼ p=2. When using this value for the phase shift,

Eq. (14.90) becomes insensitive to phase shift calibration errors, and Eq. (14.90)

reduces

TABLE 14.2. Algorithms derived using a base algorithm and the averaging technique.

Frames Class A: tanf ¼ Class B: tan fþ p

4

� �

¼ Phase shift

base
I2 � I4

I3 � I1

I3 � I2

I1 � I2
di ¼ ði� 1Þp

2

4
2ðI3 � I2Þ

I1 � I2 � I3 þ I4
di ¼ ði� 1Þp

2

5
2ðI4 � I2Þ

I1 � 2I3 þ I5

3ðI3 � I2Þ þ I4 � I5

I1 � I2 � 3I3 þ 3I4
di ¼ ði� 1Þp

2

6
4I4 � 3I2 � I6

I1 � 4I3 þ 3I5

4ðI3 � I2 þ I4 � I5Þ
I1 � I2 � 6I3 þ 6I4 þ I5 � I6

di ¼ ði� 1Þp
2

7
4ð2I4 � I2 � I6Þ

I1 � 7I3 þ 7I5 � I7

5I3 � 5I2 þ 10I4 � 10I5 � I6 þ I7

I1 � I2 � 10I3 þ 10I4 þ 5I5 � 5I6
di ¼ ði� 1Þp

2

8
15I4 � 5I2 � 11I6 � I8

I1 � 11I3 þ 15I5 � 5I7

�2ð3I2 � 3I3 � 10I4 þ 10I5 þ 3I6 � 3I7Þ
I1 � I2 � 15ðI3 � 15I4 � 15I5 þ 15I6Þ � I7 þ I8

di ¼ ði� 1Þp
2
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to the final algorithm,

fðx; yÞ ¼ tan�1 2ðI2 � I4Þ
2I3 � I5 � I1

	 


ð14:92Þ

The data modulation at each measurement point can also be determined:

gðx; yÞ ¼ 3½4ðI4 � I2Þ2 þ ðI1 þ I5 � 2I3Þ2�1=2
2ðI1 þ I2 þ 2I3 þ I4 þ I5Þ

ð14:93Þ

A certain similarity should be noted between the form of these two results and the

results for the four step algorithm (Eq. (14.27) and (14.30)), which also uses 90�

phase shifts. Since I1 and I5 are nominally identical, the appearance of both of these

terms is offset by an extra I3, which is the term 180� out of phase.
The minimum in the plot of Eq. (14.90) (Figure 14.14) is centered at 90� and is

quite broad. As a result, the Hariharan algorithm can tolerate fairly large errors in the

phase shift before significant errors appear in the calculated wavefront phase

(Hariharan et al. 1987). If the actual phase shift between measurements is p=2þ e,

then there is a corresponding measured phase f0ðx; yÞ ¼ fðx; yÞ þ�fðx; yÞ which
can be approximated using Eq. (14.90) and assuming that e is small:

tan½f0ðx; yÞ� ffi ½1þ ðe2=2Þ� tan½fðx; yÞ� ð14:94Þ

The error in the measurement of the phase can now also be easily determined:

�fðx; yÞ ¼ f0ðx; yÞ � fðx; yÞ ffi ðe2=4Þ sin½2fðx; yÞ� ð14:95Þ

The error is a function of thewavefront phase, and themaximum error for a 2� change
in the linear phase shift between measurements (88� instead of 90�) is about 0.02�.

FIGURE 14.14. A plot of Eq. (14.90) as a function of the value of the phase shift.
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This same phase shift error for one of the standard algorithms, such as the three-step

algorithm, results in a measurement error on the order of 1�.

14.7.6. 2þ 1 Algorithm

PSI algorithms require a series of intensity measurements to calculate the wavefront

phase. Since a video camera is normally used to record the intensity patterns, the

optical setup must remain stable and air turbulence must be minimized during its

image capture time. Failure to attain these conditions may result in measurement

errors or even a data set that cannot be analyzed. In many situations, such as the

testing of large optics, this requirement can be difficult or impractical.

The 2þ 1 algorithm (Angel and Wizinowich, 1988; Wizinowich, 1989, 1990)

attacks the problem of PSI testing in the presence of vibration by first rapidly

collecting two time-critical interferograms with a 90� phase shift to monitor the

intensity modulation, and later recording a third interferogram that gives the average

intensity across the field. This third interferogram is the average of two interfero-

grams with a 180� phase shift; the peaks of one set of fringes fall in the troughs of the
other set, canceling out the fringe pattern. With this system, the phase shifts are

di ¼ 0;�p=2; 0 and p; i ¼ 1; 2; 3 ð14:96Þ

and the three recorded interferograms are

I1ðx; yÞ ¼ I0ðx; yÞ þ I00ðx; yÞ cos½fðx; yÞ� ð14:97Þ
I2ðx; yÞ ¼ I0ðx; yÞ þ I00ðx; yÞ cos½fðx; yÞ � p=2�

¼ I0ðx; yÞ þ I00ðx; yÞ sin½fðx; yÞ� ð14:98Þ

and

I3ðx; yÞ ¼
1

2
I0ðx; yÞ þ I00ðx; yÞ cos½fðx; yÞ�f g

þ 1

2
fI0ðx; yÞ þ I00ðx; yÞ cos½fðx; yÞ þ p�g

ð14:99Þ

These three equations can be easily solved for the wavefront phase and the recorded

data modulation at each measurement point:

fðx; yÞ ¼ tan�1 I2 � I3

I1 � I3

� �

ð14:100Þ

and

gðx; yÞ ¼
ðI2 � I3Þ2 þ ðI1 � I3Þ2
h i1=2

I3
ð14:101Þ
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Perhaps more interesting than the algorithm itself is the hardware needed to

implement the 2þ 1 algorithm. This system is described in detail by Wizinowich

(1990), and two of the key design features are reviewed here. The first require-

ment is that the two time critical interferograms (I1 and I2) be recorded with as

small a time lag between them as possible. A common solid state sensor archi-

tecture is an interline-transfer charge coupled device. Each photosite on the sensor

is accompanied by an adjacent storage pixel. The storage pixels are read out to

produce the video signal while the active photosites are integrating the light for

the next video field. At the end of this integration period, the charge collected in

the active pixels is quickly transferred to the now empty storage sites, and the next

video field is collected. This transfer takes place in about a microsecond. It is

possible with a synchronized shutter and this sensor to record two exposures of

about a millisecond in a duration separated by a microsecond; the first is recorded

just before the transfer, and the second is recorded just after the transfer. These

two recorded interferograms are read out at standard video rates and can be

digitized.

The second system requirement is that the appropriate phase shift is applied to

each of these two exposures. The system that has been used is diagramed in

Figure 14.15. The rotating turntable with the two right-angle prisms introduces

equal and opposite Doppler frequency shifts of 
�n into the upper and lower

beams. Because of the quarterwave plates, the recombined beams are also ortho-

gonally polarized. The Pockels cell selects one or the other or both of the

polarizations to enter the interferometer, and the shutter provides the appropriate

exposure. All of these devices must be synchronized with the detector array. The

FIGURE 14.15. The system used to generate the phase shift required for the 2þ 1 algorithm (From

Wizinowich, 1990).
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interferometer used with system is non-polarizing so that any input polarization

will enter both the reference and test arms of the interferometer (this is not the

situation described in Section 14.4, Eq. (14.12)). The individual interferograms

are, therefore, produced by just one of the two different optical wavelengths or

frequencies, and the relative phase shift a between interferograms recorded with

the two frequencies is related to the optical path difference OPD between the two

arms of the interferometer:

a ¼ 2p OPD �n=c ð14:102Þ

where c is the speed of light. This phase shift is equal to the difference in the

number of optical cycles that fit into the OPD for the two optical frequencies.

The frequency shift of the two beams �n is a function of the turntable rotation

speed and its size. For path length differences of 10 m, a small frequency shift of

about one part in 108 is needed. The turntable rotation rate is chosen to produce

the desired phase shift.

The system operation is as follows. The phase shift is set for 90�, and the two time-

dependent interferograms are recorded on each side of the interline transfer of the

CCD. The Pockels cell is switched between these exposures, so that only one optical

frequency is used for each. After these two interferograms are digitized and stored,

the turntable speed is changed for a 180� phase shift. At this point, the Pockels cell is
set to allow both frequencies into the interferometer, and the third or average

interferogram is recorded (both interferograms are imaged on the detector). This

system has been shown to freeze out the effects of vibration and allow for PSI

analysis.

Another approach to PSI testing in the presence of vibration is to speed up one of

the standard algorithms through the use of a high-speed video cameras (Greiven-

kamp, 1987a). The speed of the phase shifter must also be increased, but this is not a

problem particularly with the integrating bucket approach where stop-start motions

are not required. It should be noted, however, that speeding up the frame rate does not

guarantee freedom from errors.

14.7.7. Methods to Generate Algorithms

Two generic methods to develop PSI algorithms have already been discussed

earlier in this chapter: The original N-bucket technique is described by Bruning

et al. (1974), and the averaging technique by Schwider et al. (1983), as well as

the extended averaging techniques by Schmit and Creath (1995 and 1996),

respectively.

Larkin and Oreb (1992) and later Surrel (1993, 1996,1998) and Hibino et al.

(1995, 1997,1998) developed a sophisticated theory and a general approach to

algorithm design. While similar, they differ in the way the algorithms are derived,

the number of samples that are needed, and the algorithmic sensitivities to various

error sources. The first family of algorithms to classify here is the so called N þ 1

bucket class of symmetrical phase shift algorithms that comes in two types, A and B.
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Type A (Eq. (14.103)) and B (E. (14.104)) were first introduced by Larkin and Oreb

(1992) and later refined by Surrel (1993).

tanf ¼

PN

i¼2

Ii sin i
2p

N

� �

I1 þ INþ1

2
þ
XN

i¼2

Ii cos i
2p

N

� � ð14:103Þ

tanf ¼

INþ1 � I1

2
cot

2p

N

� �

�
XN

i¼2

Ii sin i
2p

N

� �

I1 þ INþ1

2
þ
XN

i¼2

Ii cos i
2p

N

� � ð14:104Þ

The difference between the two algorithms is the different weighting of the first and

last frame. Type B is in general correcting for phase shift errors.

Table 14.3 shows the 4,5 and 7 frame versions of theN þ 1 bucket algorithm. Note

that the 5 frame version is common to both the Type A and B, and is based on the fact

that the cotangent function in Eq. (14.98) becomes zero for N ¼ 4, resulting in the

N þ 1 ¼ 5 frame algorithms. This algorithm is also identical to the 5 bucket

algorithms by Schwider et al. (1983) (Eq. (14.81)) and Hariharan et al. (1987b)

(Eq. (14.92)) and is reducing errors introduced by the phase shifting.

A more refined approach called the windowed DFT algorithm (WDFT) was

presented by Surrel in 1996. Algorithms derived from Eq. (14.105) are insensitive

to harmonics up to the order of j ¼ N � 2 even in the presence of a phase-shift

miscalibration.

tanf ¼
�
XN�1

i¼1

iðIi � I2N�iÞ sin i
2p

N

� �

NIN �
XN�1

i¼1

iðIi þ I2N�iÞ cos i
2p

N

� � ð14:105Þ

TABLE 14.3. N þ 1 bucket.

Frames Type A algorithm tanf ¼ Type B algorithm tanf ¼ Phase shift

4

ffiffiffi
3

p
ðI2 � I3Þ

�I1 þ I2 þ I3 � I4

I1 � 3I2 þ 3I3 � I4
ffiffiffi
3

p
ðI1 � I2 � I3 þ I4Þ

di ¼ ði� 1Þ 2p
3

5
2ðI4 � I2Þ

I1 � 2I3 þ I5
di ¼ ði� 1Þp

2

7
�

ffiffiffi
3

p
ðI2 þ I3 � I5 � I6Þ

I1 þ I2 � I3 � 2I4 � I5 þ I6 þ I7

�ðI1 þ 3I2 þ 3I3 � 3I5 � 3I6 � I7Þ
ffiffiffi
3

p
ðI1 þ I2 � I3 � 2I4 � I5 þ I6 þ I7Þ

di ¼ ði� 1Þp
3
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Table 14.4 shows the first 3 algorithms derived using the WDFT technique. Note the

p=2 step is now at 7 frames, illustrating that for more highly developed algorithms,

more frames beyond 2p are needed.

In 1997 Hibino et al. published an even more refined algorithm for nonlinear

and spatially non-uniform phase shifts, which they called the N þ 3 algorithms

(Eq. (14.106)).

tanf ¼

1

4
ðI0 þ I1 � INþ2 � INþ3Þ

sin 3p
Nþ2

� �

sin2 2p
Nþ2

� �þ
XNþ2

i¼1

Ii sin
2p

N þ 2

� �

i� N þ 5

2

� �

1

4
ðI0 � I1 � INþ2 þ INþ3Þ

cos 3p
Nþ2

� �

sin2 2p
Nþ2

� �þ
XNþ2

i¼1

Ii cos
2p

N þ 2

� �

i� N þ 5

2

� �

ð14:106Þ

Table 14.5 summarizes the first 3 N þ 1 bucket algorithms for 5,6, and 8 frames,

respectively.

Table 14.6 gives an overview of all the families discussed in this chapter,

including the required phase-steps, their name and the major reference introducing

the family of algorithms.

TABLE 14.4. First three algorithms of the WDFT family of algorithms.

Frames Algorithm Phase shift

5 tanf ¼
ffiffiffi
3

p
ðI1 � 2I2 þ 2I4 � I5Þ

I1 þ 2I2 � 6I3 þ 2I4 þ I5
di ¼ i

2p

3

7 tanf ¼ I1 � 3I3 þ 3I5 � I7

2ðI2 � 2I4 þ I6Þ
di ¼ i

p

2

11 tanf ¼ �
ffiffiffi
3

p
ðI1 þ 2I2 � 4I4 � 5I5 þ 5I7 þ 4I8 � 2I10 � I11Þ

I1 � 2I2 � 6I3 � 4I4 þ 5I5 þ 12I6 þ 5I7 � 4I8 � 6I9 � 2I10 þ I11
di ¼ i

p

3

TABLE 14.5. N þ 3 bucket algorithms.

No. of Frames Algorithm Phase shift

5 tanf ¼ 3
ffiffiffi
3

p
ðI4 � I2Þ

2I1 þ I2 � 6I3 þ I4 þ 2I5
di ¼ ði� 3Þ 2p

3

6 tanf ¼ I1 � 3I2 � 4I3 þ 4I4 þ 3I5 � I6

I1 þ 3I2 � 4I3 � 4I4 þ 3I5 þ I6
di ¼ i� 7

2

� �
p

2

8 tanf ¼ 2I1 � I2 � 6I3 � 3I4 þ 3I5 þ 6I6 þ I7 � 2I8

3
ffiffiffi
3

p
ðI2 � I4 � I5 þ I7Þ

di ¼ i� 9

2

� �
p

3
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TABLE 14.6. Overview of all introduced family of algorithms (note the increase of complexity for the generic equation).

Family of algorithms: tanf ¼ Phase-steps Reference

�P
N

i¼1

Ii sin i 2p
N

� �

PN

i¼1

Ii cos i 2p
N

� �
di ¼ ði� 1Þ 2p

N
N Bucket DFT Bruning, 1974

N

D
¼ N0 þ Np=2

D0 þ Dp=2
di ¼ ði� 1Þ 2p

N
Averaging N þ 1 technique Schwider et al., 1983

N

D
¼

ðN0 þ Np=2Þ þ ðN0 þ Np=2Þp=2
ðD0 þ Dp=2Þ þ ðD0 þ Dp=2Þp=2

¼ N0 þ 2Np=2 þ Np

D0 þ 2Dp=2 þ Dp

di ¼ ði� 1Þ 2p
N

Extended averaging Schmit and Creath,

N þ 2 technique 1995

N

D
¼

P

i

Ni

P

i

Di

di ¼ ði� 1Þ 2p
N

Multiple averaging Schmit and Creath,

N þ m technique 1996

PN

i¼2

Ii sin i 2p
N

� �

I1þINþ1

2
þP

N

i¼2

Ii cos i 2p
N

� �
di ¼ ði� 1Þ 2p

N
N þ 1 bucket type A Larkin and Oreb,

1992

INþ1�I1
2

cot 2p
N

� �
�
PN

i¼2

Ii sin i 2p
N

� �

I1þINþ1

2
þ
PN

i¼2

Ii cos i 2p
N

� �
di ¼ ði� 1Þ 2p

N
N þ 1 bucket type B Larkin and Oreb, 1992,

Surrel, 1993

�
PN�1

i¼1

iðIi � I2N�iÞ sin i 2p
N

� �

NIN � PN�1

i¼1

iðIi þ I2N�iÞ cos i 2p
N

� �
di ¼ i 2p

N
WDFT Surrel, 1996

1
4
ðI0 þ I1 � INþ2 � INþ3Þ

sin 3p
Nþ2ð Þ

sin2 2p
Nþ2ð Þ þ

PNþ2

i¼1

Ii sin
2p
Nþ2

� �

i� Nþ5
2

� �

1
4
ðI0 � I1 � INþ2 þ INþ3Þ

cos 3p
Nþ2ð Þ

sin2 2p
Nþ2ð Þ þ

PNþ2

i¼1

Ii cos
2p
Nþ2

� �

i� Nþ5
2

� �
di ¼ ði� 1Þ 2p

N
N þ 3 bucket Hibino, 1997

5
8
5



14.7.8. Methods to Evaluate Algorithms

Along with the algorithm development, the theory, associated with evaluating the

accuracy, speed, error-sources, and appropriateness for use in various applications,

has been developed.

One of the most powerful analytical techniques was proposed by Freischlad and

Koliopoulos (1990) and looks at phase evaluation like a filtering process in the

frequency domain.

Fourier Description. In general, phase evaluation can be treated as correlations

of the real signal IðfÞ with two real functions fN; fD that describe the phase shift

algorithms. This results in the correlation functions cN; cD that can be defined

as

ciðtÞ ¼
Z 1

�1
IðfÞfiðfþ tÞdf i ¼ N;D ð14:107Þ

In the special case of digital detection with the intensity being digitized at M

discrete points this defaults to

ciðtÞ ¼
XM

n¼1

IðfÞfiðfþ tÞ ð14:108Þ

Sampling is incorporated into the filter functions through the use of a sampling comb:

fxðtÞ ¼
XM

l¼0

ax;ldðt � tlÞ ð14:109Þ

where al is the real coefficient of the lth discrete sample and tl ¼ lTf =M represents

equally spaced sampling positions.

Now if we apply this to a specific algorithm, for example for the 5 bucket

algorithm presented by Schwider et al. (1983), we get

fNðfÞ ¼ 2 d fþ 3p

2

� �

� d fþ p

2

� �� �

fDðfÞ ¼ dðfÞ � 2dðfþ pÞ þ dðfþ 2pÞ
ð14:110Þ

The spectra of these filter functions can be easy calculated using the discrete Fourier

transform

FxðnÞ ¼
1
ffiffiffiffiffi
M

p
XM

r¼1

fxðfÞeifðn=nf Þ ð14:111Þ
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which results in the two spectra F x

FNðnÞ ¼ �4i sin
p

2

n

nf

� �

e�ipðn=nf Þ

FDðnÞ ¼ 2 cos
n

nf
p

� �

� 1

� �

e�ipðn=nf Þ
ð14:112Þ

These spectra are plotted in Figure 14.16(b). Note that both spectra have identical

amplitude at the fundamental frequency. In a similar way the three-step algorithm

yields the following filter functions as shown in Figure 14.16(a),

FNðnÞ ¼ 2
ffiffiffi

3
p

i sin n
p

3

� �

e�inp

FDðnÞ ¼ �2þ 2e�inp cos n
p

3

� � ð14:113Þ

Spectra for the Larkin and Oreb (1992) algorithms are shown in Figure 14.16c

FNðnÞ ¼ �2i
ffiffiffi

3
p

sin n
p

3

� �

þ sin n
2p

3

� �� �

e�inp

FDðnÞ ¼ �4 1þ 2 cos n
p

3

� �� �

sin2 n
p

3

� �

e�inp

ð14:114Þ

FIGURE 14.16. Spectra of the sampling functions for various algorithms.
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For the more developed algorithm by Hibino, (1995) the spectral components are

given below and in Figure 14.16(d),

FNðnÞ ¼ 32
ffiffiffi

3
p

cos3 n
p

6

� �

sin2 n
p

2

� �

e�ð3=2Þnp

FDðnÞ ¼ 16i sin n
p

6

� �

cos n
p

3

� �

� 2
� �

2 cos n
p

6

� �

þ cos n
p

2

� �� �2 ð14:115Þ

To determine the phase of the input signal with respect to the filter functions, the ratio

of the two filter functions is defined as

r ¼ cN

cD
¼

a0FNð0Þ þ 2Re
P1

n¼1

anF
	
N nnsð Þ

	 


a0FDð0Þ þ 2Re
P1

n¼1

anF
	
DðnnsÞ

	 
 ð14:116Þ

In order to determine the phasefm of themth harmonic of the signal, one requires the

following conditions be fulfilled:

anF
	
Nðn � ngÞ ¼ �iAdðn;mÞ

anF
	
Dðn � ngÞ ¼ Adðn;mÞ

ð14:117Þ

This lead to the conclusion that components an at n ¼ nng should be 90
� out of phase

and of equal magnitude:

FNðnngÞ ¼ iFDðnngÞ ð14:118Þ

As Freischlad et al. (1990) have shown, the phase is then equal to the arctangent of

the ratio cN=cD, independent of the amplitude jsmj and also independent of all other

frequency components of the signal with a constant offset.

f ¼ tan�1ðrÞ þ const ð14:119Þ

For a given fundamental frequency, ng, Eq. (14.118) can only be satisfied at certain

signal frequencies. Further, as shown by Freischlad (1990) and Larkin and Oreb

(1992), the following properties can be derived from the Fourier description:

1. An algorithm is insensitive to the harmonic m, when the Fourier transforms for

the sampling functions for both nominator and denominator match, that is,

FN

n

nf

� �

¼ FD

n

nf

� �

¼ 0.

2. If the slope of the Fourier transforms for harmonic m are equal, that is,

d

dn
FN�ðnf Þ

� �

n¼nf

¼ i
d

dn
FD�ðnf Þ

� �

n¼nf

, the algorithms is insensitive to misca-

libration at that harmonic.
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3. Insensitivity to phase-shift errors and harmonic k are achieved when the kth

derivative of the Fourier transform at the fundamental frequency are equal

(condition 1) and the k-derivative at the frequency of the ðk � 2Þ harmonic are

zero as well (condition 2).

Characteristic Polynomial. Avery elegant analytical method has been proposed by

Surrel (1996). The method uses a characteristic polynomial to describe an algorithm

and is loosely related to the Fourier description presented before. The method assures

that the intensity of the recorded interference signal IðfÞ is a periodic function and

therefore can be expanded into a Fourier series

Iðfþ dÞ ¼
X1

m¼�1
bmðfÞ expðimdÞ ð14:120Þ

The various phase shift algorithms are then used to evaluate the argument of the

Fourier coefficient b1 which corresponds to the fundamental harmonic of the

intensity signal. Writing the algorithms as the acrtangent of the ratio of two linear

combinations of values Iðfþ dÞ yields

f ¼ tan�1

PN

n¼0

bnIðfþ ndÞ

PN

n¼0

anIðfþ ndÞ

2

6
6
6
4

3

7
7
7
5

ð14:121Þ

Substituting the exponential term y, the complex variable z of the characteristic

polynomial, and cn as its corresponding coefficient to the nth order

f¼ arg
XN

n¼1

ðanþ ibkÞIðfþndÞ
" #

¼ arg
X1

m¼�1
bmðfÞ

XN

n¼1

ðanþ ibnÞ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{

cn

½expðimdÞ�
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

z

n�1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

PðzÞ

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð14:122Þ

results in the very compact form of the characteristic polynomial:

PðzÞ ¼
XN

n¼1

cnz
n�1 ð14:123Þ

The polynomial coefficients, cn, thereby correspond to the specific coefficients of the

algorithm, with an as the coefficients of the numinator or cosine part and bn as the
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coefficients of the denominator or sine part. For example, for the Bruning (1974)

three-step algorithm using 120� steps, the characteristic polynomial yield:

PBruning 74ðzÞ ¼ �2þ zþ i
ffiffiffi

3
p

zþ z2 � i
ffiffiffi

3
p

z2 ð14:124Þ

One can draw conclusions about the behavior of an algorithm from the characteristic

polynomial simply by looking at the roots. For the algorithm from Bruning (1974),

there are only 2 single roots at

z ¼ 1;� 1

2
� i

ffiffiffi
3

p

2

� �

ð14:125Þ

The single root at z ¼ 1 allows the algorithm to detect the fundamental frequency,

but the missing existence of a double root demonstrates that the algorithm does

not have the ability to compensate for miscalibration. In comparison, Schwider’s

(1993) algorithm has one double root, allowing it to be insensitive to phase-shifter

miscalibration

PSchwider 93ðzÞ ¼ ð�1� iÞ � ð1� 3iÞzþ ð3� iÞz2 � ð1þ iÞz3

zsingle roots ¼ f1g zdouble roots ¼ f�ig
ð14:126Þ

Schwider’s algorithm, presented earlier in 1983, has a single root at both plus and

minus mth-harmonic, which makes it insensitive to the mth-harmonic.

PSchwider 83ðzÞ ¼ 1� 2iz� 2z2 þ 2iz3 þ z4

zsingle roots ¼ f�1; 1g zdouble roots ¼ f�1� ig
ð14:127Þ

Hibino’s algorithm has only a single root for the first harmonic, but double roots for

many of the following higher harmonics, making it insensitive to these higher

harmonics:

PHibino 95ðzÞ¼1� i
ffiffiffi

3
p

�z�3i
ffiffiffi

3
p

z�7z2�3i
ffiffiffi

3
p

z2�11z3þ i
ffiffiffi

3
p

z3�6z4þ6i
ffiffiffi

4
p

z4þ6z5

þ6i
ffiffiffi

3
p

z5þ11z6þ i
ffiffiffi

3
p

z6þ7z7�3i
ffiffiffi

3
p

z7þz8�3i
ffiffiffi

3
p

z8�z9� i
ffiffiffi

3
p

z9

zsingle roots¼f1g zdouble roots¼ �1;�1

2
þ i

ffiffiffi
3

p

2
;�1

2
� i

ffiffiffi
3

p

2
;
1

2
� i

ffiffiffi
3

p

2

� �

ð14:128Þ

The properties using the characteristic polynomial are summarized as follows, as

originally proposed by Surrel (1996):
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1. To detect the fundamental frequency ðm ¼ 1Þ, the characteristic polynomial

should have a root at z ¼ �m but none at z ¼ þm.

2. If the characteristic polynomial has roots at z ¼ 
m for m 6¼ 1, then the

algorithm is insensitive to the mth-harmonic component.

3. In the case when only one z ¼ �m or z ¼ m is a double root of the character-

istic polynomial but not the other, then that harmonic component can be

detected, but the algorithm still is insensitive to miscalibration of the phase

shifter.

4. If both z ¼ �m and z ¼ m are double roots of the characteristic polynomial,

then the algorithm is insensitive to the harmonic component ðmÞ, as well as
being insensitive to miscalibration of the phase shift at that case.

In 1996, Surrel also showed a compact way to display the features of the character-

istic polynomials. In this representation shown in Figure 14.17, the phase steps of

the algorithm are plotted as lines along the unit circle, where the angle of the line

to the origin corresponds to the phase step. A big dot at the intersection of the

line with the unit circle corresponds to a root of that specific harmonic. If a circle is

drawn around the dot, it indicates the presence of a double root for that location.

Figure 14.18 shows the plots of many examples for the characteristic polynomial for

the algorithms presented in this chapter. In addition, where a thick line is drawn from

the center, it indicates an overlap, where the phase steps include step values beyond

one full period of 2p.

14.7.9. Summary of Algorithms

In this section, we examined a number of different PSI algorithms. They all require a

series of interferograms to be recorded as the reference phase is shifted. The

wavefront phase is then calculated at each measurement site as a function of the

FIGURE 14.17. Plot of the characteristic polynomial for a specific algorithm. Large dot indicates single

root for the mth order; circled dot indicates double root.
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FIGURE 14.18. Plots of the characteristic polynomials of the algorithms in Tables 14.7 and 14.8 also

showing single and double roots for the specific harmonics.
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intensities measured at that site. The result of these calculations must then go through

a phase unwrapping process before the final wavefront map is produced. The

algorithms are valid for both the phase-step and integrating-bucket data collection

methods. In Section 14.9, we will examine characteristics of these algorithms with

respect to error sources to aid in the selection of algorithms most appropriate for a

particular application. The graphical comparison of many of these algorithms in

Figure 14.18 is obtained by plotting the average reference phase angles required for

each of the recorded interferograms.

Because of the nature of the arctangent function, there is no difference in shifting

the algorithms multiples of p:

tanðfþ n � pÞ ¼ tanðfÞ ð14:129Þ

Malacara et al. (2005) also summarized the effects of shifting the algorithms by p/2

and p/4. Shifting all phases by a constant is inconsequential, but can change the

appearance of the algorithm. Replacing f by fþ p

2
yields:

tan fþ n � pþ p

2

� �

¼ sin fþ p
2

� �

cos fþ p
2

� � ¼ cosðfÞ
� sinðfÞ ¼

D

�N
ð14:130Þ

which corresponds to a simple exchange of the sampling functions, and a change in

the sign of one of them, but the sampling point is now located at phases displaced


p=2.
Replacing f by fþ p

4
yields:

tan fþ n � pþ p

4

� �

¼ cosfþ sinf

cosf� sinj
¼ Dþ N

D� N
ð14:131Þ

These and other transformations can result in mathematical or computational sim-

plifications that may improve efficiency or understanding for particular applications.

Malacara et al. (2005) showed one algorithm, for which the reference sampling

functions are orthogonal for all frequencies but amplitudes are unequal, changes into

another algorithm for which the sampling reference functions have equal amplitudes

at all frequencies but are orthogonal only at some. The following tables (14.7, 14.8)

summarizes the presented algorithms and their properties along with their p/4 shifted

counterparts.

Tables 14.7 and 14.8 give an overview of the discussed algorithms and also give

some recommendations around error behavior. If looking for an algorithm especially

targeted to suppress one specific error, like a significant vibration frequencie the

Malacara et al. (2005) book might be a good start, and also the papers discussed,

which describe how to develop these algorithms, might be a required literature to fine

tune the algorithm to the specific needs.

Table 14.9 gives an overview of the harmonic sensitivities of the presented

algorithms. The harmonic sensitivities were derived by using the Fourier theory

discussed and the amplitudes at the specific harmonic frequencies are shown.
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TABLE 14.7. Overview of the presented algorithm up to 6 buckets and their properties.

Family Error behavior

Algorithm

N tanf ¼ tan fþ p
4

� �
¼ Phase-Steps: N

b
u
ck
et

A
v
g
A

A
v
g
B

N
þ
1
T
y
p
e
A

N
þ
1
T
y
p
e
B

W
D
F
T

Reference li
n
ea
r
p
h
as
e-

sh
if
t

v
ib
ra
ti
o
n

v
ib
ra
ti
o
n

tu
rb
u
le
n
ce

d
et
ec
to
r

n
o
n
li
n
ea
ri
ty

3
ffiffi
3

p
ðI2�I3Þ

I2þI3�2I1

2I1�I2�
ffiffi
3

p
ðI2�I3ÞþI3

2I1�I2þ
ffiffi
3

p
ðI2�I3Þ�I3

di ¼ ði� 1Þ 2p
3

X Bruning, et al. 1974

I1�2I2þI3
I1�I3

I3�I2
I1�I2

di ¼ ði� 1Þ p
2

Wyant, 1984b

I2�I4
I3�I1

I1�I2�I3þI4
I1þI2�I3�I4

di ¼ ði� 1Þ p
2

X Bruning et al., 1974 good

4
3I2�ðI1þI3þI4Þ
ðI1þI2þI4Þ�3I3

2ðI3�I2Þ
I1�I2�I3þI4

di ¼ ði� 1Þ p
2

X Schwider et al., 1993 good
ffiffi
3

p
ðI2�I3Þ

I2þI3�I1�I4

I1�I2�
ffiffi
3

p
ðI2�I3Þ�I3þI4

I1�I2�
ffiffi
3

p
ðI2�I3Þ�I3þI4

di ¼ ði� 1Þ 2p
3

X Larkin and Oreb, 1992

I1�3I2þ3I3�I4ffiffi
3

p
ðI1�I2�I3þI4Þ

I1�3I2þ3I3þI4þ
ffiffi
3

p
ðI1�I2�I3þI4Þ

�I1þ3I2�3I3�I4þ
ffiffi
3

p
ðI1�I2�I3þI4Þ

di ¼ ði� 1Þ 2p
3

X Surrel, 1993

5
2ðI4�I2Þ
I1�2I3þI5

I1�2I2�2I3þ2I4þI5
I1þ2I2�2I3�2I4þI5

di ¼ ði� 1Þ p
2

X X X Schwider et al., 1983, good good good good

Hariharan 1987
I1�4I2þ4I4�I5

I1þ2I2�6I3þ2I4þI5

I1�I2�3I3þ3I4
3I2�3I3�I4þI5

di ¼ ði� 1Þ p
2

X X Schmit and Creath, 1995

3I1�6I2þ4I3�2I4þI5
2I1þ2I2�3I3þ2I4�2I5

5I1�3I2þI3�I5
�I1þ7I2�7I3þ4I4�3I5

di ¼ ði� 1Þ p
2

Bi, 2004

I1�2I2þ2I4�I5
2ðI2�2I3þI4Þ

�I1þ4I3�4I4þI5
I1þ4I2�4I3þI5

di ¼ ði� 1Þ p
2

Surrel, 1997b

6
�
ffiffi
3

p
ðI2þI3�I5�I6Þ

2I1þI2�I3�2I4�I5þI6

2I1þI2�I3�2I4�I5þI6�
ffiffi
3

p
ðI2þI3�I5�I6Þ

2I1þI2�I3�2I4�I5þI6þ
ffiffi
3

p
ð�I2�I3þI5þI6Þ

di ¼ ði� 1Þ p
3

X Bruning et al., 1974

�3I2þ4I4�I6
I1�4I3þ3I5

I1�3I2�4I3þ4I4þ3I5�I6
I1þ3I2�4I3�4I4þ3I5þI6

di ¼ ði� 1Þ p
2

X Schmit and Creath, 1995 good good good

4I4þI5�I1�3I2�I6
I1�I2�4I3þ3I5þI6

�2ðI2þI3�I4�I5Þ
I1þI2�2I3�2I4þI5þI6

di ¼ ði� 1Þ p
2

Zhao 1997, Surrel 1996, good good

Malacara-Doblado, 2000

I1�4I2þ2I3þ2I4þI5�2I6
2I1�I2�2ðI3þI4�2I5Þ�I6

3I1�5I2þ5I3�3I6
I1þ3I2�4I3�4I4þ3I5þI6

di ¼ ði� 1Þ p
2

Onodera, 2003

5
9
4



TABLE 14.8. Overview of algorithms of 7 to 11 buckets and their properties.

Family Error Behavior

N Algorithm tanf ¼ Phase-Steps: N
b
u
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et

A
v
g
A
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v
g
B
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e
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e
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N
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n
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7
ffiffi
3

p
ð�I2�I3þI5þI6Þ

I1þI2�I3�2I4�I5þI6þI7
di ¼ ði� 1Þ p

3
X Larkin, and good good

Oreb, 1992

tanf
�I1�3ðI2þI3�I5�I6ÞþI7ffiffi
3

p
ðI1þI2�I3�2I4�I5þI6þI7Þ

di ¼ ði� 1Þ p
3

X Larkin and Oreb, good very

1992, Surre, 1993 good

tanf
7ðI3�I5Þ�ðI1�I7Þ
8I4�4ðI2þI6Þ di ¼ ði� 3Þ p

2
de Groot, 1994 good

tanf 4I4�2I2�2I6
I1�3I3þ3I5�I7

di ¼ ði� 1Þ p
2

X Hibino, 1995 good good

8 tanf I2�I4þI6�I8
I1�I3þI5�I7

di ¼ ði� 1Þ p
2

X Schmit, 1996

tanf 2I2�4I4þ3I6�I8
I1�3I3þ4I5�2I7

di ¼ ði� 1Þ p
2

X good

tanf 3I2�7I4þ5I6�I8
I1�7I3þ5I5�3I7

di ¼ ði� 1Þ p
2

X good good

tanf 4I2�11I4þ8I6�I8
I1�8I3þ11I5�4I7

di ¼ ði� 1Þ p
2

X good good good

tanf 5I2�15I4þ11I6�8I8
I1�11I3þ15I5�5I7

di ¼ ði� 1Þ p
2

X very good very

good good

10 tanf
ffiffi
3

p
ð�I1�3I2�3I3þI4þ6I5þ6I6þI7�3I8�3I9�I10Þ
I1�I2�7I3�11I4�6I5þ6I6þ11I7þ7I8þI9�I10

Hibino, 1995 very very

good good

11 tanf
ðI1�I11Þ�8ðI3�I9Þþ15ðI5�I7Þ
ð4I2þI10Þ�12ðI4þI8Þþ16I6

di ¼ ði� 6Þ p
2

de Groot, 1994 good very

good

5
9
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The amount of steps in the design of a phase shift algorithm is principally not

limited, however for very large numbers it develops towards and Fourier evaluation

with its own advantages and disadvantages (See de Groot, 1997 for a discussion).

14.8. PHASE SHIFT CALIBRATION

An important step in setting up a PSI system is to calibrate the phase shift a between

recorded interferograms. Some algorithms are very sensitive to errors in the phase

shift, and even the algorithms that are tolerant of phase shift errors require calibration

for best performance. If the integrating bucket approach is used, the phase centroid of

each integrating period must be calibrated.

A convenient way to calibrate the phase shift is to use the solution for a from the

Carré algorithm (Eq. (14.74), which gives half the step size). If a series of four

interferograms are recorded with equally spaced steps, the Carré algorithm yields the

phase shift at each measurement point.

TABLE 14.9. The harmonic sensitivities for the described algorithms

are presented below.

Suppresses harmonics

Frames

Algorithm 2 3 4 5 6 7 8 9 10 N

Bruning, et al. 1974 - y - - y - - y - o

3
Wyant, et al. 1984b - - y - - - y - -

Bruning, et al. 1974 y - y - y - y - y

Schwider, 1993 - - y - - - y - -

9

>=

>;

4
Larkin and Oreb, 1992 - y - - y - - y -

Larkin, 1992, Surrel, 1993 - y - - y - - y -

Schwider, 1983, Hariharan, 1987 y y y - y y y - y

Schmit and Creath, 1995 - - y - - - y - -

9

>=

>;

5
Bi, 2004 - - y - - - y - -

Surrel, 1997b - - y - - - y - -

Schmit and Creath, 1995 y - y - y - y - y
)

6Zhao, 1997, Surrel, 1996 y - y - y - y - y

Onodera, 2003 - - y - - - y - -

Larkin and Oreb, 1992 y y y - y - y y y

Larkin, 1992, Surrel, 1993 y y y - y - y y y

9

>=

>;

7
de Groot, 1994 y - y - y - y - y

Hibino, 1995 y - y - y - y - y

Schmit and Creath, 1996 y - y - y - y - y

Schmit and Creath, 1996 y y y y y y y y y

9

>>>=

>>>;

8Schmit and Creath, 1996 y - y - y - y - y

Schmit and Creath, 1996 y - y - y - y - y

Schmit and Creath, 1996 y - y - y - y - y

Hibino, 1995 y y y - y - y y y g 10

de Groot, 1994 y - y - y - y - y g 11
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A simpler expression for the phase shift can be found by using five interferograms

recorded with equal steps of a (Schwider et al., 1983; Cheng and Wyant, 1985b).

These are the same intensities used in the Hariharan algorithm (Eqs. (14.79)–(14.83),

and the solution for the phase shift is

aðx; yÞ ¼ cos�1 1

2

I5 � I1

I4 � I2

� �	 


ð14:132Þ

Note that the third interferogram or intensity of the series is not needed for this

calculation, and the phase shift can be calculated at each point in the field.

Both of these analytic expressions for the phase shift have a singularities for certain

values of thewavefront phasefðx; yÞ. To avoid errors, a few tilt fringes are introduced

into the interferogram, and data points which cause the denominators of the particular

equation to fall below some threshold are eliminated from the analysis. A convenient

way to display these calculated results is to show a histogram of the measured phase

shifts (Creath, 1988). A sample histogram for a 90� phase shift is shown in

Figure 14.19, and the controller of the phase shifter should be adjusted to center

this curve on the desired value and to minimize its standard deviation. The method

using five frames in Eq. (14.132) is the most commonly used calibration procedure.

The width and shape of the histogram also provides an easy way of monitoring the

variation of spatial phase shift. The histogram in Figure 14.19, above, was generated

on a Fizeau interferometer with plano objectives. It is very symmetric and has a half

width of 4�. The histogram in Figure 14.20 was obtained on the same interferometer,

but with a f=0:75 reference objective. In this case, the width of the curve has increased
to about 15�, and it is skewed to lower values of phase shift. The skew is due to the high

f-number rays that make a large anglewith the optical axis. These rays see a phase shift

that has been reduced by the cosine of this angle, and this situation points out the need

for an algorithm that is insensitive to errors in the phase shift.

FIGURE 14.19. A histogram showing the distribution of the measured phase shifts.
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A few simpler but less accurate methods for calibrating the phase shift involve the

visual comparison of a series of interferograms. If four interferograms collected with

a 90� phase shift are displayed (as described by Eq. (14.79)–(14.83) with a ¼ p=2,
and as shown in Figure 14.6), the first and fifth frames are 2p out of phase and should

appear identical. Complementary intensity patterns should appear in the first and

third, second and fourth, and third and fifth because of the p phase shift between each

pair. The addition of a few tilt fringes makes the analysis easier. This intensity

comparison can also be done by plotting a linear slice across each of these inter-

ferograms (Cheng and Wyant, 1985b). For these five interferograms, the curves

from the first and the fifth should lie on top of each other. This is demonstrated in

Figure 14.21a as a properly adjusted 90� phase shift and in Figure 14.21b, which

shows the error that results for an 97� phase shift. These techniques can be expanded
to other values of phase shift. If N þ 1 interferograms are collected with a phase shift

of 2p=N (the N-step algorithm in Eq. (14.67), the first and the last of these

interferograms should overlap. With either of these two techniques, the phase shift

is calibrated by changing the gain on the PZT driver until the visual match is

obtained. An accuracy of plus or minus a few degrees is possible.

Another method for calibrating the phase shift is to use a separate interferometer

to monitor the position of the reference mirror as it translates (Hayes, 1984). The

detected intensity is then used to control the phase shift controller. This reference

interferometer can also be a phase shift interferometer. An alternative solution is to

use the measured phase positions with the generalized least-squares algorithm

(Section 14.8.2). This results in an algorithm that adapts to the actual phase shifts

for which the data was collected (Seligson et al., 1984).

This type of reference monitoring system is very useful for detecting and correct-

ing nonlinearities in the phase shift. The nonlinearity in even good PZTs can range

FIGURE 14.20. A histogram of the measured phase shifts obtained with a fast reference objective on a

laser Fizeau interferometer.
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from less than 1% to a few percent, and they often exhibit hysteresis. The effect of

these nonlinearities will be examined in the next section. The other calibration

procedures provide a linear correction for the phase shift, but do not correct for

nonlinearities. By knowing the actual travel of the reference mirror as a function of

drive signal or voltage, the controller signal that will produce a linear phase shift can

be generated. In practice, this is usually done through a digital look-up table that is

converted into the analog drive signal.

14.9. ERROR SOURCES

There are numerous sources of error that can affect the accuracy of phase measure-

ments determined by the various PSI algorithms. Some of the PSI algorithms are

more sensitive to a particular error source than others, while some sources of error are

fundamental and affect the accuracy of all algorithms. Creath (1986) conducted a

thorough simulation of errors for most of the common algorithms. Error contributions

specific to each algorithm have been conveniently tabulated in a recent reference and

FIGURE 14.21. Intensity traces across five phase-shifted interferograms: (a) 90� phase shift and (b) 97�

phase shift (From Cheng and Wyant, 1985b).
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include those attributable to the laser source, the phase shifter, the detector, and the

environment (van Wingerden et al., 1991). PSI algorithms produce a phase measurement

that is a relative OPDmeasurement. Often what is desired is an absolute measurement

of an optical surface or the OPD of an optical system. Many factors inhibit a direct

measurement of the desired quantity. What follows is a discussion of how to identify

and minimize the influence of the various sources of error.

It is important to emphasize the difference between precision, repeatability, and

accuracy. A system that posses very small random errors has high precision. A

system that gives the same result for consecutive measurements has high repeat-

ability. High repeatability, however, does not imply either high accuracy or high

precision, but high accuracy is not possible without high repeatability. A system with

very small systematic errors can have high accuracy because random errors can be

reduced by averaging. Generally we try to minimize both types of error, but in all

cases the error contributions must be understood if improvements in overall accuracy

are to be attained. Some of the largest sources of error in PSI are systematic, and

though quite well understood, are often difficult to eliminate. The use of high-

performance microprocessors has contributed to the reduction of many component

errors through the efficient and inexpensive manipulations of large quantities of data.

More improvement can be expected.

Error sources generally fall into three categories: (1) those associated with the

data acquisition process, (2) environmental effects such as vibration and air turbu-

lence, and (3) those associated with defects in optical and mechanical design and

fabrication. The data acquisition process includes errors in the phase shift process,

nonlinearities in the detection system, amplitude and frequency stability of the

source and quantization errors obtained in the analog-to-digital conversion process.

We begin with the discussion of errors in the first category since these are the most

controllable and tend to be quite algorithm dependent.

14.9.1. Phase Shift Errors

All PSI algorithms rely on shifting the phase in a known manner in an interferometer

as part of the data acquisition process. The expected variation of intensity at any point

in the interference pattern, under ideal conditions, is purely sinusoidal with a linear

change in path length of the phase shifting arm (Eq. (14.6)):

Iðx; y; tÞ ¼ I0ðx; yÞ þ I00ðx; yÞ cos½fðx; yÞ þ dðtÞ� ð14:133Þ

If the increment and total range of the phase shift dðtÞ during data acquisition is

not the predicted subdivision of 2p, then the measured intensity samples do not

precisely map to one complete period of a sinusoidal signal. In other words, a

precisely sinusoidal signal is expected, and the acquired data points are fit to a

sinusoidal signal in a least-squares or Fourier series sense, with that assumption. For

example, if the reference phase shifter for an N-step algorithm does not shift each

step by the expected 2p/N increment in OPD, but instead is off by some error er at

each step, the least-squares algorithm will try to fit a set of intensities representing a
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sinusoidal signal of period 2pþ e0r to a sinusoidal function of period 2p, where e0r
represents the deviation from a full 2p period. A sinusoidal signal of period 2pþ e0r
can be represented by a Fourier series of sinusoids at the fundamental frequencyn ¼ 1=2p,
together with all higher harmonics, 2mn, where m is an integer. There is a corresponding

error that is imparted to the measured phase under these circumstances that shows upmost

severely in the first harmonic of the measured phasef0ðx; yÞ. Schwider (1989) has shown
that for a small error er in the reference phasefrðx; yÞ, there is a corresponding error in the
measured phase f0ðx; yÞ from the true phase fðx; yÞ of

�fðx; yÞ ¼ f0ðx; yÞ � fðx; yÞ: ð14:134Þ

A detailed calculation of the phase error is quite lengthy, but for the general case

of an N-step least-squares algorithm, we have

�fðx; yÞ � aþ b cos½2fðx; yÞ� þ c sin½2fðx; yÞ� ð14:135Þ

The coefficients a, b, and c are summations that can be interpreted as Fourier

coefficients for the spatial variation of the interference pattern at twice the spatial

variation of the true phasefðx; yÞ. A higher-order approximation would show higher-

order harmonics with correspondingly smaller coefficients.

The error in Eq. (14.135) can be minimized in a number of practical cases. The

most notable of these is the Schwider et al. (1983) and Hariharan (1987) algorithm

(Section 14.7.4) in which 5 samples are taken with a phase shift of p/2 between

samples. In this case, Eq. (14.135) reduces to Eq. (14.95) and is repeated here:

�fðx; yÞ � ðe2r=4Þ sin½2fðx; yÞ� ð14:136Þ

The Carré algorithm shows no measurement error for a linear error in the phase shift

increment since this algorithm analytically determines the phase steps taken during

the measurements. This algorithm was developed for long baseline interferometric

distance measurements in a coordinate measurement tool (Carré 1966).

The Schwider et al. (1983) and Hariharan (1987) algorithm is quite insensitive to

other error types in addition to the linear calibration error in the phase shift step.

Higher-order nonlinearities in the phase shifter are more difficult to predict analy-

tically, but quite simple to simulate numerically. Hariharan has shown that deviations

in linearity of 1% from the nominal p/2 phase shift steps cause a maximum error of

less than 0.005� in the measured value of the phase f. Hysteresis errors of the

magnitude give rise to comparable errors.

Linear drift in the phase shifter is minimized with this algorithm, but in fact, can be

nearly eliminated by a simple additional operation. The effect of such drifts, if small, can

nearly be eliminated by acquiring a second data set in the reverse order and averaging

with the first. Hariharan et al. (1987a) have shown in this case that a drift of 4� over two
sample periods ( corresponding to values of�178�,�88.5�,1�,90.5� and 180� in the first
set and 180�, 89.5�, �1�, �91.5� and �182� in the second set ) contributes an error of
only 0.001� when the two sets are averaged. In practice, drift or instability in a particular
part of the interferometer may be indistinguishable to the algorithm from the drift in the

phase shifter since both can appear as changes in OPD over the same field.
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In spite of the relative insensitivity of the Schiwder et al. (1983) and Hariharan (1987)

algorithm to phase shift errors, it is important to calibrate the phase shift steps. A simple

calculation, which is convenient for this algorithm, was proposed by Schwider et al.

(1983) in which the phase step a is calculated from the following equation:

cosðaÞ ¼ 1

2

I5 � I1

I4 � I2
ð14:137Þ

The use of this equation is restricted because of the singularity when I4 � I2 ¼ 0, as

discussed in Section 14.1. In-depth analyses of the effects of phase shift errors are

covered by Kinnstaeter et al. (1988), Ohyama et al. (1988) and by Freischlad and

Koliopoulos (1990).

In practice, it is important to choose the algorithm which is most insensitive to

phase shift errors for each particular application. This results from the fact that most

phase errors are induced by changes in OPD in the interferometer cavity due, and

depending on the application may be dominated by drifts, turbulence, vibrations, and

not by incorrect movements of the reference mirror (i.e., phase shifter) or a combina-

tion thereof.

Figure 14.22 shows a numerical simulation of the error sensitivity of linear phase

shift error for algorithms presented before. For algorithms using up to 4 steps, the

algorithm presented by Schwider et al. (1993) has the best compensation behavior as

shown in the top chart. When using up to 6 phase steps, the algorithm introduced by

Schmit and Creath (1995) using 6 intensities has improved behavior over the best and

very common 5 bucket algorithm by Schwider et al. (1983) and Hariharan (1987).

Figure 14.23 summarizes the behavior of phase-shift algorithms with 7 to 11

frames. Here the averaged algorithms presented by Schmit and Greath (1996) and de

Groot (1994) using an optimized sampling window yield the best performance. In

general this also shows that the more frames are available, the better an algorithm can

be tailored to reduce error sources.

14.9.2. Detector Nonlinearities

Nonlinearity of the detector represents an error that can become important when the

dynamic range or contrast of the fringes is very high. Correspondingly, when contrast

is low, detector nonlinearity is less significant. Kinnstaetter et al. (1988) have shown

that with the four-step algorithm (a ¼ p=2), phase measurement is free of error not

only for a linear detector, but even when the detector has second-order nonlinearities.

This is not the case for the three-step algorithm. Forth-order detector nonlinearities,

however, contribute errors that excite the third harmonic of the spatial variation of

phase fðx; yÞ for the four-step algorithm. More phase steps in the PSI algorithm are

effective in reducing higher-order nonlinearities in the detector, but these errors are

generally of no consequence. Modern silicon array sensors operate linearly over

dynamic ranges of nearly 100:1 at room temperature. The range can be easily

extended by at least another order of magnitude with thermoelectric or cryogenic

cooling. This is not usually needed except in cases where light levels are very low or

the pixel integration time, by requirement, is very short.
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Detector nonlinearity in CCDs is more likely to be encountered at high intensities

when the diode array is operating at or near saturation. This is easily remedied by

insertion of an appropriate attenuator. The integrating CCD-type detector has the

greatest dynamic range if it can be operated just below saturation. This is achieved by

selecting the proper laser power, optical attenuation, and integration time (frame rate).

Figure 14.24 shows different detector nonlinearities illustrated by different gamma

values. The terminology of gamma correction is common in modern video applications.

Idetected ¼ Ireal
g ð14:138Þ

FIGURE 14.22. Linear phase shifter error for algorithms with up to 4 frames presented in the top chart.

Phase error for algorithms containing 5 or 6 intensity samples presented in the bottom chart.
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FIGURE 14.23. Simulated linear phase shifter error for algorithms presented using 7 buckets or more.

FIGURE 14.24. Example gamma transfer functions for several cases. Note that a low gamma value is

equivalent of a detector operating near saturation and a high gamma value corresponds to intensities partly

below the detection limit.
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Eq. (14.138) illustrates the relations between the actual intensity at the detector

location Ireal and the detected intensity Idetected. Both intensities are normalized

between 0 and 1 for Eq. (14.138) to be valid. As can be seen in Figure 14.24, a

low gamma value is equivalent of a detector operating near saturation and a high

gamma value corresponds to intensities below the detectors threshold. Figure 14.25

shows the sensitivities of different PSI algorithms to different simulated gamma

values for detector nonlinearities.

14.9.3. Source Stability

Stability of the interferometer source is important both in frequency and amplitude.

Frequency instability, particularly with lasers, can give rise to corresponding insta-

bilities in the fringe pattern and reduce the accuracy of the measured wavefront. This

is potentially more troublesome for interferometers that operate at large differences

in path length in the two arms of an interferometer. The long coherence length of the

He–Ne laser may cause one to neglect this factor, but for high accuracy requirements

this must be considered. For a path length difference in the interferometer of�L and

a desired measurement accuracy of k wavelength, the frequency stability �n of the

sources satisfies the inequality

�n <
c � k
�L

; ð14:139Þ

where c is the velocity of light. This is derived from the assumption that we should be

able to determine the phase to within one wave if the coherence length of the laser

matches the path length difference. Thus, a path difference of 3m requires a source

stability of 1MHz for < 0.01 l accuracy. While large OPDs present a problem for

FIGURE 14.25. P-V wavefront error introduced by detector nonlinearities for specific gamma transfer

functions. The chart shows all 3 types of algorithms that can be distinguished.
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sources with poor frequency stability, this suggests an alternate method of shifting

the fringes if the source frequency or wavelength is an easily controllable parameter

in the system. This has been exploited wth laser diode sources and is covered in

greater detail in the Section 14.16.4.

Intensity fluctuation of the source, if random, can be mitigated by averaging since

all points in the field vary together under most circumstances. The effect of intensity

fluctuations on phase measurement depends on the algorithm used. In the case of the

N-step least-squares algorithm, it has been shown that the standard deviation in the

measured phase sf is given by (Bruning 1978; Koliopoulos 1981)

sf ¼ 1
ffiffiffiffi
N

p
S

ð14:140Þ

where S is the signal-to-noise ratio of the detector system. This and other noise

sources have been analyzed in great detail for most of the algorithms by Freischlad

and Koliopoulos (1990) and Brophy (1990). Intensity fluctuations have the same

general behavior as small amplitude vibrations, which are covered in Section 14.9.5.

In the presence of systematic and slowly varying intensity fluctuations, a supple-

mentary detector can be used to monitor the variations, and either the ratio of the

results at the detector or the signal may be used in feedback to stabilize the source.

The latter is usually preferable.

The ultimate limitation to precision in two-beam interferometry is ascribed to

photon shot noise at the detector. Tarbeyev (1986) estimated the precision limit at

6� 10�5 nm.

14.9.4. Quantization Errors

PSI has become a practical technique because of inexpensive digital computing. The

first step is the conversion of analog intensity signals to digital information. A source

of error at this stage is quantization error of the video signal. Since conversion is

accomplished with an analog-to-digital converter, the accuracy of this conversion

process depends upon the number of bits in the digital world transferred to the

computer. Common video converters digitize the analog input signal into an 8- to

16-bit word, meaning that there are 28 ¼ 256 to 216 ¼ 65536 discrete quantization

levels in the digital word. The effect of quantization errors was first discussed by

Koliopoulos (1981) for a three-step algorithm and later generalized by Brophy

(1990) who rigorously derived the error for most of the common algorithms along

with the special case of a 13-step algorithm with phase shift steps of 75�. The
simulations are complicated by the fact that quantization error is not a statistical

error. Brophy has shown that the standard deviation of the phase due to Q quantiza-

tion levels, f4, for a four-step algorithm (a ¼ p=2) is approximately

sf4
� 1

ffiffiffi
3

p
Q

ð14:141Þ
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and

sfN
� 1

ffiffiffiffiffiffi
3N

p
Q

ð14:142Þ

can be inferred for an N-step algorithm. The 13-step algorithm shows about a factor

of two in the improvement in error as a result of reduced correlation between steps.

Expressions (14.138) and (14.139) assume that the fringe modulation spans the full

dynamic range of quantization levels. For 1024 quantization levels, the root mean

square (RMS) phase error of the four-step algorithm is < 0.0001 waves. This is

completely negligible under most circumstances, suggesting that an 8-bit converter is

sufficient. In practice, when fringe modulation decreases, fewer bits of dynamic

range are used, which has the effect of decreasing Q and thus increasing the error.

Today, using high-resolution images, digitized with more bits per pixel, is no longer

an issue because camera interfaces, transfer speeds as well as computer memory have

caught up to the increasing requirements.

14.9.5. Vibration Errors

Mechanical stability is paramount in interferometry. The presence of vibration can

be detrimental to the point of completely obliterating fringes as seen by the

detector. Yet vibration, in some instances, cannot be eliminated. Special techni-

ques have been developed to cope with these situations. Examples are strobo-

scopic illumination and holographic methods where the data acquisition system

can freeze the vibrating fringes so that some of the same analytical methods can be

deployed to analyze the fringes. A condition of large amplitude vibrations could

manifest itself by motions in two or three dimensions of the test structure or

interferometer, while other motions may exist at some other fundamental vibra-

tional mode. This type of vibrational analysis will not be covered here, but can be

found in other references (Powel and Stetson, 1965; Hariharan et al., 1987b;

Hariharan, 1984).

The usual precautions to minimize vibrations in interferometry are assumed,

such as the use of passive or active vibration isolations mounts, acoustical

vibration and damping, as well as generally good structural practice in the design

of the interferometer and the table to which it is mounted. Location of the

interferometer in a mechanically quiet area, far from rotating machinery, is also

crucial.

The presence of a small amount of vibration usually manifests itself in a

manner equivalent to perturbations of the phase shift increment and can thus be

analyzed with familiar methods. Eq. (14.135) indicates the general behavior of

error in the measured phase with error in the phase shift increment. This behavior

is characterized by error terms at twice the spatial frequency of the fringe pattern.

To first order, those algorithms that have the greatest immunity to errors in the

phase shift increment have the greatest immunity to vibration and drift of small

amplitude. When the vibration frequency is high compared to the pixel frame rate,
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the amplitude fluctuations tend to average out, and there is little correlation in the

vibrational component at each pixel location. As one might expect, the effect of

vibration induced intensity fluctuations depends on the PSI algorithm used. The

standard deviation of the phase introduced by small vibrations, averaged over all

possible values of phase f1, is related to the standard deviation of the intensity

fluctuation s1 through the simple equation (Brophy 1990):

sfl0 ¼
ffiffiffi

k
p

sl

gl0
ð14:143Þ

Here g is the fringe modulation, l0 is the mean intensity, and k is a constant that

depends on the PSI algorithm used. The parameter k decreases roughly in inverse

proportion to the number of phase steps in the algorithm. For a four-step algorithm,

k ¼ 1=2, and for an N-step algorithm, k ¼ 2=N. The variance in phase (in radians) is
always less then the variance of uncorrelated frame-to-frame intensity noise, even if

that intensity noise is introduced by small vibrations or intensity variations of the

source.

In 1995 and 1996 de Groot published articles especially addressing vibration in

phase shifting interferometry. In his 1995 article he derived first order approxima-

tions resulting in a phase-transfers function, that multiplied by the noise spectrum is

able to predict the response of an interferometer for various forms of vibration.

In their 1996 article, de Groot and Deck presented numerical simulations of

vibration in phase-shifting interferometry and their effect on the root-mean-square

(RMS) measurement error. Here they used the RMS error for a given amplitude A and

frequency n:

E ¼ 1

2p

Z p

�p

Z p

�p

�jðf; aÞ ��javerageðaÞ
� �2

dfda

� �1=2

ð14:144Þ

with the phase error �j ¼ j� f including the actual phase f and the calculated

phase j ¼ tan�1ðTÞ þ const; where

T ¼

PJ

j¼1

sj�gj

PJ

j¼1

cj�gj

ð14:145Þ

is the algorithm used and �gj represents the intensities. In the case of the integrating-

bucket method, which is preferred for use when trying to reduce vibration sensitivity,

de Groot and Deck (1996) showed that

�gj ¼
1

t

Z t=2

�t=2

gðf; tj þ t0Þdt0 ð14:146Þ
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Figure 14.26 shows numerical simulations using de Groot’s (1996) method

for various algorithms presented in section 14.7. Two types of general improved

behavior under vibration conditions can be observed. They are the algorithms

in the upper chart in Figure 14.26; narrow the peaks and flatten the valleys for the

odd harmonics of the ratio of the sampling frequency to the vibrations frequency.

There are also those algorithms that show reduced sensitifity at the odd harmonics

but introduce sidelobes between the even and odd harmonics.

There are significant differences between the two types of algorithms here, parti-

cularly at frequencies below the actual sampling frequency as shown in Figure 14.27.

FIGURE 14.26. Numerical simulations of theRMSwavefront error introduced byvarious algorithms vs.

normalized vibration frequency.
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14.9.6. Air Turbulence

Air currents and air turbulence are difficult source of error, particularly, when high

accuracy measurements are required. The character at any particular point in

the fringe field tends to be a slowly varying phase error with reduced correlation

to neighboring points at distances greater than a few millimeters to centimeters

(Rosenbluth and Bobroff, 1990). The same problem plagued early holographers

until they learned how to properly ‘‘mix’’ the ambient air. Proper mixing of the air

is achieved by creating enough airflow to prevent stagnation or layering, without

generating excessive turbulence.

Air currents and turbulence are not unrelated to thermal gradients, which exist as a

result of isolated heat sources and sinks. When a thermal gradient exists in any of the

structural parts of the interferometer or part under test, time-dependent changes are

bound to be there in the optical path over thewavefront aperture. Sufficient time must

be allotted for thermalization and the instrumentation of the part. This can be hours,

when measurement accuracies at the l=100 level are required. The particular

measurement strategy, however, must be tailored to take into account the time

constants of the potential error sources and the time of the data acquisition algo-

rithms. Figure 14.27 shows numerical simulations of low-frequency vibration sensi-

tivity of various algorithms using de Groot’s (1996) method.

14.9.7. Extraneous Fringes and Other Coherent Effects

The long coherent length of the laser source allows interference with very large

differences in path length in the test and reference arms in a Twyman–Green or

Fizeau interferometer. While this may provide mechanical convenience in some

cases, reflections from surfaces within the coherence length can interfere with one

FIGURE 14.27. Plot of numerical simulations for low vibration frequencies. Note the double logarith-

mic scale.
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another and confuse the intended measurement. Extraneous fringes introduce sys-

tematic measurement errors that, in some cases, can be eliminated.

Consider first the effect of three interfering beams. Let eifðx;yÞ be the test arm field,

eifrðx;yÞ the reference arm field, and q � eiZðx;yÞ be an extraneous reflection field with

fractional amplitude q of the primary interfering beams. When these three beams

interfere, the resulting intensity is

Ir ¼ 2þ q2 þ 2 cos½fðx; yÞ � frðx; yÞ� þ 2q cos½Zðx; yÞ � frðx; yÞ�
þ 2q cos½fðx; yÞ � Zðx; yÞ�

ð14:147Þ

The true phase fðx; yÞ is distorted to f0ðx; yÞ by the error �fðx; yÞ, which can be

shown to be (Schwider et al., 1983)

�fðx; yÞ ¼ tan�1 q sin½Zðx; yÞ � fðx; yÞ�
1þ q cos½Zðx; yÞ � fðx; yÞ�

� �

ð14:148Þ

The error�fðx; yÞ is seen to be dependent on the true phase fðx; yÞ. This reduces the
value reported by Bruning et al. (1974) when fðx; yÞ ¼ 0. If the test arm phase is

shifted by p by incorporating an additional phase shifter and another data set is

acquired and averaged with the first, a strong decrease in the amplitude of the

disturbing wavefront results (Schwider et al., 1983).

Ai and Wyant (1988) proposed a modification of this procedure that is easier to

implement, particularly in the case of the four-step method. In their method four

intensities are taken using the four-step bucket, and the individual intensities are

stored. Following that, the test beam is blocked just prior to the test surface, and four

new intensities are acquired and subtracted from the first set. The phase is calculated

from the resulting intensities, which removes the effect of the spurious reflection

without error. These analyses apply to cases where the reference and test surfaces have

relatively low reflectivity and arematched. The situation becomesmuchmore difficult

if the test surface is highly reflective. Hariharan (1987) has shown that the three-step

algorithm is much more sensitive to spurious reflections than the four-step algorithm.

Other forms of coherent noise, such as dust and scratches on optical surfaces,

inhomogeneities and imperfections in the optical elements and coatings, can cause

troublesome interference. A moving diffuser close to the source point can also average

out some coherent noise. Scrupulous cleaning of the optics can further reduce the

scattered light, improve contrast, and reduce artifacts. Judicious use of quarter-wave-

plates in a polarization interferometer can minimize unwanted surface reflections and

allow balancing of reference and test arm intensities (Bruning and Herriott, 1970).

14.9.8. Interferometer Optical Errors

The overall optical quality of the interferometer and its components impacts the

accuracy of the measurement due to wavefront shear. This is a result of the fact that

rays from an imperfect wavefront do not retrace themselves evenwhen reflected from

a perfectly flat or spherical surface. When the rays do not retrace themselves they
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shear. The measurement error introduced by wavefront shear becomes greater with

increased wavefront slope errors in the interferometer. Because of inevitable residual

aberration, the best results are obtained with fringes that are nulled as completely as

possible, by minimizing focus and tilt fringes.

It is difficult to give general formulas that quantify the effect of optical errors, but

larger slopes give rise to greater error, in many instances, at quadratic or faster rates.

The precise optical design of the interferometer must be ray traced to accurately

characterize the effect. Any effect that introduces more slope for a given shear or

more shear for a given slope will introduce greater error. Selberg (1987, 1990a) has

calculated some of these errors for a Twyman–Green interferometer for several

particular configurations. He introduced various amounts of tilt, power and spherical

aberration in a simulated test surface and tabulated the calculated measurement error.

Table 14.10 gives a summary of the results for 1 wave and 10 waves of peak-to-valley

(P-V) error in tilt, plus and minus power errors (without tilt) and spherical aberration

of the surface (without tilt and focus error) for test parts approximately 100 mm in

diameter. Note that for a spherical surface, tilt and focus errors due to set-up can be

removed by adjustment, whereas spherical aberration cannot. The simulation shows

that these errors can seldom be combined analytically due to the nonlinearities.

Specific situation must be simulated in their entirety, particularly when aberrations

are large. Surface errors that return rays away from the axis introduce larger errors as

indicated by the result for convex power error in Table 14.10. It is important that the

reference wavefront be reasonably similar in radius to the waveront under test. The

error introduced by an imperfect reference or interferometer is dependent on both the

aberrations and the disparity in radius of the test and reference wavefronts.

Optical errors resulting from design, fabrication or alignment imperfections are inevi-

table. To attain the highest accuracies, we must find ways for minimizing or compensat-

ing these errors. If the errors can be characterized in one form or other, the interferometer

can be calibrated. This important process depends on the interferometer configuration.

Geometric distortion in the interferometer imaging or viewing system will also

introduce errors that are proportional to the slope of the wavefront under test. This

error can result from slope errors in the test surface or as a result of defocus. For

example a detector imaging system that has 5% distortion at the edge of the field will

introduce 0.01 waves of error for one wave of defocus (Truax, 1988). This empha-

sizes the need to null the test fringes as much as possible prior to taking data.

Another source of wavefront measurement error occurs when the aperture or

surface being tested is not imaged at the detector in sharp focus. This tends to create

strong slope errors at the edge of the test aperture due to Fresnel diffraction.

TABLE 14.10. P-V Measurement errors due to test conditions.

Setup for test part P-V Ray mapping error in P-V Ray mapping error in

error type waves for 1 fringe error waves for 10 fringe error

Tilt <0.0001 0.007

Concave power <0.0001 0.007

Convex power <0.0001 0.017

Spherical aberration 0.0004 0.089
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14.10. DETECTORS AND SPATIAL SAMPLING

In most PSI systems in use today, solid-state detector arrays are used to collect the

required intensity frames. These detectors are chosen because the response at each

pixel shows excellent linearity with intensity, there is no image lag between mea-

sured frames, and there is no geometrical distortion introduced by the sensor in the

recorded interference pattern. The intensity measured at each discrete pixel site can

be digitized and stored in computer memory for the PSI calculation. Tube-type

sensors, such as vidicons, have been successfully used in PSI systems, but the system

performance is usually degraded by detector nonlinearities, image lag and distortion.

14.10.1. Solid State Sensors

Solid-state sensors can be classified by their geometry either as area arrays or as linear

arrays. Area arrays are used most commonly for interferometry and permit the

measurement of a two-dimensional section of a surface or wavefront. The system

spatial resolution is related to the number of pixels along each dimension of the

sensor, and commonly available sensors have resolutions appropriate for television

applications; typically about 500 by 500 pixels or less. Some newer sensors designed

for machine vision applications or high-definition television have dimensions of

about 1000 by 1000 or even 4000 by 4000 pixels. Linear arrays, on the contrary,

measure only a one-dimensional trace across the part, but make up for this disadvan-

tage by providing a higher spatial resolution along this line. Linear sensors containing

over 7000 pixels are available today, so that measurements with extremely high

spatial resolution can be obtained. The amount of data from these large linear arrays

is small and easily handled when compared to the 100,000 or more pixels from a low-

resolution area array. Because of advances in semiconductor fabrication, we can

expect to see the data density of available sensors continuing to grow.

There are many different configurations and technologies used in the manufacture

of solid-state sensors including frame-transfer and interline-transfer charge coupled

devices (CCDs), charge injection devices (CIDs), and photodiode arrays. It is beyond

the scope of this chapter to fully review this technology (see Hall, 1980 or Janesick,

2001), but any of these sensors can be used for PSI. For practical considerations, the

major differences between cameras with these various solid-state sensors are resolu-

tion, sensitivity to light, dynamic range, and data output format (Prettyjohns, 1984).

The resolution is related to the number of pixels on the sensor, and the sensitivity is a

function of both the quantum efficiency and geometry (the percentage of the imaging

area that is occupied by photo-sensitive pixels as opposed to storage and transfer

registers and control lines). There are also differences in camera performance as

measured by the signal-to-noise ratio of the output.

For area arrays, there are two primary formats for data output: interlaced and line

sequential. Sensors designed for television applications produce a video signal where

each video frame is composed of two interlaced video fields. The odd numbered lines of

the frame are output during the first field, and even numbered lines occur in the second

field. A common US-video standard requires that there be 242 active lines per field or
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484 active lines per frame, and the frame and field rates are fixed at 1/30 s and 1/60 s.

This interlaced signal can be a problem for PSI systems as the two fields are integrated at

different times and at different locations. While the use of a series of video frames to

record the measured interferograms is common with phase step data collection, it does

not work with the integrating bucket strategy since the average phase shift di is different

for the two fields in each frame. One approach to accommodate either of the data

collection shemes is to use only the odd or even fields of the video signal to record the

series of interferograms and to ignore the other field. This results in 242 usable lines of

data. Some video cameras provide options where only one of the two fields is output in a

repeat field mode. Cameras using the line sequential output, such as those produced by

EG&G Reticon and others, do not have an interlaced output, and every frame can be

used. These cameras usually consist of a square array of pixels (128 by 128 and 256 by

256 are common) and can have an adjustable frame rate. A square array is more

appropriate than the 4:3 television format, since for most applications, it is important

to retain the geometric integrity of the interferogram and to have equal resolution in x and

y. Because of all the complexities involved in designing a camera, no single sensor

technology or configuration has emerged as best for this application.

14.10.2. Spatial Sampling

Regardless of the type of sensor used in the interferometer, certain aspects of the data

collection must be carefully considered for their impact on the measured intensity data.

All of these sensors consist of an array of pixels with a given active area and spacing. The

interferogram is imaged onto the sensor, and the intensity pattern is averaged not only

over the integration time of the sensor, but also spatially over this active area. As the

sensor is read out, the analog voltage of the video signal corresponding to each pixel is

digitized and stored in the computermemory.Onenumber is assigned for each pixel. This

process is repeated as the phase shift is varied to collect the required number of frames.

For aPSI systembuilt around a tube-type sensorwithout definedpixels, the effective pixel

area is defined by the integration period of the analog to digital converter in the horizontal

direction and thewidth of the scan lines in the vertical direction. The digitization process

spatially samples the interferogram.The algorithms and implications associatedwuth this

spatial sampling process on the PSI system performancewill be studied in the remainder

of this section and in Section 14.13. In a real sense, the PSI process samples the

interference pattern in three dimensions; time and the two spatial dimensions.

We will model the sensor as a rectangular array of rectangular pixels, as shown in

Figure 14.28. The pixels have dimensions and spacings of a by b and xs by ys,

respectively. The signal measured at a specific pixel (mxs; nys), where m and n are

integers, is found by integrating the time-averaged interferogram intensity Iiðx; yÞ
over the active area of the pixel:

Îiðmxs; nysÞ ¼
Z Z 1

�1
Iiðx; yÞrect

a� mxs

a
;
b� nys

b

� �

da db ð14:149Þ

This the result is for the ith intensity frame where the rect function represents the

active area of the pixel, and a and b are variables of integration. The fully sampled
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interferogram produced by the sensor is stored in a specific memory location and

summoned over all pixels:

Isi ðx; yÞ ¼
X

m

X

n

Îiðmxs; nysÞdðx� mxs; y� nysÞ ð14:150Þ

where dðx; yÞ is the two-dimensional Kronecker delta function. With some mani-

pulation, Eqs. (14.108) and (14.109) are combined to yield the following expression

for the ith sampled interferogram:

Isi ðx; yÞ ¼ Iiðx; yÞ		 rect
x

a
;
y

b

� �h i

comb
x

xs
;
y

ys

� �

ð14:151Þ

where ** indicates two-dimensional convolution and the comb function is an array of

d-functions positioned coincident to the pixels. Interpreting this expression, the

convolution of the intensity with the rect function averages the intensity over the

active area of each pixel, and the comb function yields each average to each pixel.

Since the interferogram intensity pattern is averaged over the pixel active area, it

is reasonable to conclude that this process will result in a reduction of the modulation

of the digitized interference pattern. This effect is completely analogous to the

reduction in modulation that occurs with the temporal averaging that occurs in the

integrating bucket data collection scheme referred in Equation 14.34. With point

detectors, there is no loss of modulation because there is no averaging, but as the

active areas get larger, the recorded modulation decreases. It should also be clear that

the modulation reduction is a function of the spatial frequency of the fringes being

recorded. For a given size pixel, greater loss will occur for higher frequencies than for

lower frequencies; the higher the frequency, the greater the variation in intensity that

occurs within the pixel. In fact, when a full fringe period exactly fits within the active

area of a pixel (or the fringe frequency equals 1/a) the recorded modulation is zero;

the spatial average over the active area results in a constant that is independent of the

position of the fringe relative to the pixel. This situation is equivalent to the temporal

condition of D ¼ 2p for the integrating bucket.

FIGURE 14.28. Illustration of a typical sensor geometry.
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It is useful to relate the reduction of modulation with increasing fringe spatial

frequency to spatial averaging in the frequency domain. The frequency-space

representation of the spatially sampled interferogram is obtained through a Fourier

transform of Eq. (14.110):

~I
s

i ðx; ZÞ ¼ ½~Iiðx; ZÞsin cðax; bZÞ�		combðxsx; yxZÞ ð14:152Þ

where x and Z are the spatial frequency coordinates, � indicates the Fourier trans-

form, and the sinc function is the two-dimensional equivalent of the function defined

in Eq. (14.35):

sin cða;bÞ ¼ sinðpaÞ
pa

sinðpbÞ
pb

ð14:153Þ

Equation (14.111) states that the sampled spectrum is formed by first multiplying the

spectrum of the time-averaged interferogram by the sinc function corresponding to

the pixels. This filtered spectrum is then replicated at each multiple of the two-

dimensional sampling frequency (1=xs; 1=ys). Since the average over the pixel

represented by the sinc function serves to low-pass filter the interferogram intensity

incident on the sensor, a convenient name for this term is the pixel MTF:

Pixel MTF ¼ sin cðax; bZÞ ð14:154Þ

The reduction in recorded signal modulation due to the non-zero size of the pixels

can be is found by evaluating this function at the fringe frequency. As mentioned

above, the first zero of this function occurs at a spatial frequency equal to 1/a (along

one dimension and scaled to the plane of the sensor). The pixel MTFs for sensors

with pixels with a width to pitch ratios of 50% and 100% are shown in Figure 14.29.

If non-rectangular pixels are used, these expressions can be modified, and functions

other than a rect and a sinc will appear.

The other major consequence of a sampled imaging system is its limitation on

resolution. The limiting resolution of a sampled system is the Nyquist frequency

FIGURE 14.29. The pixel MTFs for sensors with width-to-pitch ratios of 50 and 100%.
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which is defined as half the sampling frequency:

fN ¼ Nyquist frequency  1

2xs
ð14:155Þ

where this is measured along the x axis (Gaskill, 1978). The vertical Nyquist frequency

is often different and is dependent on the vertical pixel pitch. The reasoning behind this

limit is that to measure a fringe of a particular frequency or period, at least two samples

per period must be measured, i.e. we must be capable of measuring the high and low

points on a fringe. If the fringe frequency exceeds the Nyquist frequency, the aliasing

results of this sampled interferogram are not interpretable by standard PSI techniques.

Aliasing and methods to get around this limitation are discussed in Section 14.13.

14.11. QUALITY FUNCTIONS

There is one more operation that must be performed to the calculated phase fðx; yÞ
before it is ready to be displayed and evaluated. We must correct for the disconti-

nuities that occur in the phase calculation as a result of the arctangent, since the

standard arctangent is defined only over the limited range of angles, �p=2 to p=2.
Regardless of the actual value of the phase, only values of the phase within this

limited result from Eq. (14.27), or its equivalent for other algorithms. This limitation

might appear to restrict our ability to measure OPDs longer than a half a wavelength.

Fortunately, there is sufficient information in the calculation to remedy the situation

and provide a usable extended measurement range. In addition, we know that the

wavefront or surface is in fact continuous and can extend over a much larger range.

The first correction to be made to the calculated phase is to extend the calculation

range from 0 to 2p. This is possible because the signs of the sine and cosine are

known independently of the sign of the tangent. Eq. (14.24) and (14.25), for the four

step algorithm, are directly proportional to the sine and the cosine. Similar relation-

ships exist for the other algorithms that are discussed in this chapter. Table 14.11

gives the formulas needed to convert the arctangent results to values between 0 and

2p as a function of the values of the sine and the cosine, and this process is shown

graphically in Figure 14.6. The result of this correction is to produce the wavefront

phase modulo 2p; every time the actual phase equals a multiple of 2p, the calculated

TABLE 14.11. Modulo 2p phase correction.

Sine Cosine Corrected phase fðx; yÞ Phase range

0 þ 0 0

þ þ fðx; yÞ 0 to p/2

þ 0 p/2 p/2

þ � fðx; yÞ þ p p/2 to p

0 � p p

� � fðx; yÞ þ p p to 3p/2

� 0 3p/2 3p/2

� þ fðx; yÞ þ 2p 3p/2 to 2p
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value returns to a value of zero. Usually computers already support this calculation

by the use of a arctan ðy=xÞ function sometimes designated as a tan 2. For simplicity,

this corrected phase is here referred to as the raw phase, wrapped phase or the phase

modulo 2p. Note that Table 14.11 is used only if the values returned by the arctangent

lie between �p=2 and p=2. Figure 14.30 graphically shows the wrapped phase map

calculated from the four interferograms shown in Figure 14.6.

The previously discussed methods to evaluate the phase can only be used if there

is actual modulation of the intensity pattern. If detector pixels are outside the

interferometer aperture or if they are covered by dust or are otherwise disabled,

they deliver invalid data. This usually shows up as a constant value or very low

modulation for that particular pixel. Where all intensity values Ir have approx. the

same values, the numerator and denominator would become very small numbers and

approach the singularity of the arctan function where the phase is undefined.

tanf ¼ N

D
arctan

0

0

� �

¼ undefined ð14:156Þ

To prevent this several metrics are used to identify valid and invalid pixels for

evaluation and assign a quality function to each evaluated pixel. This is an important

step before performing the unwrapping process on the raw phase.

14.11.1. Modulation

In Eqs. 14.29 and 14.65 we introduced the per pixel modulation or visibility gðx; yÞ,
which is a very good quality indicator for the data associated with each pixel,

gðx;yÞ¼ I00ðx;yÞ
I0ðx;yÞ ¼

2
P

Iiðx;yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

Iiðx;yÞcosðdiÞ
h i2

þ
X

Iiðx;yÞsinðdiÞ
h i2

r

ð14:157Þ

FIGURE 14.30. Raw or wrapped phase calculated on the 4 interferograms shown in Figure 14.6.
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If the raw data is plotted as a vector in polar coordinates, the raw phase for each

pixel is the vector angle and the modulation is the vector length. Figure 14.31 shows a

schematic view of the polar coordinate system on the left and a real measured data set

on the right. Note the marked thresholds and the deformation of the circle on which

the measurement points are plotted. This is due to a miscalibration in the phase-

shifter for this data set. Here, like phase evaluation, modulation evaluation also

suffers from error sources like phase-shifter miscalibration, harmonic errors, and

errors in the intensity linearity that can deform an otherwise ideal circle.

In 1994, Schwider showed that the modulation is sensitive to these same errors and

that second-, and fourth-order harmonics to the phase occur when errors are present.

d
_

i¼diþei) g
_¼g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þA2þC2þS2ð Þþ 2S�2ACð Þcos2f� 2C�2ASð Þsin2f
p

1þgcsinf�gscosf

A¼ 1

N

X

i

ei; S¼
1

N

X

i

ei sin2di;C¼ 1

N

X

i

eicos2di; s¼
1

N

X

i

ei sindi; c¼
1

N

X

i

eicosdi

ð14:158Þ

Schwider also demonstrated that depending on the detector used, the modulation can

be utilized to determine under-sampled pixels as the modulation decreases. The

modulation decrease depends on the fill factor of the detector. If the preferable fill

factor of 1 is used, modulation decreases by 36% at the Nyquist limit.

Kinnstaeter et al. 1988 demonstrated that the use of Lissajous plots as in Figure 14.31

are a very powerful graphical debuging tool quickly identifying error sources and the

quality of a measurement.

14.11.2. Residues

One condition often used to determine noise and to identify critical conditions for the

unwrapping process is the evaluation of residues in the wrapped phase map

FIGURE 14.31. Modulation or Visibility plotted as the radius in a polar-coordinate system.
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(Goldstein et al., 1988; Huntley, 1989). The basic idea behind the residue approach is

that between two arbitrary points, i0 and i, in a continous interferogram pattern, the

amount of fringes does not depend on the path taken.

fðiÞ ¼
Z

C

rf diþ fði0Þ ð14:159Þ

Figure 14.32 tries to illustrate the different paths along a continuous interferogram.

I

fðrÞdr ¼ 0 ð14:160Þ

Equation (14.160) is the main criterion used to detect residues. Every closed loop on

a continuous interferogram has to result in zero phase jumps. If it is different, then a

local residuum is present.

Figure 14.33 illustrates a function with a singularity in the center. If the amount

of phase discontinuities is counted going left or right around the center, it is different

by one.
I

fðiÞdi ¼ 
2p �
X

enclosed residues ð14:161Þ

FIGURE 14.32. Different paths in a continuous phase map.

FIGURE 14.33. A negative (ccw, left) and positive (cw, right) residuum pictured.
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As described in Eq. (14.161), the closed loop unwrapping results in either zero or the

sum of residues enclosed in the path chosen. The residues can be positive or negative

depending if there is a positive or negative singularity present. As Goldstein et al. and

Huntley point out, residues in a phase map occur in pairs and can be correlated to

each other.

Being able to correlate two residues with each other allows one to block the path in

between. As pictured in Figure 14.33, since a branch-cut prohibits a path between the

two residues (only a path around them is permitted), a continious phase condition in

Eq. (14.160) does in fact exist.

Figure 14.35 shows a real measurement containing a localized residue. In this case

the lens under test contained optical activity, and due to the polarized beam passing

through the lens and interferometer, the detected interferogram saw a loss in contrast

at the location of the residue and an inversion of the fringes after the residuum. Still,

the phase in the interferogram can be evaluated if the residue is isolated.

Figure 14.36 shows on the top a very noise wrapped phase map containing many

residues. Phase maps like this can happen if a large amount of coherent noise is

present as in speckle interferometry. However, even for complicated cases such as

this, methods have been developed to reduce the amount of residues through filtering.

FIGURE 14.34. Different closed loops in a simulatedwrapped phasemap. The numbers are correspond-

ing to the phase value in rad. A phase discontinuity is present if the difference between neighbors is larger

than p: no singularity (left top) positive singularity (left bottom) and negative singularity (right bottom).

FIGURE 14.35. Measured phase map containing residues.
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14.11.3. Filtering

A noisy wrapped phase map as shown in Figure 14.36 can benefit greatly from

filtering before the quality functions are calculated. However, if filtering is performed

on the wrapped phase data itself, discontinuities would be spatially smeared.

There is however a simple workaround to the discontinuity problem which is

apparent from the definition of the tangent function.

Since the tangent function is a discontinous function of the calculated phase f

from the quotient of two numerically determined functions that we know are every-

where continous with f, it is most appropriate to independently filter the numerator

and denominator before making the quotient.

tanf ¼ sinf

cosf
� filterðsinfÞ

filterðcosfÞ ð14:162Þ

Using this technique does not affect the phase jumps in the later calculated signal,

that would otherwise be polluted by low-pass filtering. Several approaches for

the best filter to be used, depending on the application, have been published by

FIGURE 14.36. Noisy wrapped phase images and associated residues (top). Filtered interferogram and

reduced number of residues (bottom).
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Bone et al. (1986), Huntley (1989), Vikhagen, 1990, Goncalves et al. (1993) and

Seara et al. (1998).

Figure 14.36 bottom shows, a low-pass filtered version of the top Figure. The right

handed side shows how dramatically the filtering process reduces the number of

residues and hence the complexity of the later unwrapping process also. Bushman

et al. (1993), Pritt (1994), and Friedlander and Frances (1996) have proposed

methods to filter and unwrap the phase simultaneously.

Filtering can also be done, after the continuous phase map has been calculated;

however, a priori knowledge of the interferogram can be helpful in the filtering

process.

14.12. PHASE UNWRAPPING

The final step in the wavefront reconstruction process is to remove the 2p disconti-

nuities that are present in the raw phase data that has been generated. This process is

referred to as phase unwrapping, phase integration or phase continuity, and it

converts the modulo 2p phase data to a continuous representation of the wavefront

under test. Whenever a large discontinuity occurs in the reconstruction, 2p or

multiples of 2p are added to the adjoining data to remove the discontinuity. This

process is diagramed for one-dimensional data in Figure 14.37. The effects of phase

unwrapping operation in two dimensions are shown in Figure 14.8.

14.12.1. Unwrapping in One Dimension

The basics of the unwrapping process are described in Itoh 1982. In principal the

unwrapped phase is calculated by adding a multiple of 2p to the wrapped phase

Eq. (14.115). The process of the unwrapping is to determine the unknown piston

function pðiÞ of the multiples of 2p.

funwrappedðiÞ ¼ fwrappedðiÞ þ pðiÞ � 2p ð14:163Þ

An aid to determine pðiÞ is to examine the phase differences along the path i, where

i� 1 corresponds to the pixel index previous to i. As can be seen in Figure 14.38,�f

has a distinct spike at every phase discontinuity.

�fwrappedðiÞ ¼ fwrappedðiÞ � fwrappedði� 1Þ ð14:164Þ

Using �f as a help, the function pðiÞ can be defined recursively in Eq. (14.117) by

increasing or decreasing the piston based on the direction of the spike in �f. The

threshold for when�f shows a phase discontinuity or just a strong phase gradient is

usually set to p because at a fringe frequency at the Nyquist limit, the phase

differences are exactly p. Therefore, everything below the Nyquist limit is deter-

mined to be a phase gradient, and everything above is identified as a phase dis-

continuity and needs unwrapping. When the recorded interferograms satisfy the
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Nyquist criteria, namely there are at least two pixels per fringe period, the phase

unwrapping process is straight forward. Having at least two pixels per fringe implies

that the wavefront phase changes by no more than p per pixel spacing. Therefore this

criteria is used to reconstruct the missing piston term.

pðiÞ ¼
pði� 1Þ � 1 �fðiÞ < p

pði� 1Þ � p < �fðiÞ < p

pði� 1Þ þ 1 �fðiÞ < �p

8

<

:
ð14:165Þ

FIGURE 14.37. The PSI phase unwrapping process: (a) the wavefront data modulo 2p at each pixel; (b)

all possible solutions for the wavefront phase; and (c) the reconstructed wavefront.
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Starting at some location in the wavefront, normally near the center of the inter-

ferogram, we require that the phase between any two adjacent pixels does not change

by more than p.

If the phase difference calculated for two pixels exceeds p, then 2 p or multiples of

2 pmust be added to or subtracted from the calculated value of the second pixel until

this condition is met. The entire wavefront map is calculated by working outward

from the starting location therefore setting pstart ¼ 0.

14.12.2. 2-D Phase Unwrapping

While the one-dimensional unwrapping process leaves little room for variation, the

two dimensional problem is significantly more complex. In one dimension, if there is

no valid data along the path, it is not possible to unwrap without additional knowl-

edge. In two dimensions, there are multiple paths to unwrap the data, and the results

achieved may depend on the path taken. When dealing with noisy or corrupted data,

the unwrapping ‘‘problem’’ becomes quite significant and many publications deal

with solutions to specific applications.

After Itoh 1982, several publications by Goldstein et al. (1988), Huntley (1989),

Huntley et al. (1995), Ghiglia and Eichel (1994), Ghiglia and Romero (1996), Flynn

FIGURE 14.38. Illustration of the unwrapping process and the different functions in one dimension. The

phase is shown in radians, while the piston function and the unwrapped phase are displayed inmultiples of a

fringes or 2p.
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(1996), and Chen et al. (2000) deal with the unwrapping problem and make use of the

increased computing power available today to make these evaluations.

We give here a brief overview of the two-dimensional unwrapping and invite the

reader to review Ghiglia’s and Pritt’s book ‘‘Two dimensional phase-unwrapping’’

(Wiley, NY 1998), for specific examples and more in-depth study.

In principal the families of algorithms can be divided into path-following algo-

rithms and path-independent algorithms.

14.12.3. Path-Following Algorithms

The straight forward approach to phase unwrapping presented by Oppenheim and

Schafer, 1975 consists of simply using a one-dimensional description and applying it

to the two dimensional problem. Figure 14.40 shows one possible solution. By

starting from a known valid starting point, a one dimensional unwrapping is per-

formed progressive towards the edge of the aperture. Then orthogonal to this

unwrapped line, further one-dimensional lines are unwrapped toward the edges of

the aperture. Other scan patterns have been proposed such as spirals or even fill

algorithms can be employed to get around masked and invalid pixels. For well-

behaved, low noise data, this method works quite well. However, if there are noisy or

invalid pixels in the path, all pixels thereafter retain the error introduced, resulting in

FIGURE 14.39. Unwrapped phase map of the sample shown earlier.
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an erroneous piston function. This method applied to two dimensions is usually fast

but quite vulnerable to noise-propagation. Therefore, many unwrapping algorithms

have been proposed to improve noise-immunity or reduce error-propagation.

Cut-Based Algorithms. The concept of branch-cuts was first introduced in section

14.11.2. Introduced by Goldstein et al. (1988) and later refined by Huntley (1989),

these algorithms use the information obtained by identifying positive and negative

residues and correlating them to each other. By introducing branch cut’s, they

prohibit unwrapping paths between these residues, forcing the algorithms to find

an alternate path. Determining and correlating residues to generate the proper

unwrapping paths does take additional computing effort but generally delivers better

results than the simpler one-dimensional methods.

Quality Guided Path. Ching et al. (1992), Quiroga and Bernabeu (1994), Quiroga

et al. (1995), and Herráez, 1996 present algorithms that focus on how the unwrapping

path is chosen and have introduced criteria for path propagation. These algorithms

constrain path propagation based on one or multiple metrics that give a measure of

the reliability of paths chosen (Figure 14.31). For example, the modulation g can be

used to determine a path that focuses on the pixels with the highest contrast first and

eventually unwrapping pixels with lowest modulation last. Another metric proposed

is the phase gradient �f, which diverts unwrapping over the phase jump with the

largest phase difference first assuming it is the most likely one to be a phase jump and

not being a residue or noise related.

The quality of the result depends significantly on the metric used to determine the

reliability of these values.

FIGURE 14.40. Straight forward adaptation of the one-dimensional approach into two dimensions.
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14.12.4. Path Independent Methods

In contrast to the methods on the path, there are other approaches that avoid choosing

a path entirely and instead treat the measured phase map and unwrapping process on

the data set as a whole.

Partitioning Algorithms. Gierloff 1987 introduced the concept of ‘‘unwrapping by

regions’’. Here as we see in Figure 14.42, the wrapped-phase map is first clustered

into regions separated by the phase jumps. The algorithms then tries to determine the

offset of whole regions to each other and tries to find the best balance to eliminate all

the jumps in between them.

FIGURE 14.41. Quality guided path algorithm propagating along a minim slope of the wavefront.

FIGURE 14.42. Wrapped phasemapwith three regionsA,B, andC separated by the phase discontinuity.
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Similar algorithms, like the one from Herráez 2002, use image decomposition

methods to define and unwrap the regions.

Another partitioning approach is to divide the wrapped phase-map into smaller

grids of smaller areas that are unwrapped individually as shown by Towers et al.

(1989), Herráez, 1996 and Baldi (2001). The smaller unwrapped tiles are then

combined and unwrapped with respect to each other.

Cellular Automata Algorithms. Ghiglia et al. 1987 proposed a cellular automata

method based on simple neighborhood rules. The method tries to iteratively mini-

mize the discontinuities in the phase map by adding or subtracting multiples of 2p to

the connected pixels. While quite good in minimizing the amount of overall dis-

continuities, invalid pixels and noise are still able to propagate; however, the amount

is minimized depending on the rules. On standard RISC/CISC type microprocessors,

the cellular automata method is quite long in execution time, because its parallel

approach can not be exploited. However, there are also cell-processors planned today

that would allow a much faster implementation of that technique.

Temporal Phase Unwrapping. Huntley and Saldner (1993) proposed a technique

that would avoid the actual unwrapping by looking at a dynamic signal, such as these

that might be present in mechanical deformations. Starting with zero deformation,

each new step introduces deformation that is not large enough to contain disconti-

nuities. While the deformation in the final result might produce discontinuities, each

small dynamic step would not. In this way, the final result is reached by splitting into

small incremental steps. This process of introducing small deformations to the phase

change with minimal error propagation makes up the incremental unwrapping

process.

14.13. ASPHERES AND EXTENDED RANGE PSI TECHNIQUES

From a testing point of view, the prime characteristic of an aspheric wavefront or

surface is that it has a large departure from a best-fit reference sphere, and as a result,

an interferogram made without some sort of aspheric null contains many fringes (see

also Chapter 12). The Nyquist limit implies that we must have at least two pixels per

fringe which sets a limit to the amount of asphericity that can be measured with a PSI

system. The maximum wavefront slope measureable without aliasing is thus limited

to p per pixel. The spatial fringe frequency is proportional to thewavefront slope, and

even weakly aspheric surfaces often violate this condition when tested against a

spherical reference surface with instrumentation available today. Typically, we are

limited to testing surfaces with no more than 10–20 waves of asphericity. A precise

number is not predictable since the maximum fringe frequency is related to slope, not

the peak-to-valley departure for a reference sphere.

There are typically four approaches available to test aspherics with PSI: (1) Use a

null optic (refractive, refractive or holographic) to reduce the amount of asphericity

in the wavefront; (2) Use of a detector array with greater pixel density so that the
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sensor Nyquist frequency is increased; (3) Use of a longer wavelength (such as

10.6 mm from a CO2 laser) to rescale the wavefront departure to the longer wave-

length; or (4) Testing sub-apertures of the wavefront with a small enough segmenta-

tion to sufficiently resolve the individual subapertures. None of these approaches is

entirely satisfactory as each may involve trade-offs which often place long lead times

on the design of the test, requires additional fabrication, increases the difficulty of

using and calibrating the instrument, decreases its precision, or greatly increases

the instrument cost. In order to test aspheric surfaces without resorting to one of these

four approaches, a PSI systemmust be capable of handling fringe densities above the

Nyquist frequency, i.e., those that are aliased. Two useful techniques that have been

proposed and demonstrated for analyzing large departure surfaces or aliased inter-

ferograms are sub-Nyquist interferometry and two-wavelength PSI.

14.13.1. Aliasing

Before describing either of these extended range techniques, it is useful to discuss

aliasing in more detail. Aliasing is the property of a sampled imaging system which

causes high-frequency content in the input to be lost or obscured and displayed at

lower spatial frequencies, that is, at frequencies less than the Nyquist frequency. This

property can be graphically demonstrated in Figure 14.43 where two different spatial

frequency inputs are sampled. For illustration, inifinitely small pixels are assumed

and the dots represent sampled values at the pixels. In Figure 14.43(a), the fringe

frequency is two-third the Nyquist frequency, or the sampling rate is three pixels per

fringe or cycle. The sampled output is clearly at the same frequency as the input. The

fringe frequency in Figure 14.43(b) is four-third the Nyquist frequency, with only

three pixels for every two fringes. There are insufficient pixels to resolve this

frequency, but the recorded samples are exactly the same as for the lower frequency

measured in (a). Since the detected outputs in (a) and (b) are identical, the displayed

output in (b) occurs at a frequency of 2fN=3 instead of 4fN=3. The effect of aliasing on
the displayed fringe pattern is to replace fringes of spatial frequency greater than the

Nyquist frequency with lower frequency fringes and corrupts the normal interpreta-

tion of the fringe pattern.

More importantly for PSI, aliasing is an indication that the wavefront phase is

changing at a rate greater than p per pixel. Under this condition, the phase unwrap-

ping operation described so far in Section 14.12 must fail as this process restricts the

wavefront change to p per pixel.

This failure is predicted by the Whittaker–Shannon sampling theorem which

states that if a scene is bandlimited to within the Nyquist frequency of the sensor,

the scene can be recovered without error from the sampled image. The default PSI

phase unwrapping operation is based upon the assumption that this bandlimited

requirement is met. It is important to note that this theorem does not state anything

about the possibility of image recovery when this condition is not met. If the input

scene or fringe pattern is not bandlimited to the Nyquist frequency, some additional

information or a priori knowledge about the wavefront or surface under test is

required to properly recover and unwrap the phase.
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14.13.2. Sub-Nyquist Interferometry

Sub-Nyquist interferometry (SNI) is a data collection and analysis method that is

capable of greatly extending the measurement range of PSI through the use of a

priori information (Greivenkamp, 1987b; Greivenkamp, 1990). SNI applied to

aspheric testing makes use of the simple assumption that the wavefront or surface

under test is smooth and continous, and therefore has continuous derivatives. This

FIGURE 14.43. Sampling and aliasing in one dimension: (a) the input frequency is less than theNyquist

frequency and (b) the input frequency exceeds the Nyquist frequency.
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additional information allows the analysis to interpret fringes that occur at frequen-

cies well above the Nyquist frequency and are significantly undersampled. The

differences between SNI and PSI occur during the phase unwrapping of the modulo

2p data. Instead of using the usual wavefront height constraints of PSI, SNI requires

that the derivatives of the reconstructed wavefront do not exhibit large changes from

pixel to pixel. This slope continuity constraint limits the change of the wavefront

slope to p per pixel, and large changes of the wavefront height between pixels are

permitted. The appropriate number of 2p’s are added to each pixel to satisfy this

condition, and there is only a single solution at each pixel that produces this result.

The slope continuity constraint correctly reconstructs the wavefront from the aliased

data until the second derivative of the actual wavefront exceeds the limit imposed by

the constraint. When this situation arises, further correction is possible by requiring

that the second, or even higher-order, derivative be continuous, and adding more

2p’s. This procedure can be continued until a more fundamental limit, as explained

below, is reached. In practice however, first derivative or slope continuity is very

effective in improving the measurement range of PSI, and higher orders are usually

not needed.

The SNI phase unwrapping process for aspherics is graphically demonstrated in

Figure 14.44 using the connect-the-dot pictures similar to those in Section 14.12.

Figure 14.44(a) shows all of the possible solutions to the arctangent at each pixel,

and the open circles indicate the phase modulo 2p. The asphere used to generate

these points is shown as the dotted line, and it goes through one point at each pixel.

The object of the reconstruction is to determine these correct dots. The conventional

PSI reconstruction of these data is given in Figure 14.44(b), and this reconstruction

fails at pixel 5 where the correct dot is not the closest dot; the wavefront changes by

more than p per pixel. The reconstruction shows a large change in wavefront slope.

The SNI reconstruction in Figure 14.44 (c) gives the correct result by applying the

slope continuity constraint. The proper dot is chosen by extrapolating a line from

the previous two dots into the next pixel, and the dot that is closest to this line gives

the solution with the smallest change in wavefront slope. Any other choice would

violate the slope continuity condition. Higher-order constraints operate by extra-

polating a curve of the appropriate order that has been fit through a number of already

selected dots. For example, second derivative continuity uses a quadratic fit through

the previous three points.

The fundamental limit to the measurement range of an SNI system is in the ability

of the sensor to respond to the high frequency fringes; the pixel MTF. For good

results in the arctangent, the measured data modulation must be high, and the sensor

must be able to respond to fringes well beyond the Nyquist frequency. From Eq.

(14.154), we see that the extent of the pixel MTF is increased by using a sensor with a

small pixel width to pitch ratio. This ratio for standard sensors is usually 50–100%,

and the sparse array sensor that is needed for this application should have a ratio

closer to 10%. The pixels on this sensor approximate point detectors, and the first

zero of the pixel MTF is at a frequency 20 times the Nyquist frequency. A compar-

ison to this pixel MTF to that of a standard sensor is shown in Figure 14.45. The

maximum wavefront slope that can be measured with this sensor and SNI is up to 20
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FIGURE 14.44. The SNI reconstruction process: (a) the possible solutions for the wavefront phase at

each pixel; (b) the standard PSI reconstruction of this data; and (c) the SNI reconstruction using slope

continuity (from Greivenkamp, 1987b).
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times that which can be measured with PSI and the same number of pixels. The

measurement range, which is dependent on the functional form of the wavefront, is

increased by an even larger factor.

Some interferograms and evaluation are displayed in Figure 14.44. The interfer-

ogram of this wavefront is shown in Figure 14.46(a), and the undersampled inter-

ferogram as seen by a detector is shown in Figure 14.46(b) and is heavily aliased. The

ring patterns surrounding the central ring pattern are aliased fringes. The center of

each of these additional patterns occur when the actual fringe frequency equals a

multiple of the sensor Nyquist frequency. As expected, the PSI reconstruction of this

interference pattern in Figure 14.46(c) shows a good reconstruction only in the

central unaliased region. The aliased fringes are improperly interpreted. The two-

dimensional SNI result in Figure 14.46(d) smoothly reconstructs the quadratic

wavefront. The horizontal streaks in this result are due to the simplicity of the

algorithm used; the phase unwrapping algorithm has not been taught to jump over

bad data points.

SNI allows the interpretation of very complex fringe patterns, and the primary

issue that needs to be addressed before SNI can be practically implemented is

calibration. The testing of aspheric surfaces without null optics can lead to errors.

FIGURE 14.45. The pixel MTF of a sparse array sensor compared to that of a standard sensor.

FIGURE 14.46. (a) The sampled interferogram of a defocused wavefront; (b) undersampled interfero-

gram as seen by the detector; (c) the standard PSI reconstruction of this data; and (d) the SNI reconstruction

using slope continuity.
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In a null configuration, such as testing a sphere at its center of curvature in a laser

Fizeau interferometer (Fig. 14.47(a)), the rays reflected by the test surface follow the

same path through the converging lens and the interferometer as the rays reflected by

the reference surface. Both the reference and test wavefronts see the same amount of

additional aberration, and this aberration cancels. This is not the case in testing

aspheric surfaces (Fig. 14.46(b)). These two ray paths can be very different, produ-

cing different system aberrations in the two interfering beams. A simple way to think

about this is that different zones on the aspheric surface use the converging lens at

different conjugates and different apertures, and it is only corrected at one conjugate.

The wavefront difference measured in the interferogram is not simply the difference

between the test and the reference wavefronts. An aspheric measurement system

requires that the entire interferometric system, including all of the interferometer

optics, be raytraced for the asphere under test.

14.13.3. Two Wavelength PSI

The additional information that two wavelength PSI (TWPSI) uses to extend the PSI

measurement range beyond the Nyquist frequency is a separate measurement of the

part at a different wavelength (Wyant et al., 1984a; Cheng and Wyant, 1984; Fercher

FIGURE 14.47. The need for calibration and raytracing: (a) testing a spherical surface at its center of

curvature; (b) the same configuration with an aspheric surface.
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et al. 1985; Creath et al., 1985; Creath and Wyant, 1986; Wyant and Creath, 1989).

Two complete sets of interferometric data are collected, and the phase modulo 2p at

each wavelength is computed. Since a phase of 2 p is a different OPD at each

wavelength, only one choice of wavefront deformation will satisfy both data sets.

TWPSI can also be interpreted by the connect-the-dot representation (Fig. 14.48).

The vertical scale is nowOPD instead of phase so that it is not wavelength dependent.

Each set of data produces its own column of possible solutions at each pixel, and the

spacing of the dots is the wavelength. The locations where the two sets of dots fall on

top of each other indicate possible correct solutions for the wavefront; many

individual dots are now eliminated.

At each pixel, there are multiple locations of coincidence, and the spacing

between these points is the equivalent wavelength:

leq ¼
l1l2

l1 � l2j j ð14:166Þ

where l1 and l2 are the two measurement wavelengths. Phase unwrapping of the

common points is now done using standard PSI techniques at the equivalent wave-

length. Since the equivalent wavelength is much longer that the actual wavelengths,

large wavefront slopes can be handled before the algorithm breaks down. Two

wavelength operation of an interferometer for testing aspheres requires optical

correction of the optical system at both wavelengths as well as raytracing at these

wavelengths for the asphere under test. It is also possible to extend this technique to

more than twowavelengths (Cheng andWyant, 1985a). Morewill be said about these

multiple wavelength techniques in Chapter 17.

There is an important similarity between SNI and TWPSI for measuring aspheric

surfaces: Both depend on being able to measure aliased fringes, and therefore require

sparse array sensors with small pixel width to pitch ratios. They are both limited by

FIGURE 14.48. Two wavelength PSI.
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the pixel MTF. A practical problem that has hindered the implementation of TWPSI

for this application is chromatic aberration in the reference optics and the inter-

ferometer. These optics must be achromatized at both wavelengths.

The application for measuring steps or discontinuities greater than a quarter wave

in surface height (p in wavefront phase) requires different solutions than those needed

for aspheres. Instead of high-frequency fringes, there is a break in the fringe pattern.

Single wavelength technique lose track of the fringe order over the step and do not

produce the correct result. Multiple wavelength techniques, on the contrary, allow the

fringe order to be determined and can measure step heights well in excess of a quarter

wave. TWPSI has been successfully applied to this problem using interference

microscopes (Creath, 1987a), and this application will also be discussed in Chapter

17. SNI has been used for discontinuous surfaces measured at a single wavelength,

but the requirement is added that the step height be known to 
l=4 (Greivenkamp

et al., 1989). This additional information allows the correct number of 2p’s to be

added to the arctangent data. Since neither of these techniques for measuring steps

relies on detecting aliased fringes, there are no special sensor considerations.

14.13.4. Subaperture Stitching

A number of other approaches have been applied to the problem of aspheric testing

(Wyant, 1987). These tests aim to reduce the number of fringes that are analyzed in a

single interferogram. Two of these methods are shearing interferometry and sub-

aperture testing.

The attractive feature of using shearing interferometry for aspheric testing is that

the sensitivity of the test can be varied by changing the shear distance (see Chapter 4).

In this way, the number of fringes is reduced. However, to measure an asymmetric

wavefront, two sets of PSI data with orthogonal shears must be collected. Config-

urations based upon lateral shear, radial shear and the Ronchi test have been

demonstrated (Hariharan et al., 1984; Seligson et al., 1984; Yatagai and Kanou,

1984; Yatagai, 1984; Kothiyal and Delisle, 1985b; Kanoh, 1986; Omura and Yatagai,

1984). The wavefront slope is measured with shearing interferometry, and the actual

wavefront or surface then is found by integration. One practical difficulty is that noise

in the measurement tends to propagate across the reconstructed wavefront as a result

of this integration; a bad pixel can influence large portions of the wavefront map.

When the wavefront is measured directly, the effects of a bad pixel are localized at

that pixel.

The basic idea behind subaperture testing of aspherics is to divide the wavefront

up into small sections; the wavefront departure in each subaperture is within the

measurement range of the instrumentation. The maximum fringe frequency is kept

below the Nyquist frequency of the sensor. The problem is then reduced to fitting all

of these separate measurements, which can contain different amounts of tilt, piston

and sometimes defocus, back into a complete map of the aspheric wavefront or

surface. (Kim, 1982; Thunen and Kwon, 1982; Jensen et al., 1984; Negro, 1984;

Stuhlinger, 1986; Liu et al., 1988) An example of a set of subapertures is shown in

Figure 14.49. The overall wavefront is represented by a polynomial expansion, and
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the subaperture data is analyzed to determine the expansion coefficients. The Zernike

polynomials are the usual choice, and a limited number of terms are used. This

technique provides the overall aspheric wavefront shape. Small or localized errors

will not appear in the final polynomial fit, and must be determined from the

subaperture data. It is important that the location of each subaperture within aperture

be precisely known.

Another subaperture technique has been developed to expand the field of view of

interferometric surface profiling microscopes (Cochran and Wyant, 1986; Cochran

and Creath, 1987, 1988). A series of partial overlapping linear traces of a surface

are collected. These measurements are then combined into a single trace by adjusting

the tilt, piston and position to minimize the difference between the traces in the

overlap region. Stitching techniques have been implemented into professional asphe-

ric testing solution that allow to measure a variety of low and high departure aspheres

by selecting different geometries and grids for stitiching (Tricard et al. 2006).

14.14. OTHER ANALYSIS METHODS

The bulk of this chapter has concentrated on the phase-step and integrating-bucket

algorithms since they are the most commonly used PSI techniques. A number of

other PSI algorithms and systems have been developed. In this section, we briefly

review some of these special methods. Some are included for historical significance

and others are useful in particular situations.

14.14.1. Zero Crossing Analysis

Zero crossing analysis is an electronic technique that directly measures the time

delay between the intensity signals at different locations in the interferogram. The

FIGURE 14.49. One configuration for subaperture testing.
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relative wavefront phase at the two points can then be calculated (Crane, 1969;

Moore, 1973; Wyant and Shagam, 1978). Referring back to Figure 14.1, the intensity

at any location in the interferogram varies sinusoidally, and the temporal phase at a

point is proportional to the wavefront phase. One point in the interferogram is

designated as a reference point, and the time delay between the signal at this point

and another point is measured. These values can be converted to the wavefront phase

modulo 2 p by normalizing with the period of the reference signal. The location of

the zero crossings is a convenient measure of the time lag. Since the intensity never

goes negative, a reference intensity level (such as the average intensity I0ðx; yÞ)
is established for determining the zero crossing locations. To measure a two-

dimensional wavefront, this time delay relative to the reference point must be

measured at a large number of points.

14.14.2. Synchronous Detection

Synchronous detection is an early technique that is the clear precursor to the phase

stepping techniques in use today. It is based upon the well known methods of radio

communication theory, where the phase of an unknown signal is recovered by

correlation of this signal with a sinusoidal signal of the same frequency (Bruning

et al., 1974; Bruning, 1978). For a linear reference phase shift, the intensity pattern in

the interferogram is (from Eq. (14.6)):

Iðx; y; tÞ ¼ I0ðx; yÞ þ I00ðx; yÞ cos½fðx; yÞ þ at� ð14:167Þ

where a is the rate of change of the reference phase. Since we are controlling the

reference phase, a is well known, and the sinusoidal and cosinusoidal signals with

this same frequency can be generated. This cosinusoidal signal is correlated with the

interferogram intensity at each point:

I1ðx; yÞh i ¼ lim
T!1

1

T

Z T

0

Iðx; y; TÞ cosðatÞdt ð14:168Þ

which reduces to

I1ðx; yÞh i ¼ I00ðx; yÞ cos½fðx; yÞ� ð14:169Þ

In a similar manner, the correlation of the intensity with a sinusoidal signal produces

I2ðx; yÞh i ¼ �I00ðx; yÞ sin½fðx; yÞ� ð14:170Þ

As with all of the phase step techniques we have examined, the wavefront phase

modulo 2 p can be determined through an arctangent of the ratio of these two results:

fðx; yÞ ¼ tan�1 � I2ðx; yÞh i
I1ðx; yÞh i

	 


ð14:171Þ
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This analysis also provides to measure the noise immunity of this technique and

for PSI. Additive noise included in the interferogram intensity is not related to the

frequency a corresponding to the phase shift, and the correlation operation averages

these noise terms to zero.

In a similar manner, this correlation can be performed with temporally sampled

data. When N measurements of the interferogram intensity are made during a 2p

change in the reference phase,

di ¼ i2p=N; i ¼ 1; . . . ;N ð14:172Þ

Elementary Fourier series analysis can be used to solve for the unknown wavefront

phase:

fðx; yÞ ¼ tan�1 �
P

Ii sinðdiÞ
P

Ii cosðdiÞ

	 


ð14:173Þ

where the summations run from 1 to N. This result is identical to the result obtained

using a least-squares fit of the intensity data to a sinusoidal function of the proper

frequency (Eq. 14.66).

14.14.3. Heterodyne Interferometry

Heterodyne or AC interferometry is the general term used to describe interferometers

that produce a temporal phase shift by introducing two different optical frequencies

into the two arms of the interferometer. Several methods exist for generating this

frequency difference, the most common being moving gratings and two-frequency

lasers (see Section 14.4). With any of these approaches, the interferogram intensity is

modulated at difference in frequency (Eq. (14.9)–(14.12)). The primary applications

for heterodyne interferometry are distance measuring interferometry, measuring

system dynamics, and surface profilometry (Crane, 1969; Koliopoulos 1980; Som-

margren, 1981; Barnes, 1987).

Digital heterodyne interferometry (DHI) has been developed to address the need

to perform high-speed analysis of dynamic systems (Massie and Nelson, 1978;

Massie, 1980, 1987; Massie et al., 1979; Mottier, 1979; Massie et al. 1981; Massie

et al. 1983; Evans, 1983). Two significant applications of this technology are deform-

able mirrors and turbulent flow field testing. To obtain meaningful PSI data, the phase

shifts must occur at a rate that is faster than the changes that are being observed.

Acousto-optic Bragg cells are the most convenient method to obtain the frequency

shifts, and a frequency difference of up to 1 MHz has been demonstrated. The

interferogram intensity will oscillate at this frequency, and the wavefront phase is

encoded in the phase difference of these oscillations at different measuring points.

Because of the frequencies involved, a high-speed detector is needed; a standard

video camera will not work. The conceptionally simplest method to collect the data is

to use an array of discrete detectors. Each will produce an output at 1 MHz with a

different phase. One detector is defined as the reference detector, and the phase of the
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other signals are measured relative to this signal. A phase detection method, such as

the zero crossing method described above, measures these phases, and a wavefront

map modulo 2p is produced. A high frame rate image tube, called an image dissector

tube, can also be used as the detector. This camera functions as a rapidly scannable

photomultiplier tube. A repeatability of better than in excess of l=100RMS has been

demonstrated with DHI systems.

14.14.4. Phase Lock Interferometry

Phase lock interferometry involves applying a small sinusoidal oscillation to the

reference mirror (Johnson andMoore, 1977; Johnson et al., 1977, 1979; Moore et al.,

1978; Matthews, et al., 1986). The average reference phase is also allowed to vary so

that

dðtÞ ¼ dþ a sinðotÞ ð14:174Þ

where a is the amplitude of the oscillation and is much less than a wavelength. The

resulting interferogram intensity is

Iðx; y; tÞ ¼ I0ðx; yÞ þ I00ðx; yÞ cos½fðx; yÞ þ dþ a sinðotÞ� ð14:175Þ

A series expansion of this intensity produces

Iðx; y; tÞ ¼I0ðx; yÞ þ I00ðx; yÞfcos½fðx; yÞ þ d�½J0ðaÞ þ 2J2ðaÞ
� cosð2otÞ þ � � �� � sin½fðx; yÞ þ d�
�½2J1ðaÞ sinðotÞ þ 2J3ðaÞ sinð3otÞ þ � � ��g

ð14:176Þ

where Jn is a Bessel function of order n. In addition to the fundamental frequency of

the oscillation, higher order terms are also present. This signal is then filtered to allow

only the fundamental frequency o:

If ðx; y; tÞ ¼ �2I00ðx; yÞJ1ðaÞ sin½fðx; yÞ þ d� sinðotÞ ð14:177Þ

There are a couple of interesting features to this signal. First, if the average reference

phase d is varied so that fðx; yÞ þ d equals a multiple of p, If ðx; y; tÞ goes to zero, and
there is no intensity modulation due to the reference mirror oscillation or dither.

Referring back to Figure 14.1, this situation corresponds to sitting on either a

maximum or a minimum of this curve; the small change in phase due to the dither

does not result in any change of intensity. The second thing to notice about If ðx; y; tÞ
is that its magnitude is proportional to the slope of the interference pattern, and for

small values of fðx; yÞ þ d, it is actually proportional to the phase distance from a

fringe maximum. The sign of the slope is encoded in the phase of this signal relative

to the drive signal; this allows the instrument to find the maximum intensity instead

of the minimum.
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The interferometer operates by measuring the filtered intensity signal If ðx; y; tÞ at
a location in the interferogram with a detector. The magnitude and phase of this

signal are used to produce a feedback signal that tells the phase shift controller how

to change the average phase shift d to null out this signal. When a null is achieved, the

sum fðx; yÞ þ d is equal to zero modulo 2p; we are sitting on one of the fringe

maxima. Since we know d, the value of wavefront phase fðx; yÞmodulo 2p has been

determined. As the wavefront phase changes, the feedback signal is used to vary the

average phase shift to maintain the null condition. When the required average phase

shift exceeds
2p, an up/down counter is incremented or decremented, and d is reset

to zero. This reduces the travel requirements on PZT producing the phase shift, and

counts the number of fringes. The wavefront phase is then given by the number of

2p’s that have been counted plus the current value of d. To measure an area, the

detector is scanned across the wavefront. Since the scan rate can be varied, inter-

ferograms with large numbers of fringes can be measured with phase lock inter-

ferometry, and repeatabilities on the order of l=100 have been demonstrated.

14.14.5. Spatial Synchronous and Fourier Methods

While strictly not speaking of PSI techniques, the types of interferogram analysis that

are known as spatial synchronous detection and Fourier analysis have some similar-

ity to PSI. Both are fringe analysis methods that look at a single interferogram, and

are therefore can be used when turbulence and vibration are present. Both of these

techniques are more precise than standard interferogram analysis as it is not neces-

sary to determine fringe centers; the data is also collected on a regular grid providing

compatibility with computer analysis.

Spatial synchronous detection operates in the spatial domain by multiplying the

measured interferogram with a reference pattern (Ichioka and Inuiya, 1972; Womak,

1984a; Toyooka and Tominaga, 1984). Expressions for the unknown interferogram

and the reference pattern are

Iðx; yÞ ¼ I0ðx; yÞ þ I00ðx; yÞ cos½fðx; yÞ þ 2pf0x� ð14:178Þ

and

Rðx; yÞ ¼ cosð2pf0xÞ ð14:179Þ

where a significant amount of wavefront tilt has been added to the interferogram, and

f0 is the fringe frequency due to the tilt.Rðx; yÞ is a uniform fringe pattern (tilt fringes)

that closely matches the interferogram and is implemented either physically or

computationally. The product of these two pattern is

Iðx; yÞRðx; yÞ ¼I0ðx; yÞ cosð2pf0xÞ þ ½I00ðx; yÞ=2� cos½fðx; yÞ þ 4pf0x�
þ ½I00ðx; yÞ=2� cos½fðx; yÞ�

ð14:180Þ
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The third term contains low spatial frequencies that can be filtered from the other two

terms to produce:

S1ðx; yÞ ¼ ½I00ðx; yÞ=2� cos½fðx; yÞ� ð14:181Þ

Similarly, a second filtered signal results from the multiplication of the interferogram

with a reference pattern equal to sin(2pf0x):

S2ðx; yÞ ¼ ½I00ðx; yÞ=2� sin½fðx; yÞ� ð14:182Þ

The wavefront phase difference modulo 2p can then be computed from the ratio of

these two signals:

fðx; yÞ ¼ tan�1 S2ðx; yÞ
S1ðx; yÞ

	 


ð14:183Þ

The similarity between this algorithm and the many PSI algorithms, especially the

synchronous detection algorithm in Eq. (14.171), should be apparent. Similar

systems have been built that image the interferogram onto a segmented detector,

and the individual outputs are sinusoidally weighted to determine the phase (DeCou,

1974; Mertz 1983a,b, 1989).

The Fourier analysis methods provides a virtually identical analysis, but the

computations are done in the spatial frequency domain instead of the spatial domain

(Takeda et al., 1982; Macy, 1983; Nugent, 1895; Bone et al., 1986; Kreis, 1986;

Roddier and Roddier, 1987). An interferogram pattern with tilt as described by

Eq. (14.178) can be rewritten as

Iðx; yÞ ¼ I0ðx; yÞ þ cðx; yÞei2pf0x þ c	ðx; yÞe�i2pf0x ð14:184Þ

where

cðx; yÞ ¼ ½I00ðx; yÞ=2�eifðx;yÞ ð14:185Þ

and * indicates the complex conjugate. A one-dimensional Fourier transform of

Iðx; yÞ produces

~Iðx; yÞ ¼ ~I
0ðx; yÞ þ ~cðx� f0; yÞ þ ~c	ðxþ f0; yÞ ð14:186Þ

where x is the spatial frequency coordinate and� indicates a Fourier Transform. This

function is a trimodal function with peaks at �f0; f0, and the origin as sketched in

Figure 14.50(a). The component of this spectrum centered at f0 can be recovered

without the carrier by first bandpass filtering and then shifting the isolated spectrum

back to the origin (Figure 14.50(b)). This results in the function ~cðx; yÞ. An inverse
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Fourier transform produces cðx; yÞ as described in Eq. (14.185). The wavefront phase
modulo 2p can then be determined from an arctangent:

fðx; yÞ ¼ tan�1 Im½cðx; yÞ�
Re½cðx; yÞ�

� �

ð14:187Þ

where Re and Im refer to the real and imaginary part of the function.

Both of these spatial techniques suffer from a problem when the wavefront under

test has a large deviation from the reference wavefront.

The three components of the interferogram spectrum (Eqs. (14.180) or (14.186))

overlap; and it is not possible to completely separate them through filtering. Various

filters have been suggested to optimize the output of these techniques (Womak, 1984a,b).

14.15. COMPUTER PROCESSING AND OUTPUT

Now that a complete representation of the wavefront phase is stored in the computer

memory, we can use the computer for the analysis and display of this data. A number

of different analyses can be performed to produce results that are appropriate for the

application. The initial analysis often starts by fitting the measured wavefront to a

polynomial expansion, usually the Zernike polynomials (Kim and Shannon, 1987)

FIGURE 14.50. Fourier fringe analysis: (a) the spectrum of the interferogram and (b) the processed

spectrum.
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(See Chapter 13). The terms in the expansion corresponding to tilt and focus can then

be subtracted from the measured wavefront to leave only the wavefront error as

measured from a best-fit reference sphere (for a flat, only tilt is subtracted as we are

interested in the radius of curvature of the wavefront). Higher order aberrations, such

as spherical, coma, and astigmatism, can also be subtracted.

The PSF and the MTF due to the measured wavefront errors and diffraction can

be easily computed from the wavefront data. We start by expressing the wavefront

in the form of Eq. (14.3) which includes an amplitude term:

wðx; yÞ ¼ aðx=d; y=dÞeifðx;yÞ ð14:188Þ

The amplitude term aðx; yÞ now also defines the exit pupil diameter d. The amplitude

PSF is found through a fast Fourier transform (FFT) of this wavefront function, and

the intensity PSF results from the squared modulus of this result (Goodman, 1968).

Since the wavefront represents only the error from a spherical reference surface, this

answer must be scaled to the image plane with the wavelength and the system f/#.

The pupil diameter is already contained in the expression for thewavefront so that the

scaling is done by replacing the spatial frequency variables x and Z with x=lf and
y=lf , respectively:

PSF ¼ ~wðx; ZÞj j2


x¼x=lf ; Z¼y=lf

ð14:189Þ

where � indicates a Fourier transform, and f is the focal distance. The result of this

computation for an unaberrated wavefront with a circular pupil is an Airy pattern, and

aberrations will distort the PSF. The system MTF contribution of the tested wavefront

or surface is found through an FFTof the PSF. This result is properly scaled to the f/# of

the optical system, and the diffraction-limited cutoff frequency of 1=ðlf#Þ results.
There are times when the system parameters (pupil diameter, focal length and

wavelength) are not known or defined at the time of the test, and it is useful to express

the results in the arbitrary units. An example might be the test of a flat mirror to be

used in a multi-element system; we are interested in the influences of the flat mirror

on the system performance, and assume that the aberrations of that surface propagate

through the system to the final converging wavefront. We may also not be testing the

element at the final system wavelength. It is the parameters of this final wavefront

that are used to scale the PSF and MTF due to the element. An arbitrary unit that is

sometimes used is waves/radius, which can be obtained by setting the exit pupil

radius, the focal distance, and the wavelength all equal to one in the above calcula-

tions. The output dimensions in waves/radius can then be scaled at a later time to a

physical distance by multiplying by lf=r ¼ 2lf=#, where r is the pupil radius.
Examples of interferometer output for a tested surface are shown in Figure 14.51,

where the OPD and the resulting PSF and MTF are displayed. A number of different

plotting options, including contour maps and isometric plots, are available. Some

other examples of analyses that can be performed on the wavefront data are one-

dimensional traces, surface slope plots, Strehl ratio computations, encircled energy

distributions, surface height histograms and geometrical spot diagrams. The choice
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of the output can be customized to the requirements of the user (Truax, 1986; Creath,

1987b). Other features that can be built into the software are production menus that

lead the operator through the test, and then provide a pass/fail display based upon

certain predetermined criteria.

Recently, interfaces between interferometer analysis software and optical design

programs have become available. While the exploration of this capability is just

beginning, it has been used for several applications (Figoski et al., 1989; Stephenson,

1989; Willey and Patchin, 1989). The overall system design can be reoptimized

based on the actual parts that have been manufactured and tested; this is especially

useful for systems that are built around a difficult to manufacture element. In a

similar manner, interferometric data can be used to predict the actual system

performance for comparison to the design requirements. The alignment of optical

systems has also made use of this capability. The wavefront from either the entire

optical system or a subsystem is measured and compared to the wavefront predicted

14.6.
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FIGURE 14.51. Examples of the data-flow inside a PSI system.
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by the design program. Based on the differences between these two wavefronts, the

design program computes in an iterative fashion the changes needed to bring the

system into specification. A fourth, and more general, application of this capability is

to create reference aspheric wavefronts in the computer software. The design soft-

ware calculates the desired wavefront, and the interferometer then subtracts this

calculated wavefront from the measurement to determine the wavefront errors. This

process is almost exactly analogous to the use of computer generated holograms,

except that the ‘‘hologram’’ always resides in computer memory.

14.16. IMPLEMENTATION AND APPLICATIONS

In this section, we discuss a number of practical considerations for PSI and also

examine some particular applications of PSI. A generic PSI system consists of four

things: an interferometer, a device for changing the reference phase, a detector or

detector array, and a computer. The detector array provides the interface between the

wavefront and the computer, and the computer provides control of the interferometer

and phase shifter and performs the necessary computations. The advances in detec-

tors and computers have been the enabling technologies that have driven the dramatic

performance improvements and acceptance of PSI. There is sufficient computing

power in personal computers to handle most PSI applications.

14.16.1. Commercial Instrumentation

Commercial instrumentation utilizing PSI technology is available for measuring

surface and wavefront shape, surface profile, and distance. PSI-based surface profil-

ing microscopes are widely used for quantitative examination of small surface

features and microroughness of both optical and non-optical components. Repeat-

abilities of a few Angstroms RMS can be obtained, and these profiling instruments

are fully discussed in Chapter 17.

PSI interferometers have been marketed for measuring surfaces and wavefronts

based on all three of the optical configurations shown in Figure 14.2; Twyman–Green,

Mach–Zehnder and laser Fizeau (Chapter 1 and 2). All of these systems employ video

cameras to record the interferograms; the phase shifts are provided by moving the

reference objective with PZT transducers, and a variety of reference objectives and

flats are available to match the part under test (Smythe et al., 1987; Creath, 1987b). A

prominent feature of these systems is the flexibility of the user interface provided by

the computer. As discussed in Section 14.15, a large number of graphics displays can

be produced, and the processing can be customized to meet the needs of the user.

A Mach–Zehnder interferometer configuration that is available for testing the

quality of optical wavefronts with PSI is shown in Figure 14.52 (Hayes and Lange,

1983; Creath, 1987b). The output of a source, such as a laser diode, is collimated as it

enters the system. A spherical reference wavefront is provided by the spatial filter in

the reference arm. A similar set of optics, without the pinhole, is used in the test arm

to match the optical path length in the two arms. The beams are recombined and
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imaged onto the camera. Both the intensity and phase distributions of the wavefront

can be measured.

An interesting system that can be used for testing the shape or flatness of

nonoptical parts has been developed based on grazing-incidence interferometry

(Synborski, 1978). The system is diagramed in Figure 14.53(a). The component

under test is place in close proximity to the hypotenuse of a large glass prism which

serves as the reference surface for the interferometer. An air gap is maintained.

FIGURE 14.52. Mach–Zehnder PSI interferometer for measuring the wavefront quality of sources.

FIGURE 14.53. Grazing incidence PSI interferometer: (a) overall system layout and (b) a closeup of the

interface at the air gap.
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A close-up of this interface is shown in Figure 14.53(b). Because of refraction, the

test beam is incident on the part at a large angle. For a 41.7� angle of incidence and an
index of 1.5, the angle of incidence at the test surface is 86�. This is close to the

critical angle of the prism. There are two beneficial consequences to this configura-

tion. First, the sensitivity of the test is reduced by the cosine of the angle of incidence.

At 86�, the sensitivity is 7% of the normal incidence sensitivity; a fringe represents 7

waves of surface height change instead of a half wave. It is as if the surface is tested

with a longer wavelength. The second benefit is that almost everything, including a

ground surface, is highly reflective at this angle of incidence, and a variety of

different materials and samples can be used. If the angle of the light in the prism

is slightly changed, the optical path length in the air gap will change much more than

the path in the glass. This tilt when used produces the phase shift between the

reference and test beams. Systems are available with up to a 200 mm aperture, and

have been applied to testing silicon wavers and machined or ground parts. The clear

drawback to a system such as this is the need for the large precision glass prism.

Distance measuring interferometers (DMIs) are capable of providing position

readout with a resolution of better than a thousandth of a wavelength (less than a

nanometer), and have found extensive use in the area precision machine control

(Dukes and Gordon, 1970; Steinmetz et al., 1987; Smythe et al., 1987; Steinmetz,

1990).Most DMIs use heterodyne techniques (Section 14.14.3), and a basic system is

diagramed in Figure 14.54. The two output frequencies from the source are ortho-

gonally polarized, and the polarizing beamsplitter splits the frequencies into the

reference and test arms of the interferometer. The two corner cubes return these two

beams to the detector, where the polarizer at 45� allows them to interfere. When the

movable corner cube is stationary, a beat frequency equal to the difference in the two

optical frequencies is obtained; this frequency is identical to a similar reference

signal generated in the laser head. A motion of this corner cube introduces a Doppler

frequency shift in the light returning from the test arm, and the measured beat

frequency changes. The change in the length of the test arm is determined by

comparison of the measured beat frequency with the reference beat frequency.

Some specific applications for DMIs are microlithographic step and repeat cameras,

single-point diamond turning machines and precision photoplotters. Additional

information about DMIs is contained in Chapter 18.

FIGURE 14.54. Distance measuring interferometer.
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14.16.2. Interferometer Configurations

A number of grating lateral shearing interferometers that use PSI techniques have

been demonstrated (Wyant, 1975; Hardy et al., 1977; Stump, 1979; Koliopoulos,

1980; Hardy and MacGovern, 1987; Schreiber and Schwider, 1997). Translation of

the grating produces a frequency shift between the diffracted orders, resulting in a

linear phase shift between the interfering beams. More information on grating

interferometers can be found in Chapter 4. The wavefront is focused onto the grating,

and three or more diffraction orders are produced. The period of the grating is chosen

so that there is overlap, and therefore interference, of the diffracted orders. When the

grating is translated, the diffracted orders are Doppler shifted (see Section 14.4); the

plus one order increases, the minus one order decreases, and the zero order is

unchanged. A beat frequency appears in the output that can be analyzed by either

heterodyne or integrating bucket techniques to determine the wavefront phase. A

convenient grating configuration is to use a radial grating (starburst pattern) that is

spun about its center (Stevenson, 1970). With this grating, the shear distance can be

changed by moving the grating center relative to the focus spot.

PSI has also been applied to the double-frequency grating lateral shear inter-

ferometer (Wyant, 1973). In this system, the wavefront is focused onto a grating with

two distinct line spacings. Two diffraction patterns are produced, one from each set

of grating lines. The shear between the two interfering first orders is determined by

the difference in the two grating frequencies, and the average frequency can be

chosen to separate these diffracted orders from the undiffracted light. Translation of

the grating through the focus will produce different Doppler shifts for each of the two

diffracted beams, and a relative phase shift is produced. The resulting interferogram

can be evaluated by PSI techniques.

A very compacted shearing interferomter configuration (Schreiber and Schwider,

1997) uses two Ronchi phase gratings in series. The phase delay of both gratings is

choosen so that the zero orders are minimized. Combining the first orders from the

first grating with the opposite first orders of the second grating results in two on axis

beams sheared to each other. The amount of shear can be adjusted by the grating

distance. Besides it being on axis and easy to adjust nature, the combination of

positive and negative orders in this conifugration results in on-axis beams indepen-

dent of the wavelength making it perfect for use with light sources using a broader

bandwidth like LED diodes or Excimer laser (Schreiber et al., 2002).

In situations where the test wavefront can change with time, there is a desire to

obtain all of the required phase-shifted interferograms simultaneously. There should

be no time lag between the measurements. Several of these snapshot interferometers

have been demonstrated, and they are also compatible with pulsed light sources.

A second stroboscopic interferometer uses a diffraction grating to introduce a

phase shift between the reference and multiple test beams (Kwon, 1984, 1987; Kwon

et al., 1987). One implementation of the system is shown in Figure 14.55. The three

replicas of the test beam are the diffracted orders from the stationary grating, and the

reference beam is provided by the spatial filter. A small lateral shift of the grating will

produce a 90� phase shift between the three test beams. A simple way to understand
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this phase shift is that the grating is in the Fourier transform plane of the wavefront; a

shift in this planewill result in a linear phase factor in the plane of the interferograms.

A shift of a quarter of the grating period will produce the desired phase shift. The

three output interferograms can be evaluated with one of the three step algorithms

(Eqs. (14.48) or (14.52)).

A third snapshot interferometer (McLaughlin and Horwitz, 1986) uses a phase

grating to shear thewavefront under test and to create a carrier fringe frequency in the

interferogram. The period of these carrier fringes is adjusted to equal four pixels on

the sensor, and each pixel sees a relative phase shift of 90�. The four step algorithm

can therefore be used to analyze the sheared wavefront. There is a great deal of

similarity between this method and the spatial synchronous detection methods

discussed in Section 14.14.5. A crossed grating is used to simultaneously analyze

the shear in orthogonal directions.

14.16.3. Absolute Calibration

We generally assume that the accuracy of our interferometric test is only as good as

the reference surface since the interferometer compares the test surface with this

reference surface. The absolute accuracy of the measurement can be improved if

we are able to subtract errors in the results introduced by the reference surface and by

the interferometer. A perfect test optic can be used to calibrate the interferometer for

a particular configuration, but very often these reference parts do not exist. A

procedure has been developed to obtain an absolute calibration of a spherical surface

and the interferometer without knowing either in advance (Jensen, 1973; Bruning

et al., 1974; Bruning, 1978; Truax, 1988) (See also Sec. 2.5). Since this calibration

process involves computations with several wavefronts, it is well suited for PSI

systems as the wavefronts are already in computer memory. The three sets of data

that are needed for this procedure are shown in Figure 14.56,. The first two data sets

FIGURE 14.55. Stroboscopic PSI interferometer using a diffraction grating (from Kwon, 1987).
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are tests of the sphere with the test surface rotated by 180� between the measure-

ments. It is imperative that the sphere be precisely rotated about the optic axis. The

third test measures the interferometer in a cat’s eye reflection with the interferometer

focused on the vertex of the sphere. Wavefront maps are obtained in each case. There

are three sources of wavefront error in the system: errors in the test surface ws, errors

in the reference arm and reference surface wR, and errors in the test arm and the

diverger lens wT . Each of these three interferograms can be expressed as a combina-

tion of these wavefront errors:

W1 ¼ WR þWT þWS ð14:190Þ
W2 ¼ WR þWT þW180�

S ð14:191Þ

W3 ¼ WR þ 1

2
ðWT þW180�

T Þ ð14:192Þ

FIGURE 14.56. Absolute calibration of a spherical surface: (a) three raw wavefronts of part with

interferometer errors and (b) composite errors of the interferometer and test surface errors.
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where

Wa
R ¼reference arm wavefront

Wa
T ¼reference arm wavefront

Wa
S ¼reference arm wavefront

a ¼orientation of wavefront ð0 or 180�Þ

After a cat’s eye reflection, the ray paths are flipped about the optic axis, and this

results in the rotation of the test arm aberrations inW3. The evaluation first averages

W1 and a rotated version of W2. The location of the optic axis in the interferogram

must be identified for this data rotation. Data-set W3 is then averaged with a rotated

version of itself, and this result is then subtracted from the earlier result to produce

the wavefront error due to the test surface:

WS ¼
1

2
ðW1 þW180�

2 �W3 �W180�

3 Þ ð14:193Þ

The surface height map can be obtained from this wavefront error. The total error in

the interferometer, denoted by WI, is composed of the sum of WR and WT . The

interferometer errors can be calculated by substituting (14.193) into (14.190), which

gives

WI ¼
1

2
ðW1 �W180�

2 þW3 þW180�

3 Þ ð14:194Þ

Note that both Eqs. (14.193) and (14.194) involve the maniupulation of wavefronts

that derive from the rotation of the part and the rotation of the wavefront data

matrices by 180�. This allows the separation of even and odd errors in the inter-

ferometer when we have access to the cat’s eye configuration. Figure 14.56b shows

the results of such calibration calculations as well as the individual and composite

errors in the interferometer and test part. This method is usually employed when it is

essential to achieve the very highest accuracies possible. Themethod is only effective

when the is operated in a stable environment and the 0� and 180� test part configu-
rations of W1 and W2 match the pixel coordinates ðx0; y0Þ and ð�x0;�y0Þ of the

detector matrix. This calibration procedure is conveniently carried out with PSIs that

can easily manipulate and store wavefronts in memory. Errors incurred by improper

alignment of the various surfaces have been examined by Truax (1988) and Elssner

et al. (1989). Generally, lateral alignments are the most critical and need to be held to

within one pixel or less.

The special case of flat surfaces can be calibrated by using three surfaces in

different orientations. A similar approach has been applied to Fizeau reference

calibration (Schulz and Schwider, 1976). The use of Zernike polynomials facilitates

the calibration process for flats (Fritz, 1984).
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14.16.4. Sources

PSI systems have been built at wavelengths ranging from the ultraviolet to the

infrared. The test wavelength is sometimes chosen to test the system at the operating

wavelength (Prettyjohns et al. 1985). An improvement in the precision of the test

results from using shorter wavelengths; 2p of wavefront phase corresponds to a

smaller physical distance. Longer wavelengths reduce the sensitivity of the test, and

permit the testing of aspheric wavefronts without nulls. A second advantage to these

long wavelengths is that high contrast fringes can be obtained even when testing

ground surfaces, and testing can commence during the grinding process. A common

IRwavelength that has been used for PSI is the 10.6 mmoutput of a CO2 laser, and the

detector used for these systems is a pyroelectric vidicon (PEV) (Kwon et al., 1980;

Stahl et al., 1987; Creath, 1987b; Stahl, 1989). PEV’s respond only to time-varying

imagery which makes them appropriate for a PSI system. The phase shift provides

the intensity variations, but the rate of phase shift must be adjusted to optimize the

camera response. A modulation frequency of 7.5 Hz has been found to be an

optimum in one system (Stahl et al., 1987). Work in the development of IR solid

state sensors has pushed the cutoff wavelength into the mid-IR, about 6 mm (Zanio,

1990; Kozlowski et al., 1990). This work in materials such as HgCdTe may even-

tually provide an alternative to PEV’s.

An area that shows great promise for simplifying the operation of PSI systems is to

obtain the phase shifts through modulation of the output wavelength of a laser diode

(Tatsuno and Tsunoda, 1987; Ishii, et al., 1987; Chen and Murata, 1988; Chen et al.,

1988). The output wavelength of a laser diode varies with both the injection current

and temperature. The laser diode output is sent to both arms of the interferometer and

the phase shift is proportional to the OPD between the two arms:

a ¼ 2p OPD �l

l20
ð14:195Þ

where �l is the wavelength change, and l0 is the average wavelength. As with the

instrumentation for the 2þ1 algorithm (Section 14.8.6), this phase shift corresponds

to the difference in the number of wavelengths that fit into the OPD at the two

wavelengths. The laser wavelength can either be stepped to implement the phase-step

PSI approach or ramped for the integrating-bucket approach. This method of phase

shift eliminates the need for a mechanical motion of a PZT and the associated high-

voltage drive circuit.

A source modulation interferometer has been used to measure both surfaces and

the refractive index inhomogeneities of a glass plate from a set phase-shifted inter-

ferograms (Okada, Sakuta, Ose and Tsujiuchi, 1990). The plate is put in the test arm

of a Twyman–Green interferometer, and fringes are formed between the reference

surface and the front surface reflection, the reference and the rear surface reflection,

and between the two surface reflections. Since each of these overlapping fringe

patterns corresponds to a different OPD, each phase shifts at a different rate, and the

analysis is able to separate the three quantities to be measured.
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A phase-lock laser diode interferometer (see Section 14.4) has also been demon-

strated by modulating the drive current, and therefore the output wavelength, of the

diode (Suzuki et al., 1989). Two potential problems with the use of laser diode

sources are changes in the output power as the wavelength is varied and the effects of

a small wavelength modulation needed to lock the lock the wavelength to a reference

cavity (Hariharan, 1989a,b).

14.16.5. Alignment Fiducials

One area that is often overlooked in interferometric testing is the accuracy required in

relating the position of a fringe or a point in an interferogram to an actual position in

the aperture of the component or system under test. This relationship is accomplished

by placing fiducial marks on the test aperture. The image of these marks in the

interferogram relates the interferogram coordinates to locations on the part. Precise

fiducial location determination allows for the removal of calibration wavefronts, such

as those due to the interferometer or reference optics. These alignment aids are

important for the absolute calibration and subaperture techniques described above.

Fiducials also provide a coordinate system for geometric wavefront manipulations,

including flips, rotations andmagnification changes, as well as for aberration fits. The

importance of the geometrical alignment of a test part with the analysis can be

understood by considering the situation of subtracting a stored calibration wavefront

from a measured wavefront. Misalignment will shift the error to be subtracted on

itself during the analysis. These shifts will result in comatic and/or astigmatic errors.

14.17. FUTURE TRENDS FOR PSI

This chapter has concentrated on the theory of phase-shifting analysis and its

application to the area of interferometry. PSI has provided improved repeatability,

precision and accuracy, and allowed for a more complete analysis of the wavefront

and surface data. Not surprisingly, these same techniques can be applied to almost

any system that uses fringes for measurement. Chapter 15 describes the application

of PSI analysis to holographic and speckle interferometers (Hariharan, Oreb and

Brown, 1982a,b, 1983; Creath, 1985; Hariharan, 1985; Nakadate and Saito, 1985;

Thalmann and Dändliker, 1985), and Chapter 16 discusses its use with moiré and

fringe projection techniques (Indebetouw, 1978; Moore and Truax, 1979; Shagam,

1983; Bell et al., 1984). Optical profilers (Chapter 17) and distance measuring

interferometers (Chapter 18) are two other areas of instrumentation where phase-

shifting techniques have been applied with great success.

There are several areas where further improvements to this technology are needed.

A partial list includes systems that work in the deep ultraviolet with eximer lasers,

systems with improved compatibility with pulsed lasers, improved calibration pro-

cedures through ray-tracing the aberrations of the interferometer, the integration of

alignment fiducials into the analysis programs, and the testing of aspheric surfaces

and wavefronts.
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Even with the available technology, aspherics remain difficult to test. There exists

a need for a device that could be described as a walk-up aspheric interferometer. Such

a system would allow for the testing of an aspheric surface without the need for the

preparation of any special reference or null optics; this is the equivalent to the

situation that exists for spherical optics today. It remains to be seen if the extended

range techniques, such as sub-Nyquist interferometry, will provide a path for reach-

ing this goal. The development of this instrument will almost certainly be coupled

with the integration of optical design programs into the interferometer to provide for

on-line ray tracing and calibration.

There are some current trends in PSI systems that are certain to remain. The

continued influence of the improvements in solid state electronics on PSI will mean

larger detector arrays, detector arrays that are sensitive a greater range of wave-

lengths, and faster and more complete computation. The computer interface will

become more flexible and user friendly. The use of interferometers in conjunction

with optical design programs will also become important for optimization, alignment

and testing of systems. In manufacturing, the computer analysis of interferograms

permits the integration of statistical process control with the manufacturing process

to improve quality and yield. Interferometric testing will also be applied to a greater

variety of nonoptical parts.

It is clear that over the last 30 years, phase shifting interferometry has become

established as an integral part of optical testing. Its success can be measured by its

widespread use and the increasing number of applications to which it has been

applied.
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15

Surface Profilers, Multiple Wavelength,
and White Light Intereferometry

J. Schmit, K. Creath, and J. C. Wyant

15.1. INTRODUCTION TO SURFACE PROFILERS

Over the last 25 years driven by both the development of new technologies such as

fast computers and solid state devices and the necessity to precisely inspect these

increasingly tiny engineering surfaces, the field of surface metrology has exploded in

both its technological sophistication and its range of application. Advances in

illumination sources, such as lasers, and in solid state detectors and optoelectronic

devices in general have fueled the development of a wide range of instruments that

can not only map surface topography but also determine other features such as

displacement or dispersion. Innovative techniques and technologies have greatly

increased the range of measurable objects, so now even difficult surfaces with high

slopes or steps and narrow, deep trenches can be measured. Many of these surface

profiling techniques were developed from distance measuring or focus detection

techniques, and they often require scanning to obtain the surface profile. This chapter

describes instruments such as the stylus profiler, scanning probe microscope, con-

focal microscope and the interferometric optical profiler that are most often used to

determine surface topographies of not only very small, typically engineering

surfaces, but also smooth and large surfaces such as aspheres and glass plates.

The first part of this chapter describes scanning probe microscopes and stylus

profilers. Then optical methods are detailed with a specific focus on techniques

developed over the last 15 years that have found commercial and industrial applica-

tion. This section describes both interference microscopes that employ both mono-

chromatic and white light illumination and also confocal microscopes that have

recently been fairly used to measure engineering surfaces. The next part of this

chapter reviews work done in multiple wavelength interferometry, namely two and

multiple wavelength, wavelength scanning, and spectrally resolved white light

Optical Shop Testing, Third Edition Edited by Daniel Malacara
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interferometry. White light and multiple wavelength techniques are often applied to

other methods, such as speckles and holography as well as fringe and structured light

projection procedures. Finally, we provide a short overview of optical ranging

techniques and polarization interferometers.

15.1.1. Contact Profilometers

Stylus Profilers and Scanning Probe Microscopes. These instruments are often

described as contact profilers, or tactile sensors, because they use a probe to scan along

the surface of an object. Nowadays the forces applied to the tips of these probes are

now sominute that it is rather difficult to call them contact instruments anymore. These

instruments trade relatively slow measurement speed for excellent lateral resolution,

often below the optical resolution of optical microscopes. The stylus profiler, one of the

first to be developed, is both inexpensive to build and easy to use; for these reasons it is

a standard in many mechanical and optical shops. The scanning probe microscopewas

developed later but is now common in both labs and the semiconductor and micro-

electromechanical systems (MEMS) industries, because of its subnanometer vertical

and lateral resolution and its ability to measure many different material properties. The

profile of larger objects can be measured using a coordinate measuring machine

(CMM) that uses a larger probe and is able to work in scanning mode.

15.1.2. Optical Profilometers

Optical Focus Sensors. Instead of using a mechanical probe as contact profilers do,

a broad group of instruments called optical profilometers use an optical focus sensor

to obtain profile measurements. A few optical focus sensing techniques that have

been developed into commercial profilometers are detailed in this chapter.

Confocal Microscope. The most commercially successful of the optical focus sen-

sing systems is the confocal microscope, which was initially developed to examine

biological samples and more recently has found applications for testing engineering

surfaces. The confocalmicroscope is amodified conventionalmicroscopewith a single

point source and a pinhole placed in front of the detector to filter out spurious light so as

to obtain a more distinct irradiance signal at the focus position.

15.1.3. Interferometric Optical Profilometers

Two and Multiple Wavelength Interferometry. The first interferometric optical

profilometers used monochromatic illumination and phase shifting methods. Phase

shifting methods generated the highest measurement precision; however, monochro-

matic illumination limited the measurement range. In order to increase the range of

thesemeasurements, two andmultiple wavelength techniques were developed. Today,

the principles of two and multiple wavelength interferometry can be found in holo-

graphic and speckle techniques and are applied to the testing of large objects using a

fringe projection and structured light techniques (see Chapter 16).
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White Light Interferometry. White light interferometric systems have long estab-

lished themselves as the leading optical profilometers for measuring engineering

surfaces. White light interferometry can be thought of as an optical focus sensor

where the position of the interference signal determines best focus. Typically, these

setups consist of a conventional microscope outfitted with an interferometric objec-

tive. The advantage of interferometric systems over most other optical and stylus

profilers is their ability to scan the entire field rather than proceed by point to point

scanning. Because the whole area is imaged at the same time, lateral scanning

becomes unnecessary, which greatly speeds up the measurement process.

Spectral Interferometry. Another group of interferometers is based on the obser-

vation of interference fringes for a very large number of wavelengths called spectral

interference fringes. Spectral interference can be obtained by using a source with a

tunable wavelength or by placing a dispersive element at the exit of the interferom-

eter. These systems are called wavelength scanning interferometers and spectrally

resolved white light interferometers, respectively. Rather than detecting best focus at

each point, the fringe frequency which carries information about the object’s position

is measured. This method bypasses the need for mechanical axial scanning.

Optical Ranging Sensors. The techniques used in interferometric optical profilers

are often built on or independently developed from techniques found in interfero-

metric optical ranging sensors, which typically measure absolute distances or lengths

at a single point. For single point detection, much faster detectors and optoelectronics

as well as task-specific signal processing techniques can be employed.

Polarization Interferometers. Some interferometers utilize the polarization prop-

erties of light so as to have two beams traveling almost the same path in the

interferometer like in the differential interference microscope. Polarization inter-

ferometers that use polarization to shift the phase often can be made to be insensitive

to vibrations. The polarization properties of light are effective in evaluating some

properties of submicron structures.

15.1.4. Terms and Issues in Determining System Performance

All profilometers need to be carefully calibrated especially when measuring small

objects such as MEMS. Various aspects of system performance are checked against

artifacts that have a traceability certificate to some primary standard. The most

common artifact is a step; for example, a step artifact is used for vertical scale

calibration while a sample with an etched binary grating is often used for lateral

magnification calibration. Other artifacts like sinusoidal gratings or surfaces of

different roughness are also used to verify a system’s performance. Ideally all

measurements should be traceable to the same units. Standards institutes, such as

the National Institute of Standards and Technology (NIST), Physikalisch-Technische

Bundesanstalt (PTB) or National Research Council (NRC) in Canada, are continu-

ously developing artifacts and measured parameters so as to provide accurate

calibration and verification of systems. Artifacts become standards after they are

measured using traceable stylus profilometers.
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Manufacturers often give, and customers require, as a parameter of system

performance the value the vertical resolution; however, rarely is the information

provided as to how the manufacturer measured and calculated the parameter and on

which artifact. Without knowing how the value of a particular parameter is

determined, comparing these values across different manufacturers or systems is

worthless.

Along with determining system performance, the other two really important

issues in measurement are repeatability and reproducibility. In general repeatability

is defined as one sigma standard deviation of a parameter of an object measured

multiple times over a short period of time and without any changes in the system.

Reproducibility refers to the distribution of multiple measurements over a longer

period of time and under different measurement conditions. Specifications for a

system are typically presented in terms of the repeatability and reproducibility of

certain parameters of a measured object. It is important that the measurement

procedure and reported specification values are well defined and agreed upon by

user and manufacturer.

Two terms that are often misunderstood in surface metrology are accuracy

and precision. Accuracy determines how close the measured value is to the true

value (for example, the value of the certified artifact), and precision refers to the

distribution of the measurement and can be expressed in terms of repeatability or

reproducibility.

15.2. CONTACT PROFILOMETERS

The two main contact profilometers are the stylus profiler and scanning probe micro-

scope, and they use a tactile probe to measure the surface profile. Their measurements

differ in lateral and vertical ranges and their resolution, and thus they find different

applications. The scanning probe microscope, in addition, measures sample-tip inter-

action, which allows for the measurement of materials different properties.

15.2.1. Stylus Profilers

Stylus profilers move a small-tipped probe across the surface and sense height

variations of the tip to determine the surface height profile. Stylus profilers can

measure surfaces up to about one millimeter in height. These profilers work very

much like a phonograph; usually the surface is moved under the stylus tip, but the

stylus may also be moved over the surface. The vertical motion of the stylus is

typically detected by a linear variable differential transformer (LVDT) and this signal

is converted to height data. The styli are made of a hard material such as diamond

with a tip radius of curvature between 0.05 and 50 mm, which determines the

instruments’ lateral resolution. To ensure that the test surface is not damaged during

measurement, the load of the stylus tip on the surface is variable from 0.1 mg up to

50 mg. A minimum load that keeps the stylus on the surface is chosen so that the

surface is not deformed as the stylus moves across it. A schematic of a stylus profiler
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with LVDT as the motion detector is shown in Figure 15.1. Other schemes of tip

guidance and its motion detection are possible (Whitehouse, 1997).

The stylus tip shown in Figure 15.2 has a 45� cone angle, but many other shapes

and angles are possible. Both the shape and the angle determine the penetration

depth of the tip on the test surface. The output of these profilers is the convolution of

the size and shape of the stylus tip with the surface profile. Choosing the

configuration of the tip is extremely important to ensure penetration to the bottom

of steep trenches and prevent rounding off of high surface peaks. Figure 15.3

shows the effect of a stylus tip on the measurement of trenches with various aspect

ratios.

However, while a tip radius that is smaller and sharper allows the stylus to follow

the shape of the surface more easily, if the tip is too sharp, the local force on the

surface over the tip area may be so great that the surface becomes locally deformed.

If the surface elastically deforms, the sample will not be damaged but the surface

profile may be inaccurate. If the surface plastically deforms, the sample may be

permanently damaged and the surface profile will be inaccurate. New, low force

technology (less than a milligram tip loading) allows for the measurement of soft

materials such as a photoresist. In addition, when a small-radius stylus is used, the

scan speed must be greatly reduced, and similarly the stylus load must be reduced to

ensure a precise measurement. The most accurate stylus profilers have tip radii of

tenths of a micrometer or less and tip loadings of milligrams or less. These profilers

also may require enclosures and vibration isolation systems, and completing a scan

of a few thousand data points can take many minutes.

The lateral resolution of stylus profilers is determined by the radius of the stylus

tip as well as the surface shape and the sampling interval between data points. For a

stylus with a spherical tip measuring a sinusoidal surface profile, the shortest

FIGURE 15.1. Schematic of stylus profiler with LVDT as the motion detector. Courtesy Veeco

Instruments.
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measurable wavelength (period) d of the sinusoid depends not only on the stylus

radius r but also on the amplitude of the sinusoid a (Bennett and Dancy, 1981). The

equation describing the shortest measurable period d is

d ¼ 2p
ffiffiffiffiffiffi
a r

p
ð15:1Þ

Because two samples per sinusoidal period are required to reconstruct a sinusoid, the

lateral resolution will be d/2. This means that for a stylus of 10 mm radius measuring

1 nm surface height variations, the lateral resolution is approximately 0.6 mm. To

ensure sufficient resolution, it is best to oversample and measure at least four samples

FIGURE 15.2. A stylus tip with a 0.2 mm radius and a 45� cone angle maps the surface of a roughness

comparator strip. The camera attached to the stylus profiler observes the position of the tipwith respect to the

object. Courtesy Veeco Instruments.

FIGURE 15.3. The convolution of a 25 mm radius stylus tip with a surface profile.
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per lateral resolution element (Bennett and Mattson, 1989). Lateral resolution and

transfer functions for more complex surface features can also be determined (Al-

Jumaily et al., 1987; Bennett and Dancy, 1981). The profile (and radius) of the stylus

tip can be determined by viewing the tip with a scanning-electron microscope (SEM)

or by scanning it over the edge of a razor blade (Vorburger and Raja, 1990). The

smallest stylus tips available on the market have a radius of about 50 nm, they are

often etched with a focused ion beam (see Fig. 15.4). These small tips significantly

improve the lateral resolution of the profiler.

The cone angle of the stylus tip also determines the measured aspect ratio of the

trenches, which typically is 1:1 for a common 60� cone angle. With the necessity of

measuring structures with high aspect ratios such as MEMS, sharp styli have been

developed to measure trenches with aspect ratios as high as 10:1. Custom tip

geometries, that is ‘‘chisel-types,’’ can also be fabricated with today’s technology

to measure challenging samples, like solder bumps in integrated circuit packages.

Most stylus profilers have reference datums of some type to ensure measurement

accuracy (Vorburger and Raja, 1990). The reference surface can be a skid, that is,

moved across the surface with the stylus, or can be a separate reference surface so

that another large-radius probe is moved across in a fixed relationship to the measur-

ing stylus. References can also be created using flexures (Vorburger and Raja, 1990).

Using a large radius skid near the stylus is the easiest way to generate a reference, but

this technique can cause errors and will remove shape and figure information. A

separate reference is most accurate but can limit the length of the scan and the mea-

surable height variation. Optical flats with flatness l/20 provide a very stable reference.

FIGURE 15.4. Scanning electron micrograph of 50 nm radius stylus tip. Courtesy Veeco Instruments.
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Stylus profilers are normally calibrated using traceable height and roughness

standards; these standards can be purchased from VSLI Standard Incorporated or

PTB (Physikalisch-Technische Bundesanstalt, Germany). The most common stan-

dards are step of chrome on fused glass or etched in silicon. The step is measured

periodically with the profiler to ensure calibration and a scaling factor is calculated

to apply to the profile data. Some stylus profilers are not linear over their entire

height range; it is important to calibrate the instrument with a step height which is

close in height to the test samples being measured. When surface roughness is

being determined, it is better to use a roughness standard than a step height standard

because both lateral resolution and surface height variation need to be considered.

These standards are available in a number of different types. The most common

have a sinusoidal height variation with a given amplitude and a number of different

spatial wavelengths. Roughness standards are also available as square-wave grat-

ings. Because the stylus may not get down into the valleys and can round off peaks,

the sinusoidal standards give a more accurate indication of instrument performance

at a single spatial frequency.

Stylus profilers are capable of measuring surface roughness with a root-mean-

square (RMS) as small as 0.5 Å with lateral resolutions of 0.1 to 0.2 mm. The

instrument noise measured at a single point without scanning the surface can be as

small as 0.5 Å RMS. Stylus profilers are capable of measuring 100 nm step height

with repeatability of 6 Å and 60 mm step height with 7 nm repeatability. Since the

stylus profiler is a contact instrument, in order to measure film thickness, the step of

the film to substrate is needed.

The stylus profiler has a wide range of applications in general metrology and the

semiconductor industry due to its high lateral and vertical range. Stylus profilers are

often used when profiles of long surfaces up to 200 mm in length are needed. Profiles

of this type are typically obtained in single scans and then stitched together. Multiple

scans at low force reduce the possibility of damaging the sample. Other typical

applications include a scratch test for measuring the thickness and hardness of a

protective coating, wafer planarity, and etch depth rate uniformity across a wafer,

testing the stress that thin films induce on a wafer, RGB color filters on flat panel

displays, and flip-chip bumps, and monitoring wet etching of MEMS. Figure 15.5

shows the results of a few applications of stylus profiler measurements. Some

profilometers are designed specifically to measure aspheric surfaces and their rough-

ness. These systems can measure aspheres up to 12 mm in width, 38 mm in height

and over 200 mm in length. A review of recent advances in aspherics measurements

using stylus profiles was done by Scott (Scott, 2002).

An overview of surface metrology including the stylus profiler, surface character-

ization and a review of optical methods can be found in a number of sources (Stout

and Blunt, 1994; Thomas, 1999; Lehmann, 2003; Whitehouse, 1997, 2003).

15.2.2. Scanning Probe Microscopes

Scanning probe microscopes (SPMs), which are capable of obtaining atomic scale

resolution, work by moving a fine tip in close proximity to a test surface. They
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FIGURE 15.5. A few examples of stylus profile measurements: (a) Cu line connect 24 mm� 45 mm

(b) automotive sensor, scan 40 mm� 15 mm, (c) polyester mesh, scan 14 mm� 14 mm (d) binary optics,

scan 240 mm� 210 mm. (a–b) courtesy KLA-Tencor, (c–d) courtesy Veeco Instruments.
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usually scan within a few angstroms of the surface, but the tip can also be in direct

contact under forces smaller than a nano-Newton. The first microscope of this type

was a scanning tunneling microscope (STM) built by Binnig and Rohrer (Binnig and

Rohrer, 1982, 1985) who won the 1986 Nobel Prize in physics for their work in this

field. The most popular SPM is the atomic force microscopes (AFM), also known as

the scanning force microscopes (SFM).

Numerous modes of operation are possible on the AFM, including magnetic force

microscopy (MFM) and electric force microscopy (EFM). The field of scanning

probe microscopy is changing rapidly and new probe types are constantly being

introduced for a wide variety of applications. With so many different probe types, it is

possible to find one that is appropriate for almost any surface to be tested, from

integrated circuits to biological objects. Reviews of SPMs have been written by

Hansma and Tersoff (1987); Ruger and Hansma (1990), Sarid (1991), Wickrama-

singhe (1989) and more recently by Bhushan et al. (2004), Bonnell (2001), Cohen

and Lightbody (1999), Magnov (1996). This section will concentrate on two types of

SPMs: STM and AFM.

Scanning Tunneling Microscopes. In the STM, a metal tip is moved toward the

electrically conducting or semi-conducting test surface until a tunneling current

FIGURE 15.5. (Continued)
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between the tip and test surface is detected. In order to sense tunneling current,

voltage must be applied between the probe tip and the test surface. For atomic

resolution, the end of the tip has only one atom interacting with the test surface. This

tunneling current can only be sensed when the probe is less than 1 nm away from the

surface. As the probe is moved closer to the surface, the tunneling current increases

exponentially. A change of 0.1 nm causes the current to change by factor of 10 giving

STM atomic scale measurement sensitivity. The probe is usually scanned a few

angstroms above the surface in a raster fashion using piezo-electric transducers

(PZTs). The necessity for a conducting test surface limits the application of the

STM, and image resolution is highly dependent on the tip geometry (van Loenen

et al., 1990).

Figure 15.6 is a schematic of an STM, consisting of a fine probe tip mounted on

x; y; z PZT translators. The STM can operate in either constant-current or constant-

height mode. The constant-current mode uses a feedback loop to vary the height of

either the probe or the sample during the scan and keep the tunneling current at a

constant value. Constant-height mode measures the tunneling current as a function of

position while the tip (or the sample) is kept at a constant height. Because larger

height variations can be measured, constant-current mode is most often used.

Constant-height mode is faster, but the tip can easily crash into the surface if the

surface is rough. Crashing not only ruins the tip, but can also harm the test surface.

STMs were originally developed for atomic-resolution applications in a vacuum

(Binnig and Rohrer 1982); now they are being used in air and can scan areas larger

than 100 mm. Scan range is determined by the PZT; the tradeoff is between range and

resolution with longer-range PZTs generally having less resolution. Just as optical

microscopes employ various magnifications for measuring with different lateral

resolutions and over different sized fields of view, STMs use scan heads with a

variety of probe sizes (see Fig. 15.7) and scan ranges in order to change lateral and

vertical resolution and scan range. The larger STM scan ranges overlap the measure-

ment span of high-magnification optical profilers and high-resolution stylus profilers.

Because STMs require conducting surfaces to produce a tunneling current, surfaces

FIGURE 15.6. Schematic of a scanning tunneling microscope (STM), which is able to measure

topographies of conductive surfaces with sub-atomic lateral and vertical resolution.
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such as glass cannot be measured. Even with these limitations, STMs have been used

to evaluate optical surfaces (Dragoset et al., 1986; Dragoset and Vorburger, 1987;

Schneir et al. 1989). Figure 15.8 shows a shaded solid plot of a molecular pattern of a

monolayer of liquid crystal film on a conductive graphite-solution interface mea-

sured using an STM. The overview of STM’s theory, related scanning probe

techniques and application were described by Güntherodt and Wiesendanger

(1994), Wiesendanger and Güntherodt, (1995, 1996).

Atomic Force Microscopes. The atomic force microscope (AFM) is an extension

of the STM (Binnig et al., 1986). In addition to conductive surfaces, the AFM is able

to map nonconductive samples by using the force of the tip–surface interaction as the

FIGURE 15.7. STM tips can be produced from (a) tungsten wire by computer controlled etching, or

(b) tungstenor platinum/iridiumwire bymechanical cutting.The latter is recommended for atomic imaging.

Courtesy Veeco Instruments.
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control parameter rather than the tunneling current. Two types of atomic forces can

be used for AFMs, a repulsive force and an attractive force; these forces correspond

to two basic AFMmodes of operation called contact and noncontact modes as shown

in Figure 15.9.

In repulsive force mode, the probe acts like a phonograph needle as it is moved

essentially in contact with the surface. The tip is typically less than 10 mm long with a

FIGURE 15.8. STM image of a monolayer of liquid crystal with graphite-solution interface.

36 nm� 36 nm scan. Courtesy Veeco Instruments.

FIGURE 15.9. Force-and-mode type of operation versus tip-to-sample separation.
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2–10 nm end radius. The tip is located at the free end of a cantilever (made usually of

very flexible material like silicon or silicon nitride) that is typically 100–500 mm long

and 2–10 mm thick. A silicon type cantilever and its tip are shown in Figure 15.10.

Forces between the tip and the sample surface cause the cantilever to bend (cantilever

deflection) as the AFM scans the sample surface. The deflection of the cantilever is

measured to determine surface topography. Often, the cantilever is so flexible that the

tip-sample contact force is smaller than the force that holds the atoms of many solids

together.

Deflection can be measured in a number of ways. Alexander (Alexander et al.,

1989) developed a readout system that looks at the deflection of a laser beam

FIGURE 15.10. Scanning electron microscope images of (a) a silicon cantilever and tip and (b) tip only

used in AFMs. Courtesy Veeco Instruments.
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reflected off a mirror mounted on the cantilever. Deflection measurement is based on

the optical triangulation principle. Another readout technique, developed by Sarid

(Sarid et al., 1988), uses feedback into a diode laser from the reflection off the back of

the cantilever; this cantilever, however, can also bemade from piezoresistivematerial

so that its deflection can be measured electrically. Figure 15.11 shows both optical

types of readout and Figure 15.12 shows an AFM measurement of the topography of

a patterned Si/SiN and metallic glass using laser deflection readout.

Attractive force AFM, also known as non-contact mode, will not damage a sample

because it never touches the surface. Because the attractive force is very small, the tip

is oscillated at a high frequency, and what is detected is the change in the amplitude

and phase of the vibration due to losses or gains in kinetic energy during tip–sample

interaction.

Avery effective AFM intermittent contact mode called TappingMode (Zhong et al.,

1993; Cleveland et al., 1998) has become the most common AFM approach. This

patented technique (Virgil and Gurley, 2000) maps topography by lightly tapping the

surface with a probe, which is oscillating at a frequency close to the cantilever’s

resonance frequency. Figure 15.13 shows a schematic of TappingMode. The amplitude

of the tip oscillation reaches up to a few tens of nm. This large amplitude of oscillations

ensures that the tip does not get stuck in the liquid layer at the surface of the test object,

which can happen in noncontact AFM. TappingMode overcomes some of the limita-

tions of both contact and noncontact AFM by eliminating lateral shear forces that can

damage soft samples and reduce image resolution. Figure 15.14 shows the measure-

ment of a strand of DNA using TappingMode. TappingMode also allows for the

measurement of surfaces with height variations up to several micrometers.

FIGURE 15.11. Schematic of AFM cantilever’s tip position readout. (a) Optical lever readout, (b) diode

laser readout.
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AFM can characterize not only the topography of a sample but also many other

sample properties by applying varying motions and signals that drive the probe. For

example, variations in material composition, adhesion, friction, viscoelasticity, and

electric and magnetic material properties can be determined. Figures 15.15 and 15.16

show the measurement of the surface topographies and the electrical and magnetic

properties of samples.

The AFM is also capable of determining changes in the properties of a sample

surface by mapping the phase lag between the periodic signal that drives the tip and

the oscillations of the tip. A recently developed technique called Torsion Resonance

Mode (TRmodeTM) (Su et al. 2003) measures and controls dynamic lateral forces

between the probe tip and sample surface. Characterization of torsion oscillations of

the cantilever TRmode allows for nanoscale examination of in-plane anisotropy of a

sample. A review of different AFMmodes and applications of AFM to measurement

FIGURE 15.12. AFM image obtained in contact mode of a pattern of 80 nm tall features in a Si/SiN

substrate produced by ion irradiation through a stencil mask. The features are 1micrometer in diameter and

1 micrometer apart, 10 mm� 10 mm scan. Courtesy Veeco Instruments.

FIGURE15.13. Schematic of signal detection inAFMTappingMode.The probe is kept at a constant level

above the sample, which results in a constant amplitude signal. Changes in the amplitude of the signal

indicate that the distance between the cantilever and object needs to be changed.
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of microsystems like MEMS was done by Serry and Schmit (Serry and Schmit,

2007).

A number of authors have discussed the uses of the AFM in biological and

medical science (Morris et al., 1999; Jena et al., 2002; Braga and Ricci, 2004).

The AFM provides important ways for looking at biological samples such as

allowing for structural analysis of cells and their functionality. Example of cell

measurement is shown in Figure 15.17.

15.2.3. Comparison of AFM and Stylus Profiler

Both the stylus profiler and the later-developed AFM scan across the surface in direct

contact with the object at low force. Recent developments in nanotechnology and

electronics have pushed the development of the AFM; it is no longer simply a surface

FIGURE 15.14. AFMTappingMode provides a clear and reproducible resolution of lambda phage DNA

on mica. This is a 1 mm scan. Courtesy Veeco Instruments.

FIGURE 15.15. Surface topography (left) and electrical (right) properties of a DVD-RW. The electrical

properties produced using the electron force microscope capabilities of the AFM show amorphous bits

formedwith the phase change on the crystalline area. Scan area 5 mm� 5 mm. CourtesyVeeco Instruments.

15.2. CONTACT PROFILOMETERS 683



topography instrument, for now it canmeasure a wide range of surface characteristics.

The stylus profiler and AFM have complementary capabilities for three-dimensional

surfacemetrology and in fact are sometimesmerged together on one platform to fulfill

specific industrial needs such as the measurement of semiconductor wafers. Topo-

graphies obtained with these instruments are not sensitive to the optical properties of

the measured surfaces, and both instruments are well suited for measuring samples

made of different materials and films. Their basic characteristics, as compared to the

optical profilers described later in this chapter, are collected in Table 15.1. The table

FIGURE 15.16. Bits on a magneto-optical disk. The left image shows surface topography with tracks

delineated by grooves. The magnetic force gradient map (right) shows bit edge roughness as well as virgin

domain structure in the grooves with features as small as 50 nm. Scan area 5 mm� 5 mm. Courtesy Veeco

Instruments.

FIGURE 15.17. AFM image of a retinoic acid-induced differentiation of human SH-SY5Y neuroblas-

toma cells (Dendrites). 100 mm scan. Courtesy Veeco Instruments.
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represents typical values at the time of publication. Figure 15.18 shows typical

measurement ranges for three types of profilometers.

The broad field of microscopy, including optical, electron and scanning probe

microscopy, is reviewed by Hellmuth (2003). A comparison of stylus profiler and

AFM measurements on optical surfaces can be found in Bennett et al. (1991).

15.3. OPTICAL PROFILERS

Rather than using a mechanical probe to map surface topography, an optical probe

that does not contact the test surface may be used. Optical probes determine shape by

sensing the best focus position on a test object. Optical profilers generate measure-

ments by sensing focus at a single point on the surface and adjusting the height of the

focusing lens until focus is achieved. Alternately, the signal may be collected during

a scan through focus and then analyzed. The amount the lens is moved indicates the

surface height at that data point. Either the optical head or the surface is scanned to

generate a two- or three-dimensional height-profile map of the test surface. Special

hardware is needed to sense the focus. A different group of methods for finding a

surface profile that use a conventional microscope or a stereomicroscope is based

purely on image processing of the collected images as the object is scanned through

focus so as to find the best focus at each point.

The signal collected in optical profilers is often incorrectly called intensity; Palmer

(Palmer, 1993) provides a clear discussion of the terms intensity versus irradiance.

Intensity describes radiation emanating from source (watts/steradian) while irradi-

ance describes signal collected by detector and is expressed in watts/area. Wewill use

the term irradiance to describe the radiometric quantity detected by the detector.

FIGURE 15.18. Plot of measurement ranges for SPM, stylus, and white light interference profilers.
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TABLE 15.1. The main characteristic parameters of a scanning probe microscope,

stylus profiler, white light interferometric optical profilometers, and confocal

microscope.

Atomic force/

scanning White light

tunneling Stylus interferometric Confocal

microscope profiler optical profiler microscope

X,Y

resolution

2–10 nm

AFM

0.1 nm

STM

50 nm

(stylus

radius

dependent)

0.5 mm (NA

objective

dependent)

0.5 mm (NA

objective

and lateral

sampling

dependent)

Z resolution 0.1 nm AFM

0.01 nm

STM

0.25 nm 0.3 nm 1–20 nm

(Dependent

on objective

magnification)

Field of

view

Typically

up to

120�
120 mm

Up to

200 mm

100� 100 mm

to 10� 10 mm

but can be

extended by

stitching

100� 100 mm

to 10� 10 mm

but can be

extended

by increased

lateral

sampling

lens array

objective

Measurable

height

range

Up to 20 mm 1mm 8mm (or limited

by working

distance of

objective)

Limited by

working

distance of

objective

Sample

preparation

Little or

none

None None None

Contact

technique

Optional Yes No No

Special

surface

requirements

STM - only

conductive

surfaces

Surface

damage

possible

due to

high forces

Needs correction

for dissimilar

materials and

film coatings

Needs correction

for dissimilar

materials

and film

coatings

Scanning Point by

point

Point by

point

Full field

of view

Point by

point

Full field

dynamic

motion

of sample

measurement

No No Yes No

(Continued)
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15.3.1. Optical Focus Sensors

A simple method of determining focus has been implemented in profiling instru-

ments developed by Brodman and Smilga (1987) and Breitmeier and Ahlers (1987).

Illumination from a laser source is focused on the test surface, and the return is split at

the optical axis into two parts using a prism. Each half of the beam is incident upon a

split detector and the difference signal from each split detector is monitored. When

the focusing lens is too high, the return beam focuses in front of the split detectors

and causes a larger signal on the inner detectors; when the lens is too low, the larger

signal is on the outer detectors. The sign of the difference in signal will determine

which side of focus the test surface is on, and is used to generate a focus error signal

which moves the focusing lens to the correct position. When the focusing lens is in

the correct position, both the inner and outer detectors have equal signal and the

difference signal is zero. Two sets of split detectors are used to account for variations

in tilt of the test surface. A sensor of this type is shown schematically in Figure 15.19

(Brodman and Smilga 1987). Because the focus must be adjusted to null the signal at

every sampled surface point, this type of profiler can take a few minutes to generate a

three-dimensional surface profiler.

The lateral resolution of optical focus sensors is limited by the size of the focus

spot at the test surface, usually 1.0 to 1.5 mm in diameter. The measured surface

height at a given sample point will be the average height of the surface over the spot

size. This means that the smallest measurable features are about 2 mm. The measure-

ment area will depend upon the sampling interval and number of data points. Another

TABLE 15.1. (Continued )

Atomic force/

scanning White light

tunneling Stylus interferometric Confocal

microscope profiler optical profiler microscope

Through

the glass

measurement

Not

possible

Not

possible

Possible Possible

Film

thickness

Only if film

has a step

Only if film

has a step

Minimum

0.1 mm

Minimum

1 mm

Measurable

optical

properties

of surface

or film

Indirectly,

through

correlation

with topography

for example

no yes yes

Other

measurable

material

properties

Numerous:

adhesive,

electric,

magnetic,

visco-elastic,

elastic, . . .

no no no
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limitation of this type of profiler is that the light reflected from the test surface must

get back into the sensor. If there are steep slopes on the surface, the light may get

scattered out of the instrument and the signal will be lost, causing inaccurate results

when only the difference signal is monitored. The height resolution of this type of

profiler is related to the focusing range and the time to obtain each point. If a large

height range is being measured, the movement of the focusing lens needs to be

coarser to keep the time per data point the same. Otherwise, finer focusing over larger

height ranges will slow the measurement time considerably. Calibration of optical

focus sensors is similar to that of stylus and SPM profilers. A traceable standard of

approximately the same height or roughness as the test surface is measured and a

scale factor is determined to apply to the surface profile data.

Optical focusing techniques have been implemented in many fields, from high

density storage applications to surveillance camera systems. Different optical setups

can also be used to measure the focus position. Astigmatic lenses (Cohen et al., 1984)

and twin micro-Fresnel lenses (Shiono and Setsune, 1989) are two examples. Some

profilometric techniques are based on focusing mechanisms developed for other

applications like a CD player (Zhang and Cai, 1997; Bartoli et al., 2001). Two most

common optical profilers based on a focusing principle are the confocal microscope

and the white light interferometer. These will be described in Sections 15.3.2 and

15.5.

Conventional and stereoscopic microscopes without any special hardware can

also map surface topographies after doing post-processing of the collected images,

not single points, as the microscope scans through focus. Two of these methods are

digital deconvolution and stereoscopic imaging.

Digital Deconvolution of Conventional Images. Images registered using a con-

ventional microscope as it scans through focus are deconvolved using a theoretical or

FIGURE 15.19. Schematics of a profilometer with an optical focus sensor.
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measured point spread function or through blind deconvolution. This method is used

in medicine for reconstruction of 3D images from CTandMRI scans. Other methods

are based on the measurement of local sharpness of the image (Nahm et al., 1998).

These methods work best for objects with distinct lateral features, but these methods

have difficulty resolving objects with smooth surfaces that have no lateral features.

Stereoscopic Imaging. Images registered using a stereoscopic microscope are ana-

lyzed by identifying the same features in both images and measuring the distance

between features. Knowing the angles through which the two stereoscopic images are

observed allows for the determination of the relative axial distances between different

features on the object. Like deconvolution, this method works best for objects with

distinct lateral features, but does not workwell for objects with smooth surfaces or with

periodic structures. Stereoscopic imaging can be used to image both large and small

objects as long as the images are obtained from two different perspectives.

15.3.2. Confocal Microscopy

Like many interferometric methods confocal microscopy really took off with the

development of image processing software and affordable, powerful lasers and com-

puters. Back in 1961, Minsky patented modifications to a biological microscope that

reduced the stray light in the system in order to improve the obtained image; however,

only in the mid 1980s did the development of confocal microscopes to obtain non-

invasive, three-dimensional data from biological specimens occur. Since this time,

confocal systemshavebeenan importantmeasurement tool in thefieldsof cell biology,

physiology, cytogenics and developmental biology (Pawley, 1995; Gu, 1996) and

ophtalmology. The introduction of two-photon microscopy (Diaspro, 2002) in the

late 1990s offered reduced photodamage and increased tissue penetration for better

imaging. In recent years confocalmicroscopeshavebeenadapted for themeasurement

of microsystems and material applications (Aguilar and Mendez, 1995; Schneider

et al., 1997; Smith et al., 2000; Tiziani et al., 2000).

Confocalmicroscopysets itselfapart fromstandardlightmicroscopythroughtheuse

of confocal (pinhole) apertures that ensure only light at the point of focus on the test

surface enters the detector. This elimination of out-of-focus and stray light and the

resulting high resolution and high signal-to-noise images are the main advantages that

recommendconfocalmicroscopy.Theclassicsetupofaconfocalmicroscopeplacestwo

small apertures in planes conjugate to the focal planeof the objective, one in front of the

illuminating source and the other in front of the detector as shown in Figure 15.20.

In some systems, a spatially coherent light source, namely a laser, eliminates the

need for a pinhole at the illumination source; however, in these systems speckle may

become a problem. Because confocal microscopy is in principle a single point method,

synchronized lateral scanning of the illumination and detection points is required.

Image Build Up. Point-by-point scanning of the illuminating and detecting pin-

holes typically in X-Y raster fashion results in a 2D irradiance image (single optical

section) of a sample at a given focus plane. To build up a 3D irradiance image
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(multiple optical sections along the Z direction) either the sample or the objective

lens or detector is scanned vertically such that each point on the sample surface

passes through the focal plane of the microscope.

For each point on the sample passing through the focal plane of the microscope the

collected irradiance (confocal) signal, which is also called the axial point spread

function (PSF), falls off as the distance from focal plane increases. The width of this

axial point spread function for a point object for aberration-free objectives with

NA < 0:5 can be described by the simplified expression (Corle et al., 1986; Kino

et al., 1988; Ho and Shao, 1991; Corle and Kino, 1996)

FWHM ¼ 0:9l

NA2
ð15:2Þ

The width of the axial PSF depends on the numerical aperture (NA) of the objective

and the wavelength. In reality the width of the axial response also depends on the tilt

of the object and its shape, namely whether the object is a point or plane-like. Thewidth

of the spatial filter and the size of the detector also influence the axial response.

Sheppard (Sheppard, 2003) provides a review of many issues in imaging confocal

systems.

The signal collected at a single point on the object during a vertical scan is

evaluated for maximum irradiance; maximum irradiance corresponds to the imaged

point being in focus. In this way a confocal system for surface profiling works like a

focal point detection system scanned over the test surface. The position of the axial

point spread function can be more consistently determined if, for example, the center

of gravity of the signal or the position of the polynomial fitted to the signal is

determined instead of simply the position of maximum irradiance. The width of axial

point spread function and the sampling rate also influence the consistency in

determining the signal position and thus the vertical resolution. Better vertical

FIGURE15.20. Depth discrimination in reflective confocal microscopy by eliminating out of focus light

via confocal (pinholes) apertures.
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resolution is achieved when the axial signal is narrower; because of this the best

vertical resolution depends on NA and thus magnification of the objective. Vertical

resolution for surface profiling is often defined as RMS (root mean square) of the

difference measurement. The vertical resolution also determines the minimum step

height that can be measured on a sample. For smooth surfaces the vertical resolution

can be on the order of a few nm, but only for the highest magnification objectives. For

lower magnification objectives the vertical resolution can be around 10–15 nm to

microns. This vertical resolution often is called method’s sensitivity.

Confocal microscopy is often used to measure the thickness of transparent layers

in the process called optical slicing. Light penetrates the object, is reflected from the

interfaces of the layers, and creates additional axial responses. Optical sectioning of

confocal systems is commonly used to measure, for example, cells in biological

applications and transparent coatings in the semiconductor industry. In cases like

these, a different definition of vertical resolution is used, a definition that applies to

the measurable optical thickness (Sheppard and Gu, 1992; Sheppard et al., 1994).

This definition of axial vertical resolution is based on the vertical two-point resolu-

tion of the signal where the width of the axial signal determines the resolution, in this

case the minimal measurable optical thickness. The vertical resolution of optical

slicing can reach down to 1.5 mm for high NA objectives and is much larger than the

vertical resolution related to the measurable step height. Figure 15.21 shows example

of axial responses for transparent layer.

Much research has gone into improving vertical resolution mainly through the

application of annular filters in the pupil (Sheppard and Gu, 1991; Martinez-Corral

et al., 1995) to narrow the width of PSF in both directions as registered by a finite size

detector. In order to enhance optical-sectioning capacity, some methods apply

symmetrical defocusing of the point source and point (Sheppard and Hamilton,

1984; Ho and Shao, 1991; Kimura and Wilson, 1993). Axial appodization was

FIGURE15.21. Schematic of axial response for transparent films in a confocal microscope. The position

of the peak corresponding to the interface depends on the index of refractionof thematerial and appears to be

at a shallower depth than the position of the interface, which reduces the capabilities of measuring thinner

films. Thewidth of the axial response depends on spherical and axial aberrations introduced by the film. The

amplitude of the peaks depends on the ratio of the indices of refraction at the interfaces and thickness and

dispersion of film.
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proposed so as to improve vertical resolution by the application of destructive-

interference apodizers, which provide an axial response with zero irradiance at

the focal point (Martinez-Corral et al., 1998). Some have suggested using a

phase conjugate mirror to improve vertical resolution (Uhlendorf et al., 1999).

However, the one, practical solution for increased resolution still has yet to be

developed.

Confocal System Modifications. Over the years a number of methods have been

worked out to improve the speed of data acquisition; most employ variations on the

confocal aperture. In 1967, Egger and Petran (and later, Petran et al., 1968; Xiao et

al., 1988) introduced simultaneous illumination of the sample by many spots of light

using an array of pinholes on a rotating disk. This Nipkow disk, invented by Paul

Nipkow in 1884, produces images by rotating a disk with multiple pinhole apertures

in front of the extended source. A second disk with a matching array of pinholes is

placed in front of the detector; however, this method has a significant downside in

that it reduces the amount of light at each sample point.

In 1996, Ichihara et al. showed that the amount of light in the system can be increased

by up to 10 times placing by a disk with microlenses in front of the pinholes at the disk

that is used at the illuminating beam. Pinholes may have different patterns and there

may be even up to 20,000 pinholes on the disk with about 1000 of them illuminating the

test object at a time. Speed measurements up to one frame/ms may be achieved using

this method (Tanaami et al., 2002). Tiziani et al. (2000) suggested a simpler system

where pinholes in the Nipkow disk are replaced by the microlenses itself, although this

system has a lower lateral resolution. Such system is shown in Figure 15.22.

FIGURE 15.22. Confocal microscope with microlens array on Nipkow disk.
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Some systems use a scanning slit (Wilson, 1990) instead of a pinhole. A slit

aperture represents an alternate geometry to the array of pinholes. In the slit-scan

system, multiple detectors are required along the length of the slit, and lateral

scanning is necessary only in the direction perpendicular to the slit, which increases

the speed of image acquisition (Neil et al., 1997). However, with slit scanning, the

width of axial responses is wider than for single point scanning systems, and the

vertical resolution is reduced for the given numerical aperture objective.

Yet another method to speed up measurement time is to simultaneously project an

equally spaced multiple slit or grid pattern. For these kinds of projected patterns,

however, the width of the axial signal with defocus will depend not only on the NA of

the objective but also on the spatial frequency of imaged pattern. The fundamental

difficulty with this method is the residual unwanted grid pattern in the image. The

grid pattern can be removed if the projected pattern is moved in a simple saw-tooth

fashion synchronized to the camera frame rate such that any three successive camera

images corresponded to a spatial shift of one third of a period in the position of the

projected image of the grid. The grid pattern image, because of its periodicity, can be

processed also in the Fourier domain.

In the first systems that projected a grid pattern, this pattern was imprinted on a

glass plate and laterally shifted by a PZT shifter. Nowadays, the illumination beam

can be reflected off a digital micromirror array (DMD made by Texas Instruments)

that configures the grid pattern (Hanley et al., 2000), or a polarized illumination beam

can be reflected off of a ferroelectric liquid crystal (FLC) (Smith et al., 2000) that

configures the pattern (slits or single points) projected onto the sample surface. Each

system setup has to match the microdisplay lines and the rows of the CCD pixels. The

lateral scanning of the pattern is done by displaying a series of patterns on a micro-

display without the use of a PZT.

If good vertical resolution is a requirement from the confocal profilometer, a high

numerical objective needs to be used. The downside of the high NA objective is its

small field size. Tiziani and Uhde (1994b) proposed the use of a microlens array in

place of the objective as shown in Figure 15.23. This array would allow for the

measurement of larger fields; the fields would be determined by the size of the array

while each individual microlens would still maintain a high NA. The focal lengths of

the individual lenses could be adjusted to the shape of the object in order to decrease

the scanning range and further speed up the measurement (Tiziani et al., 2000). The

system with microlenses in place of the objectives is a bit different than the typical

confocal microscope because the light reflected from each object point while being in

the focal plane of that microlens is focused by the lens onto a pinhole, which plays the

role of a spatial filter. The pupils of the microlenses are imaged onto the camera

rather than the image point as in typical confocal setups. For this system a vertical

resolution of 50 nm was achieved for an objective with an NA ¼ 0:3.

Chromatic Confocal Microscopy. The chromatic confocal microscope was devel-

oped to circumvent the necessity in confocal systems of the vertical scan in order to

ascertain relative object height position. Rather than a vertical scan, a chromatic

confocal microscope employs an objective with a longitudinal chromatic aberration

15.3. OPTICAL PROFILERS 693



that creates a different focus position for each different wavelength. This idea was

first devised by Molesini in 1984 (Molesini et al., 1984) and then adapted to confocal

microscopes by Browne et al in 1992; then, others followed (Tiziani and Uhde,

1994a; Dobson et al., 1997; Cha et al., 2000; Lin et al., 1998; Ruprecht et al., 2004).

Only the wavelength, whose focus position coincides with object position, is

reflected back to the system. For this reason these systems are also called wave-

length-to-depth encoding setups. A spectrometer, in place of the CCD camera,

detects the wavelength value. Instantaneous measurement of the object focus posi-

tion bymeasuring the power spectrum replaces the need for any scanning mechanism

and makes the measurement process much faster. Schematic of chromatic confocal

microscope is shown in Figure 15.24.

These systems usually use broadband (i.e., white light) sources and a spectro-

meter, but some systems employ a wavelength tunable source and a CCD camera

(Mehta et al., 2002) or white light source and color CCD camera (Tiziani et al.,

2000). The wavelength for which the maximum power is detected is encoded to the

depth of the object. A drawback to this technique is that the measurable maximum

depth depends on the chromatic aberration of the lens and the source spectrum. The

diffractive lenses that are used in confocal systems (Dobson et al., 1997) can provide

stronger longitudinal dispersion, which is material independent and can be charac-

terized analytically in contrast to refractive lenses. The focal length of the diffractive

lens for a given wavelength l follows the linear dispersion

f ðlÞ � 2f ðldÞ � f ðldÞ=ld ð15:3Þ

if l� ld is much less than the design wavelength ld. For lower NA this range can be

even 2–3 mm, and for higher NA (i.e., 0.75) this range can be of the order of 10 mm.

FIGURE 15.23. Wide field confocal microscope with microlens array in place of the objective.
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Shi (2004) proposed the use of supercontinuum light which has a high spatial

coherence and very wide spectrum, which results in wider measurable object depth

and no speckle noise. Supercontinuum light may be a solution to the light efficiency

problem in confocal systems. Light efficiency may be also improved by using an

extended detection pinhole (Ruprecht, 2004).

Similarly as in a conventional confocal system in order to avoidmechanical lateral

scanning of the sample or objective, slit (Lin et al., 1998), microlens (also diffractive)

array (Tiziani et al., 2000) can be applied, or a dynamically configurable micromirror

like a digital micromirror device (DMD) (Cha et al., 2000), and a liquid crystal

display can be used, which serve as a scanning point source (pattern) and detection

pinhole.

15.4. INTERFEROMETRIC OPTICAL PROFILERS

Interferometric optical profilers are based on standard microscopes where an

interferometer built into the objective replaces the standard objective. The inter-

ference signal obtained with these objectives is analyzed to provide quantitative

data about an object being measured. Interferometric optical profilers generally

record a number of frames of data in order to calculate surface heights at each

detector point. During measurement the interference signal is varied by changing

the optical path between the object and reference beams; this varying is usually

accomplished using phase-shifting or vertical scanning techniques that move the

objective relative to the test surface using a piezoelectric transducer or motor

scanner. Some methods avoid mechanical scanning by using the spectral proper-

ties of the light source; wavelength scanning and wavelength dispersing are two

such methods. Which method used for a particular analysis depends on the type of

object to be measured.

FIGURE 15.24. Schematic of chromatic confocal microscope.
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15.4.1. Common Features

The four interferometric objective setups that are typically used are based on the

Michelson, Mirau, Linnik, and Fizeau interferometers. Schematics of these inter-

ferometric objectives are shown in Figure 15.25. A number of factors help determine

the choice of best objective for a particular measurement. These factors include the

level of magnification or more precisely the numerical aperture required to both

resolve the features andmeasure slopes and heights on the sample. At the same time a

magnification level that measures the entire area of interest on a sample needs to be

chosen. This section first describes various types of interferometric objectives and

then examines the characteristics of different objective setups that determinewhich is

best suited to a particular application.

Types of Interferometric Objectives. The design of the interferometric objective

is constrained by the mechanical limitations of the system. The four typical objec-

tives differ in the ways that the beam is split into reference and object beams. In all

but the Fizeau objective, the reference mirror is placed at the best focus of the

objective to obtain best contrast fringes when the sample is in focus. In order to

obtain best focus position, the object first needs to be placed in focus, and then the

reference mirror is moved to a position for which the best contrast fringes are

obtained; this position also corresponds to best focus position. The best contrast

fringes correspond to the zero optical path difference (OPD) between the reference

mirror and the object position in the arms of the interferometer.

Michelson interferometers (Fig.15.25(a)) are comprised of an objective, a beams-

plitter and a separate reference surface. The microscope objective must have a long

FIGURE 15.25. Schematics of interferometric objectives: (a) Michelson, (b) Mirau, (c) Linnik, and

(d) Fizeau.
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working distance to fit the beamsplitter in between the objective and the surface.

Because of this, Michelson interferometers are only used with low-magnification

objectives having low numerical apertures and long working distances.

Mirau interferometers (Fig. 15.25(b)) contain two small glass plates between the

objective and the test surface. One plate contains a small reflective spot that acts as

the reference surface, and the other plate is coated on one side to act as a beamsplitter.

The plate with the reference spot also acts as a compensating plate. These inter-

ferometers are used for midrange magnification objectives where not enough space

exists to insert a beamsplitter cube so as to create a Michelson interferometer. Mirau

setups are not very useful at magnifications of less than about 10X because at these

lower magnifications the reference spot obscures too much of the aperture. The

reference spot has to be larger than the field of view of the objective since it is a

surface conjugate to the best focus plane of the object. For magnifications above 50X,

the working distance of the objective is too short to place either a beamsplitter cube

or plates underneath it.

The Linnik system (Fig. 15.25(c)) allows an interferometer to be set up for any

magnification objective from two identical bright field objectives. However, these

interferometers are also very difficult to adjust, and thus their commercial use is

rather limited. Linnik systems are often used with a high-magnification objective that

has a short working distance. A Linnik setup is comprised of a beamsplitter, two

matched microscope objectives and a reference mirror. The entire reference arm

provides path-length matching in order to obtain interference fringes. The two

objectives need to be matched with a beamsplitter to provide a wavefront with

minimum aberration and maximum fringe contrast.

The three objectives discussed above are all variations of the Michelson inter-

ferometer and all are equal-path interferometers.

The Fizeau interferometer (Fig. 15.25(d)) is an unequal-path interferometer that

requires a source with a long coherence length; this setup is well suited for

monochromatic or spectral interferometry, but not for white light interferometry.

The objective provides a collimated beam on the test surface while imaging the test

surface. Since interference fringes will be visible over a large depth of field when a

long coherence length source is used, care must be taken to focus on the test surface.

Spurious fringes created by Fizeau cavities have to be watched for while analyzing

fringes. Fizeau objectives can be used with a large range of magnifications; however,

there must be enough room to place the reference surface between the objective and

the test surface.

With all of the interferometers except the Fizeau, there is a cone of light incident

upon the test surface, and all of these objectives except the Fizeau can be adjusted to

obtain white-light fringes.

Depending on the type of object to bemeasured different illumination schemesmay

need to be implemented. For measurements of optically smooth surfaces typically

instruments based on phase detection in monochromatic illumination are used. The

analysis of monochromatic fringes is described in the chapter on Phase Shifting

Interferometry. For objects with larger discontinuities, roughness and heights, alternate

illumination schemes and fringe analyses need to be applied. Techniques that extend
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the measurement range of monochromatic illumination systems form the basis of this

chapter, but first we describe the properties of the objectives and the features of a

sample that can be measured with a given objective setup.

Matching Interferometric Objectives with Object Parameters. When using an

optical profiler the choice of interferometric objective for a particular measurement

first requires determining a number of parameters about the sample and the features

to be resolved. Decisions need to be made about the smallest lateral features, the

maximum height range and maximum slopes to be measured as well as the area to be

measured. While magnification of the objective (plus intermediate optics) and size of

CCD camera determine the measurable object area, the NA of the objective and the

type of illumination determine which features on the object can be measured. Some

of properties of the objectives discussed below can also be applied to the objectives

used in confocal profilometry.

Lateral Resolution. In order to determine which lateral feature on a sample can be

resolved, the lateral resolution of the system first needs to be known. The lateral

resolution of a system that is based on a microscope depends mainly on the optical

resolution of objective used. Only systems with low magnification objectives may be

limited by detector sampling. Optical resolution depends on the wavelength and the

numerical aperture of the microscope objective. Sparrow and Rayleigh cite slightly

different criteria (see Born and Wolf (1999)).

Sparrow optical resolution criteria ¼ 0:5l

NA
ð15:4Þ

Rayleigh optical resolution criteria ¼ 0:6l

NA
ð15:5Þ

These criteria apply for an incoherent system imaging two radiating points as an

object, and they are a good general rule of thumb. However, a microscope is (at best)

a partially coherent system and objects may take different forms. Modified criteria do

exist that consider the coherence state of the system and the type of test sample, but in

practice the Sparrow criterion is a good approximation for an optical microscope. It is

worth remembering that registering an image with a CCD camera requires at least

three pixels in order to resolve an image of two points. Optical resolution and lateral

sampling for a typical interference microscope are shown in Table 15.2.

Measurable Heights Range. A test surface can be measured only when fringes are

visible on its surface. When monochromatic, multiple wavelength or spectral tech-

niques are used where the object practically stays at one focus position, fringes have

to be visible over the whole height range of the object. This height range of the test

surface must be within the depth of field of the interferometric objective. In addition,

when the illuminating source has some wavelength bandwidth �l, then the test

surface must also be within the coherence length of the source.
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The depth of field of the objective depends upon the NA and the wavelength l of

illumination; it is defined by (see Benford (1966))

Depth of field ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðNAÞ2
q

ðNAÞ2
ð15:6Þ

The coherence length (this is an approximation) of the source can be determined

from central wavelength l of the source and its bandwidth �l:

Coherence length ¼ l2

�l
ð15:7Þ

The measurable height of the object is determined by the smaller of these two

numbers, namely the coherence length of the source and the depth of field of the

interferometric objective. Other criteria, which are dependent on the measurement

method used, may further limit the measurable height range.

The measurable height range for methods in which the object is scanned through

focus such as with confocal or white light interference profilers is limited by the

scanning range and the working distance of the objective.

Measurable Slopes. The maximum of the measurable slope of the sample also

depends on the NA of the objective. If light reflected from a sample with a high slope

is not gathered by the objective, the slope can not be measured. A common assump-

tion holds that slopes with a maximum 0.75NA return sufficient light to be measur-

able as long as fringes with sufficient contrast are created. For objects with rough

surfaces higher slopes can be measured since diffuse surfaces allow some light to

travel back to the objective.

Table 15.2 gives the optical resolution predicted by the Sparrow criterion for

600 nm wavelength of the source along with the depth of a single image at the object

plane (the coherence length or depth of field, whichever is smaller), lateral sampling

interval on the test surface, and field of view across the test surface. In summary,

TABLE 15.2. Characteristics of objectives for following assumptions: wavelength

600 nm, Sparrow criterion for optical resolution calculations, sampling interval of

camera 6.8 lm, and number of camera pixels in one direction, 1024.

Interferometer type Michelson Mirau Linnik

Magnification (X) 2.5 5 10 20 50 100

Numerical aperture 0.075 0.13 0.3 0.4 0.55 0.9

Optical resolution (mm) 4.00 2.31 1.00 0.75 0.55 0.33

Depth of field (mm) 106 35 6 3.5 1.6 0.35

Lateral sampling interval (mm) 2.72 1.36 0.68 0.34 0.17 0.068

Field of view area (mm) 2785 1393 696 348 174 70
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objectives of lower numerical aperture can measure samples of larger height ranges

and larger field of views, but they cannot resolve high slopes and small lateral

features. Good knowledge of object features to be measured, on the contrary of

objectives and measurement techniques capabilities, is needed in order to obtain

required measurement result.

Interference Fringes. All of these interference objectives create an interference

pattern that can be observed by the CCD camera. We will now consider the inter-

ference signal as registered by a single point x, y; however, for simplicity these

coordinates will be omitted in all equations. For a single wavelength and a single

point source on axis (a spatially and temporally coherent source) and thus a single

angle of beam incidence, the interference signal can in its most general form be

described as

Iðk; z; yÞ ¼ IRðkÞ þ IOðkÞ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

IRðkÞI0ðkÞ
p

cosð2kðh� zÞ cosðyÞ þ fðkÞÞ ð15:8Þ

where k ¼ 2p=l is the wave number for a source wavelength l, and IR and IO are the

detected irradiances reflected from the reference mirror and the object, respectively.

IR and IO depend on the reflectivity of the object and the reference mirror, the

transmisivity of the optical system, camera sensitivity and the spectrum of the source.

Phase Difference. The phase difference between interfering beams is described as

the optical phase under the cosine from Eq. (15.8) in the following form:

j ¼ ð2kðh� zÞ cosðyÞ þ fðkÞÞ ð15:9Þ

where h� z is the geometrical path difference between a point on the object and a

corresponding point on the reference mirror, h represents object height, and cos y is

the direction cosine of the beam’s incident angle onto the object. The remaining

phase term f(k) represents the phase change on reflection introduced by the material

of the object; the phase term may also contain both the statistical phase term

introduced by speckles and the phase offset due to the dispersion of the instrument,

which typically is assumed to be zero.

When h� z equals zero, the object and reference beam are traveling the same total

optical path length. Thus, this point corresponds to the zero optical path difference

(zero OPD) between the beams. The objective is typically set so that the zero OPD

position corresponds to the object and reference mirror position being in focus.

In general, the OPD encoded in the fringes at each point varies with two para-

meters; the geometrical path difference h� z, and the wave number k. These

parameters can be used to vary the OPD in a controlled way, and they are the critical

variables that distinguish the various methods for creating and analyzing fringes,

namely phase shifting, white light, wavelength scanning, spectrally resolved white

light. Other methods for changing the OPD, which are not described here, are based

on modifying the direction cosine cos y (Duan et al., 2006) and the refractive index in

the optical path (Zelenka and Varner, 1969).
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Fringe Visibility. Interference fringes as observed by each detector pixel (Eq.

(15.8)) can be described in a simpler form as

I ¼ I0ð1þ g cosðjÞÞ ð15:10Þ

where I0 is dc irradiance and g is the fringe visibility (also called modulation, contrast

or amplitude). Good fringe visibility is required for good measurement. To obtain

good fringe visibility, the irradiances IR and IO need to be as equal as possible (see

Eq. (15.8)). For this reason objectives may have reference mirrors with different

reflectivities to match the test sample’s reflectivity. In reality the fringe visibility is a

more complicated function that decreases as the OPD increases and is affected by the

temporal and spatial coherence of the source (Born and Wolf, 1999; Hariharan,

2005), thus by the wavelength bandwidth and size of the source. The apparent size of

the source is in turn determined by the NA of the objective. Thus, the fringe visibility

may vary over different height ranges of the object, and it is this fringe visibility that

determines the maximum measurable range.

Influence of the Numerical Aperture of the Objective on Fringes. In addition to

the effects of the NA of the objective on measurable height range, the observed

wavelength of the fringes can differ slightly from the source. For high NA

objectives the range of the incident angle of beam onto the object can affect the

interference signal. Thus, a correction factor for the central wavelength (central

wave number kc) of the source must be used in order to get accurate height

information (Bruce and Thornton, 1956; Gates, 1956; Tolomon, 1956; Ingelstam,

1960; Biegen and Smythe, 1988; Creath, 1989; Schulz and Elssner, 1991;

Sheppard and Larkin, 1995; Dubois et al., 2000; Wan, et al., 2004). While for

low NA objectives like NA ¼ 0:1 the correction factor for the wavelength is about
1.0025 and can be neglected, for objectives with NA ¼ 0:5 the correction factor

rises to about 1.07 and for NA ¼ 0:9 the correction factor is larger than 1.3. Since
these interference microscope systems are complicated to model, most corrections

are accomplished by using a traceable step-height standard to calibrate to correct

scaling factor.

Limitations of Single-Wavelength Interferometric Optical Profilers. At first

interferometric optical profilers for full-field measurement of object shape were

based on single wavelength phase shifting interferometry (PSI) (for details see

chapter on Phase Shifting Interferometry). These profilers delivered results with

low noise, and smooth optical surfaces could be measured with very high precision,

on the order of angstroms, while collecting only a few frames of data. However, PSI

techniques were limited because they could only resolve smooth objects (optical

roughness up to approximately l/30) with height discontinuities less then l/4. During

PSI measurement the phase difference is changed in a few steps of a quarter of the

fringe (90� or p/2), typically by having the PZT shift either the reference mirror or the

object. The interference signal is analyzed at each point on the object using one of

the many algorithms that were developed. Algorithms that compensate well for the
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nonlinear motion of the PZT use eight frames of data (Schmit and Creath, 1996) to

calculate the phase difference between beams over the measured area:

j ¼ arctan
5I2 � 15I4 þ 11I6 � 2I8

I1 � 11I3 þ 15I5 � 5I7

� �

ð15:11Þ

where irradiances I1; I2; . . . ; I8 are collected from single points in consecutive data

frames.

Because PSI algorithms use an arctan (precisely atan 2(N,D)) function, they can

only determine the phase within modulo 2p, which means that only the fractional

fringe order (fractional interference number) is determined and the relative fringe

order has to be assigned during the spatial unwrapping procedure. The spatial

unwrapping procedure assumes that the fringe order can not change from point to

point by more than half an order (in phase terms by no more than p). The unwrapped

phase has to be converted from radian to height units by means of a simple relation.

For the object measured in reflection at normal incidence 2p corresponds to l/2.

h ¼ l

2
� j

2p
ð15:12Þ

Thus, if the object has a height discontinuity larger than l/4, then the fringe order

will not be properly assigned and the object will not be measured correctly. This is

called a 2p ambiguity problem.

Figure 15.26(a) shows interference fringes obtained in monochromatic illumina-

tion for a reflective binary grating. We can see that in this figure that it is not possible

to determine the relative fringe order on both sides of the grating’s discontinuities.

Figure 15.26b shows fringes obtained for the same object using white light

illumination. From this figure we see that the zero order fringe can be easily

determined on both sides of the grating’s discontinuities, which solves the problem

of 2p ambiguity.

We will next discuss interferometric methods that solve the 2p ambiguity. These

methods can be used to measure smooth and rough objects with step discontinuities

up to a few mm. Sometimes even smooth objects without discontinuities cannot be

measured correctly; this problem occurs when the slope of the object is so large that

height difference between consecutive points is larger than l/4, which corresponds to

sampling the fringe with less than four pixels. Higher slopes may even not be able to

be resolved by the detector.

15.5. TWO WAVELENGTH AND MULTIPLE WAVELENGTH

TECHNIQUES

As mentioned previously, single wavelength interferometry has difficulty obtaining

accurate measurements for objects that have high slopes. This difficulty occurs

because the generated fringes are so dense that they are not able to be resolved by
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the detector. Two-wavelength techniques provide a way to expand the capabilities of

single wavelength interferometry by creating fringes at a longer synthesized wave-

length that corresponds to fringes that would be created if a long wavelength source

were used (i.e., infrared source). Figure 12.57 in Chapter 12 shows fringes that are

unresolvable in places using a single, short wavelength (a) and then fringes at

different synthethic (effective) wavelengths (b–f). Fringes at the synthesized wave-

length itself are analyzed rather than fringes at the two individual wavelengths that

comprise the synthesized wavelength. The single synthethic wavelength is generated

by using two short visible wavelengths simultaneously, and an interferogram is

acquired that is identical to the one that would be obtained if a single longer

FIGURE15.26. Fringes for object in formof 3Dbinary grating in (a) quasi-monochromatic and (b)white

light illumination.
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wavelength source were used. This technique enables a wider range of surfaces to be

unambiguously and accurately measured without use of expensive long wavelength

sources and detectors for these wavelengths. These observed fringes of longer

effective wavelength are basically moiré fringes, which are described in Chapter

16. Interferometric techniques that employ two or more wavelengths have been

described by many authors over the last 110 years (Hildebrand and Haines, 1967;

Heflinger and Wuerker, 1969; Wyant, 1971; Polhemus, 1973; Benoit, 1898). Fringes

of long effective wavelength were often used in two wavelength holography for

aspherics measurement (Wyant, 1971), but they can also be used to measure rough

surfaces.

15.5.1. Two-wavelength Phase Measurement

As long as the fringes generated at each wavelength can be resolved by the detection

system, two measurement wavelengths can be used with phase-shifting techniques

(Cheng and Wyant, 1984; Wyant, et al., 1984; Creath et al., 1985; Fercher et al., 1985;

Creath and Wyant, 1986a; Creath and Wyant, 1986b; Wyant and Creath, 1989). These

techniques are used to measure objects with height discontinuities larger than (l/4 at

either of single wavelengths. By using the information from a second wavelength, the

height range of the measurement can be significantly increased.

A two-wavelength phase measurement is performed by first taking data at one

wavelength while shifting the phase in appropriate amount for that wavelength. The

modulo 2p phase is then calculated for this first wavelength. The illumination

wavelength is then changed, and data are taken at the second wavelength with the

appropriate phase shifts; the modulo 2p phase is then calculated for this second

wavelength. These two modulo 2p phase measurements can then be combined to

produce a modulo 2p phase corresponding to a long synthetic wavelength, which is

the beat between the twomeasured wavelengths. The phase corresponding to the new

synthetic wavelength can be described as

je ¼ j1 � j2 ¼ 2pOPD
l2 � l1

l1l2

� �

¼ 2pOPD

le
ð15:13Þ

where j1 and j2 are phases at wavelengths l1 and l2ðl2 > l1Þ, and the effective

wavelength, which then is described as

le ¼
l2l1

l1 � l2
ð15:14Þ

Once the fractional fringe at the effective wavelength is determined, the fractional

order is assigned by using the same spatial phase unwrapping procedures used with

single wavelength techniques. Now, the new fringe order corresponds to the effective

wavelength, and a measurement can be done correctly over larger height disconti-
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nuities. The effective wavelength in two wavelength interferometry is symbolically

presented in Figure 15.27.

An alternate method for calculating the effective wavelength phase is to take all

the frames of data for both wavelengths and then calculate the phase difference

between individual wavelength phases instead of first calculating each individual

wavelength phase and then subtracting it. In this method the effective wavelength

phase can be calculated directly from the irradiance data. This calculation can be

written as

fe ¼ tan�1 sinðf1 � f2Þ
cosðf1 � f2Þ

	 


¼ tan�1 sinf1 cosf2 � cosf1 sinf2

cosf1 cosf2 þ sinf1 sinf2

	 


ð15:15Þ

In general any PSI algorithm can be implemented to two wavelength interferometry.

If a PSI algorithm is described by numerator N and denominator D, the phase is

expressed as

fi ¼ tan�1 sinfi

cosfi

	 


¼ tan�1 Ni

Di

	 


ð15:16Þ

and then the effective wavelength phase can be obtained from

fe ¼ tan�1 sinðf1 � f2Þ
cosðf1 � f2Þ

	 


¼ tan�1 N1D2 � D1N2

D1D2 þ N1N2

	 


ð15:17Þ

The required phase shift between frames typically equals 90�. In order to realize a
90� phase shift for each wavelength, when using a PZT phase shifter, the PZT needs

to shift by different distances that correspond to each wavelength used. However, if a

polarization interferometer is used, then an achromatic phase shifter (Hariharan,

1996) introduces the proper 90� phase shift for the selected wavelengths (see also

Section 15.9.2). When a system uses a PZT phase shifter that is calibrated only to a

FIGURE 15.27. Beat wavelength, called effective or synthetic wavelength, for two-wavelength

interferometry.
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single wavelength, for frame sets with phase shifts different than 90�, a phase

calculation based on least-square method (Kim et al., 1997) can be used. An even

better solution has the phase being calculated using an algorithm that is insensitive to

large phase shift miscalibrations (Carré, 1966 Schmit and Havihoran 2006). The

phase shift can also be introduced by a frequency change in the laser diodes (Ishii and

Onodera, 1991).

Table 12.6 in Chapter 12 lists the values of le that can be obtained using various

pairs of wavelengths from an argon ion and a helium–neon laser. By using a dye laser,

a large range of equivalent wavelengths can be obtained (Schmidt and Fercher,

1971). Tunable helium–neon lasers with four or five distinct wavelengths ranging

from green to red are also available (Wyant, 1971). A range of distinct wavelengths

can be obtained with tunable and compact laser diodes for which the wavelength

stability needs to be considered (de Groot and Kishner, 1991). In interference

microscopes a white light source followed by narrowband spectral filters (Creath

1986) that are typically based on different laser lines are used.

de Groot (1994) has shown that if the fractional phases at single and effective

wavelengths are known, the dynamic range does not need to be limited by the

effective wavelength in two wavelength interferometry; rather, through analytical

manipulations the wavelength can be extended to multiples of the effective wave-

length where the multiplier N equals

N ¼ int
1

le=l1 � intðle=l1Þ

	 








 ð15:18Þ

For example, for green and red spectral emissions and a red wavelength of 644 nm,

the effective wavelength equals 2.42 mm, but with the calculated multiplier it can be

extended to 10 mm. However, this technique is limited by long calculation times and

noise in the measurement. Because of the measurement noise, an approach described

in the next section was developed that uses the second wavelength measurement only

to correct a single wavelength measurement.

Correction of Single-wavelengths Measurements. The noise in a two-wavelength

measurement is proportional to the length of the wavelength used. For example, if

there is an RMS measurement noise of 0.01 mm at l ¼ 0:5 mm, there will be an RMS

noise of 0.1 mm with an effective wavelength of le ¼ 5 mm. A two-wavelength

measurement can be used to correct the phase ambiguities in the modulo 2p single

wavelength phase to provide a measurement with visible wavelength precision and

extended height range (Creath, 1986). This precision is achieved by comparing a

scaled version of the long effective wavelength phase with the single wavelength

phase. The number of 2ps to add to the single wavelength data are determined by

looking at the height changes in the scaled effective phase. This correction works

well for relatively smooth data. If the noise in the scaled effective phase is greater

than
l=4 between adjacent pixels at the single wavelength then unwanted 2p jumps

occur in the corrected data.
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15.5.2. Multiple-wavelength Phase Measurement

Two-wavelength techniques can be extended to multiple wavelengths in order to

correct single wavelength data (Cheng and Wyant, 1985; Dandliker et al., 1992;

de Groot, 1991; Decker et al., 2003; Towers et al., 2003). A number of wavelengths

are specifically chosen so that a series of effective wavelengths are produced that

are proportionally spaced from the single wavelength up to the wavelength

necessary to measure the test object. A rule of thumb for good measurements is

to keep the ratio between the longer wavelength and the wavelength being

corrected between a factor of five and ten, and this ratio is limited depending on

the level of phase noise in the measurements. For situations with low phase noise,

the ratio can be made larger, and a reduced number of wavelengths are required to

span the range between the shortest measurement wavelength and the desired

measurement range.

An example of a 13-mm step measured using single, two-wavelength, and

multiple-wavelength techniques is shown in Figure 15.28. These measurements

were taken using an interferometric optical microscope with phase-shifting

capability. Figure 15.28(a) shows the step measured at a wavelength of 657 nm. A

two-wavelength measurement is shown in Figure 15.28(b) where the measurement

wavelengths are 657 nm and 651 nm producing an effective wavelength of 64 mm.

The difference between two consecutive measurements using two wavelengths is

shown in Figure 15.28(c) where the RMS is 7.13 nm. This means that the measure-

ment is repeatable to within le=9000 at the effectivewavelength. Using the data from
the 651 nmmeasurement to correct the phase data taken at 657 nm, the result given in

Figure 15.28(d) shows uncertainties of 2p, which are caused by noise in the single

wavelength measurement. If three measurement wavelengths (657 nm, 651 nm, and

601 nm) are used, the corrected measurement at 657 nm shown in Figure 15.28(e) is

much less noisy. The repeatability (difference between two consecutive measure-

ments) of the three-wavelength measurement of Figure 15.28(e) is shown in Figure

15.28(f). The RMS of the difference in measurement is 0.67 nm, which yields a

dynamic range for the measurement of almost 20,000. Thus, the use of multiple

wavelengths can increase the dynamic range of a measurement by a factor of 10.

Towers et al. (Towers, Towers and Jones 2003, 2004a, 2004b, 2005) described how to

choose an optimal series of multiple wavelengths to create a geometric series of

effective wavelengths that yields the greatest increase in dynamic range for each

subsequent effective wavelength. The series of four wavelengths in the example

given above is an example of an optimal series.

Correction of Single-wavelengths Measurements. In multiple-wavelength inter-

ferometry like in two wavelength interferometry (Section 15.5.1), in order to

correctly resolve large height discontinuities fringe the order must also be deter-

mined. The longer measurement wavelengths enable larger height discontinuities to

be measured, but measurement noise increases proportionately. A longer wave-

lengths’ fringe order can be used to determine fringe order at a shorter wavelength;

once fringe order at this shorter wavelength is established, the phase with relatively
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FIGURE 15.28. Measurement of 13 mm step using multiple wavelength interferometry: (a) 657 nm,

(b) two-wavelength measurement using 657 and 651 nm with le ¼ 64 mm , (c) difference of consecutive

two-wavelength measurements, (d) 657 nm data corrected using two-wavelength measurement, (e) three-

wavelength using 657, 651, and 601 nm, and (f) difference of consecutive three-wavelengthmeasurements.



FIGURE 15.28. (Continued)
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low noise level can be unwrapped. In this way effective wavelengths created in

two-andmultiple-wavelength interferometry are important for extending the range of

resolvable heights. A powerful technique for determining fringe order in multiple

wavelength interferometry uses a temporal phase unwrapping process (Huntley and

Saldner, 1993, 1997; Saldner and Huntley, 1997a, 1997b) rather than the typical

spatial process. This temporal phase unwrapping at each pixel approach works on a

series of multiple wavelengths; the values of these multiple wavelengths must form a

series of decreasing geometrical numbers.

15.5.3. Reducing Measurement Time

The time required for taking a measurement when using a two- or multiple-

wavelength technique is at least twice as long as when a PSI single wavelength

technique is used. In an effort to reduce measurement time, two or multiple

wavelength superimposed interferograms can be captured in one frame and then

analyzed if the fringes have a carrier frequency (Onodera, 1997). In this case

moiré-like interference fringes at the effective wavelength are observed, but if the

Fourier transform is applied, then the main frequencies corresponding to inter-

ferograms for different wavelengths can be separated and the fractional phases for

individual wavelengths can be calculated.

Pförtner and Schwider used a color CCD camera to capture in one snapshot three

frames of fringes for wavelengths from three laser sources that corresponded to the

RGB colors of the camera (Pförtner and Schwider, 2001). This technique, called

RGB interferometry, employed a large wavelength separation (633, 532, 473 nm).

In addition, so as to reduce error an axial chromatic dispersion was subtracted

without doing any additional measurement. If fringes with carrier frequency were

used, only one frame would be needed. However, the carrier approach has its

limitations.

Different methods capture simultaneously a few phase shifted interferograms that

are spatially separated and captured by one or multiple cameras. Two or multiple sets

of interferograms corresponding to two or multiple wavelengths can be registered

successively over a period of only 100 ms. A recently introduced separation of

interferograms can be done with a specially developed pixelated phase mask that

introduces a unique phase shift at each pixel (North-Morris et al., 2004).These

methods do not need fringes with a carrier frequency.

Multiple wavelength approaches are also found in other areas of interferometric

metrology such as speckle or digital holography. The multiple wavelength approach

has also been used in fringe projectionmethods to increase the dynamic range of their

measurements by projecting fringes of multiple frequencies that act like fringes of

multiple wavelengths (see Chapter 16).

The applicability of multiple-wavelength methods in interference microscopy

may be limited by the depth of field of the interference objective that determines

measurable heights (see Section 15.4.1) rather then by the effective wavelength. For

this reason it is often more practical to use white light interference for which

measurable heights are limited by the working distance of the objective.
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15.6. WHITE LIGHT INTERFERENCE OPTICAL PROFILERS

White light interference (WLI) optical profilers use broadband illumination and work

like an array of optical focus sensors where the position of the interference signal at

each sensor determines the best focus position. The use of broadband illumination

overcomes some of the limitations that are found in single and even multiple-

wavelength methods. WLI methods have long established themselves as the leading

optical profilometers for measuring engineering surfaces like MEMS devices, binary

optic, and machined surfaces. The vertical resolution ofWLI depends on the analysis

of the signal and can be as good as singlewavelength PSI methods (0.3 nm), but more

commonly is around 3 nm. Vertical resolution here is defined as RMS of the

difference measurement on smooth sample.

15.6.1. White Light Interference

Awhite light source used in an interference optical profiler has a broadband visible

spectrum with wavelengths from about 380 up to 750 (violet to red) nanometers. The

source has low temporal coherence because of the large wavelength bandwidth, and

it is not considered a point source, which means that it also has low spatial coherence.

The low temporal and spatial coherence of the source creates interference fringes that

are localized in space.

In order to obtain fringes at best focus, the position of the reference mirror needs

to be set also at the best focus of the objective. This is done in three steps: first, the

reference mirror is moved a few or tens of microns away from focus; second, the

objective is focused on the object with some features like the edge of a sharp but not

too tall step (fringes are not visible at this moment); and third, the reference mirror is

brought to focus and stopped when best contrast fringes are obtained. The reference

mirror of the interference objective is set at the best focus of the objective in order to

obtain the zero OPD.

Because low temporal coherence has a stronger influence on fringe localization

than low spatial coherence, temporal effects will be the focus of this discussion. The

different wavelengths from the source spectrum are mutually incoherent and the

superposition of fringes for individual wavelengths creates white light fringes as

shown in Figure 15.29. A monochromatic detector observes the sum of all the fringe

intensities. Because the spacing of the fringes for each wavelength of the source is

different, the maxima of fringes will align around only one point where the OPD is

zero for all wavelengths as shown in Figure 15.29a. Away from this zero OPD

position the observed sum of the intensities quickly falls off as shown in Figure

15.29b. It is for this reason that fringes are said to be localized. The fringe with

maximum contrast, the fringe that marks the zero OPD, is called the zero order

fringe, and each next fringe of smaller amplitude on either side is calledþ1 and �1,

þ2 and �2 order fringe and so on. The maximum of the zero order fringe does not

need to fall at the maximum of the fringe envelope (see Section 15.6.5).

Looking back at Figure 15.26, we see both white light fringes created for a binary

grating and quasi-monochromatic fringes for the same object after a narrow band
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filter is placed in front of thewhite light source. This pair of interferograms illustrates

that when looking at fringes created using a white light source, the zero-order fringe

can easily be found across the object, and thus surface shape can be determined

without ambiguity. This elimination of ambiguity in numbering fringes (2p

ambiguity) is a major strength of WLI because it allows for measurement of samples

with large discontinuities and rough surfaces.

In mathematical form this white light interference observed by one pixel during an

axial scan can be described as the integral of all the fringes for all wave numbers k

and for different incident angles (for example, de Groot and de Lega, 2004;

Abdulhalim, 2001). The resulting fringes in general can be described as

IðzÞ ¼ I0½1þ gðzÞ cosðk0zÞ� ð15:19Þ

where I0 is the background intensity, gðzÞ is the fringe visibility function or coherence
envelope and k0 ¼ 2p=l0 is the central wave number for fringes under the envelope.

g(z) is proportional to the modulus of the Fourier transform of the source spectrum.

Generally, if the light source has a Gaussian spectrum, then the envelope of the

fringes can be described also as a Gaussian function g(z). The broader the bandwidth

of the source spectrum, the narrower the width of the envelope. The width of the

fringe envelope is determined by the coherence length of the source (see Eq. 15.7);

for a white light source this width is of the order of 1–2 mm. The envelope of the

fringes varies with other factors like sensitivity of the camera, the measured object,

and dispersion in the system also.

15.6.2. Image Buildup

The important feature of white light fringes for surface topography measurement is

the fact that fringes are localized and can only be found within microns or tens of

FIGURE 15.29. Formation of white light fringes: (a) fringes for individual wavelengths and (b) sum of

fringes of individual wavelengths, which are white light fringes.
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microns of the zero OPD as shown in Figure 15.30. As the objective (or the sample) is

scanned axially through focus, each pixel registers irradiance; the highest point on

the fringe envelope determines the best focus position on the sample. Figure 15.31

shows a few interferograms as registered by CCD camera as a sample is progressively

scanned through focus. Fringes at individual interferograms show which part of the

sample is in focus for a given position of the scan.

15.6.3. Signal Processing of White Light Interferograms

The shape of the object is determined from the localization of the fringes at each

spatial point registered during the axial scan. It is assumed that the fringe signal is the

same at each point and only its axial position is different due to changes in the

topography of the test sample. Since 1980 (Balsubramanian, 1982), a number of

methods and algorithms have been developed that describe the use of white light

interferometry. Many algorithms first compute the envelope (modulation) of the

fringes. The fringe envelope can be calculated in the same way as the modulation of

fringes is determined in PSI. During the axial scan, the OPD is changed to introduce

typically 90� phase shift between registered frames but over a much longer scan

range than with PSI. Then, any PSI algorithm can be implemented to determine the

modulation of the fringes at each point along the axial scan.

For a common 5-frame PSI algorithm (Schwider et al., 1983; Hariharan et al.,

1987) the modulation would be calculated as

gðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðI2 � I4Þ2 þ ðI1 � 2I3 þ I5Þ2
q

normalization
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N2 þ D2
p

normalization
ð15:20Þ

where the N and D represent numerator and denominator of any PSI algorithm.

Properties of PSI algorithms that can be used for modulation calculation were nicely

reviewed by Larkin (1996b). Kino and Chim (1990) proposed using the Fourier

transform technique to calculate the envelope where first the forward Fourier trans-

form of the interference signal is computed. After these calculations three lobes are

observed. One sidelobe, which is positioned at the frequency of the fringes, is

FIGURE 15.30. Irradiance signals as observed by a few pixels in a row for an object placed in white light

interferometer.
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isolated and shifted to the center. Next the invers fourier transform is calculated to

obtain the fringe envelope. Caber (1993) proposed using electronic hardware

(amplitude demodulation in hardware) to obtain the envelope of fringes.

Once the envelope is determined, its position can be found by fitting the curve to

the envelope and finding its position. The position of the envelope can be also found

by calculating the envelope’s center of mass using the equation:

h ¼

PN�1

i¼1

gZizi

PN�1

i¼1

gZi

ð15:21Þ

where g represents the envelope function, z the axial position, and h the object’s

height. The center of mass algorithm is very fast and computationally efficient, and

often is implemented in confocal systems for finding the maximum of the confocal

irradiance signal. Center of mass calculations are equivalent to calculations of the

maximum of the envelope position but only for a symmetrical signal. For an

asymmetrical signal, a piston is introduced for each point; however, this piston

FIGURE 15.31. White light interferograms for a spherical object as obtained for a few positions of the

objective during an axial scan.
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does not affect the whole measurement. The most precise measurement of the fringe

envelope is done using an achromatic phase shifter. At each axial scan position, an

achromatic phase shifter, which is described in Section 15.8.9, shifts the fringes

underneath the envelope, which results in the registered constant modulation of the

fringes. Instead of finding the position of the envelope, it is also possible to find the

position of the bright or dark fringe around the envelope’s maximum (Park and Kim,

2000).

De Groot and Deck (1995) showed that finding the position of the fringe

envelope can be done by processing it in the frequency domain. First, the Fourier

transform is calculated (similar to Kino and Chim) and one sidelobe is isolated.

The magnitude of the sidelobe represents the strength of the spectrum at a given

wavelength, and the phase represents the phase of the interference signal for a

given wavelength. Thus, from this sidelobe, each interference component of the

white light signal can be recreated IðkÞ ¼ IðkÞ � cosðjðkÞÞ, where j ¼ kz. If the

phase for at least two wavelengths is known, z can be determined without 2p

ambiguity from z ¼ �j=�z. Other methods like wavelets analysis also can be

implemented (Yatagai, 1994; Itoh et al., 1995; Sandoz, 1997; Recknagel and

Notni, 1998); the upside of this method is reduction in noise but the downside is

longer processing time.

At first, white light interference microscopes were used for testing of smooth

surfaces (Davidson et al., 1987; Kino and Chim, 1990; Lee and Strand, 1990) and

then extended to measurement of rough surfaces (Häusler and Neumann, 1992) in

which the presence of speckles may need to be considered (Häusler and Herrmann,

1992; Pavlı́cek and Soubusta, 2003). The signal can be analyzed to obtain not only

the shape of the object but also to map of an object’s different reflectivities or an

object image as seen by the objective with infinite depth of focus can be displayed

(Sheppard and Roy, 2003). This is not a complete list of the literature describing

algorithms for WLI.

Sampling of White Light Interference Signal. Measurement time in WLI varies

with the required scan length; thus, the sampling rate of WL fringes has to be

carefully considered so as to obtain the best data within the shortest time frame. In

order to localize fringes, the value of the envelope’s amplitude needs to be known at

only a few axial points (Larkin, 1996a, 1996b; Creath, 1997) and not all fringes need

to be resolved during the scan. For example, calculating the fringe modulation with

PSI algorithms, which was described in Section 15.6.3, requires four samples per

fringe; however, if sampling is done not at four samples per fringe but rather at four

samples per odd number of fringes, faster but less precise WLI measurements can be

obtained. Sampling with four samples per odd number of fringes is equivalent to

sampling at every 90�; not all fringes will be resolved, but calculating the fringe

modulation is still possible. Using this method, measurement speeds can be increased

23 times (Schmit, 2003) up to 100 mm s�1 using a 60 frames per second camera frame

rate. The sampling rate would then equal about 1.8–2 mm and is on the order of the

coherence length of the white light source. When the sampling rate approaches

the coherence length of the source, data become unusable. When this occurs, the
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envelope of the fringes needs to be lengthened by reducing the spectral bandwidth of

the source. Sampling issues in different WLI algorithms were discussed by a number

of authors (Deck and de Groot, 1994; Larkin, 1996a, 1996b; Creath, 1997; Hira-

bayashi et al., 2002; Schmit, 2003). Fringe projection used in a stereoscopic micro-

scope creates localized fringes that are analogous to fringes in white light

interferometry but of longer wavelength and envelope; thus, the sampling rate can

be much larger than a few microns (Kröner et al., 2001; Kröner et al., 2006).

Increased Resolution White Light Interferometry. PSI methods achieve about 10

times better vertical resolution (0.3 nm vs. 3 nm) thanWLI methods when measuring

the position of the fringe envelope; however, if the phase of the fringes under the

envelope is found, WLI methods can achieve similar vertical resolution. This high

resolution WLI method combines a lower resolution map of the envelope position

(relative fringe orders) and a higher resolution map of the phase (position) of the

zero-order fringe. The calculation of these two maps and the combination of them

can be accomplished using various algorithms (Cohen et al., 1992; Larkin, 1996b;

Windecker et al., 1999; Harasaki et al., 2000; de Groot et al., 2002). This high

resolution WLI is particularly well suited for determining the shape of smooth

surfaces with large height differences such as binary diffractive optics or micro-

electromechanical systems (MEMS). The advantage of this method is that the phase

is calculated always at the best focus position. Examples of measurements with white

light interference optical profilometer are given in Figure 15.32.

15.6.4. Light Sources

Different white light sources, such as a tungsten–halogen, incandescent or arc lamp,

LEDs and SLDs can be used for illumination. These sources have different spectra

and thus create different fringe envelopes. The width of the fringe envelope is

determined by the bandwidth of the source spectra. In Figure 15.33, we see that

the two sources, a halogen lamp and a red LED, their spectra having different

bandwidths, generate fringes with different envelope widths. The narrower the

envelope, the more precisely the localization of fringes can be determined. The

spectra of semiconductor light sources, such as light emitting diodes (LEDs) and

superluminescing laser diodes (SLDs), are similar in shape to a Gaussian function.

15.6.5. Dispersion in White Light Fringes

In Figure 15.29, it was assumed that a white light interferometer is compensated for

all wavelengths, meaning that the position of the maximum of the fringes aligns with

the maximum of the envelope, namely where there is a zero phase shift j0 ¼ 0

between fringe and envelope maxima. If there is an odd number of reflections from

dielectric surfaces in one arm of the interferometer and an even number in the other,

the fringes will be shifted by j0 ¼ 180� under the coherence envelope, and the

minimum of the fringe will align with the maximum of the coherence envelope.
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FIGURE 15.32. Examples of object measurement with white light interferometer (a) Forensic bone

sample, 460 mm� 612 mm, (b) salient type micro-motor, 230 mm� 304 mm (c) solderless MEMS micro-

phone for cellular phones and other applications, 0.9 mm� 1.2 mm (d) honed cylinder wall,

1.2 mm� 0.90 mm. Courtesy Veeco Instruments.
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In a real system the fringes may be shifted with respect to the envelope by any

amount of j0, and this shift may be due to any number of factors. These factors

include reflection from non-dielectric surfaces and transparent films, dispersion and

lateral aberrations of the system or the presence of a transparent plate in one of the

arms of the interferometer. These factors cause a phase shift that varies with the wave

number, which is also called the spectral phase. The spectral phase introduces

changes into the white light interferogram; it changes the envelope and position of

the fringes and the fringe frequency. If the introduced spectral phase is linear with the

wave number, the fringe location changes but the shape of the envelope of fringes

remains the same. The constant phase change on reflection for all wave numbers only

shifts the fringes underneath the coherence envelope, like an achromatic phase shifter

would (see Section 15.9.2.). Higher order changes in the spectral phase will influence

the position, shape, and amplitude of the envelope as well as the fringe frequency.

Dissimilar Materials. As long as the object’s surface is comprised of a single

material, the spectral phase does not present a problem since a uniform over field

change is introduced. However, when two dissimilar materials are side-by-side on the

surface, they will introduce different phase shifts upon reflection for different

wavelengths (unless both of them are dielectric materials with the imaginary part

of the index of refraction k ¼ 0) and the measured height difference at the boundary

where the two meet will be incorrect. By knowing the optical constants of the

different materials for the wavelengths used in the measurement, it is possible to

correct for this difference (Bennett, 1964; Church and Lange, 1986; Biegen and

FIGURE 15.32. (Continued )
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Smythe, 1988; Doi et al., 1997; Rogala and Barrett, 1998; Harasaki et al., 2001; Park

and Kim, 2001). The phase change on reflection for bulk materials for normal

incidence for a given wave number k is described as

jmaterialðkÞ ¼ tan�1 2k

1� n2 � k2

� �

ð15:22Þ

where n and k are the real and imaginary index of refractions, and the values of n and

k for the indices of refraction for the range of wavelengths of the materials used in the

test object can be found in The Handbook of Optical Constants of Solids by Palik

(1991). Often a better solution when faced with a test object made of a composite

material, such as ceramic, is to coat the material with a layer (typically 100 nm is

sufficient) of opaque material (i.e., a metal) so as to obtain a good profile of the

surface. Alternately, replicas of the test object can be made and then measured.

When a wide spectrum source is used, the phase change on reflection over the

entire spectrum needs to be considered. Figure 15.34 shows spectral phases for gold

and silicon as examples of metal and semiconductor materials. In white light

interferometry the spectral phase introduced by the different materials of the object

will shift the peak of the envelope (most of metals) and possibly even change the

shape of the envelope (gold and possibly some semiconductors). For typical materi-

als this shift will not be larger than 40 nanometers (Harasaki et al., 2001). Table 15.3

shows the shift in the peak of the envelope for white light fringes and the phase of the

fringes for 600 nm wavelength.

FIGURE 15.33. Spectrum and interferogram for (a) halogen lamp and for (b) red LED source.
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Thick Film Measurement. If the sample is covered with a transparent film that is

more than a few microns thick, two sets of localized fringes separated from each

other are generated, one for each interface. A thick film technique is then used to

measure the film thickness. For the second interface, the bottom of the film, a phase

shift between interference patterns for individual wavelengths proportional to the

product of the geometrical path and the index of refraction equal to d � nðkÞ is

introduced, and the irradiance for the white light fringes for the second interface can

be described as

IðzÞ ¼
Zk2

k1

h1þ VðzÞ cosfkz� kd½nðkÞ�gidk ð15:23Þ

The dependence of the refractive index on thewave number k can be described to first

approximation as a linear expansion:

nðkÞ ¼ nðk0Þ þ
dn

dk
ðk � k0Þ ð15:24Þ

The linear dispersion shifts the envelope by the group index of refraction times the

thickness of the dispersive element; this dispersion also shifts the fringes under the

envelope slightly.

FIGURE 15.34. Phase change on reflection for different wavelengths: (a) silicon and (b) gold.

TABLE 15.3. Offset in measured heights due to shift of envelope

peak position and monochromatic fringes at 600 nm wavelength due

to phase change on reflection for different metals.

Height offset due to Height offset due to

Metal envelope peak shift (nm) fringes shift (nm)

Silver 36 25.1

Aluminum 13 12.7

Gold 0 33.4

Molybdenum 59 13.4

Nickel 15 20.8

Platinum 13 18.1
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A simple technique for finding the relative position of the peaks of the fringe

envelopes can be implemented to find the thickness of a film. Figure 15.35 shows

two almost clearly separated sets of fringes formed for the air/film and film/substrate

interfaces. The typical range of measurable film thicknesses runs from 3 to 150 mm

depending on the dispersion of the film and NA of the objective.

Higher order dispersion introduced by a thicker film or an inserted plate may have

many effects; the envelope may widen or even become asymmetrical, the position of

the fringes may shift under the envelope, fringes may lose contrast, or the period of

the fringes may changewith the z position (Pavlı́cek and Soubusta, 2004). Dispersion

effects will be stronger for sources with a wider spectrum and objectives with a

higher NA. However, the observed changes will be different for different shapes of

the spectra. Thus, to measure thicker films, it is better to use a low numerical aperture

objectives and a narrower bandpass of the white light source.

Thin Film Measurement. When the optical thickness of the film is shorter than the

coherence length of the white light source, typically less than 3 mm, multiple reflec-

tions introduce an additional nonlinear term in the spectral phase that causes changes

in the fringe envelope and the frequency of fringes (Hariharan and Roy, 1996; Roy et

al., 2005). Finding the envelope peak position is not valid any longer since the

localized fringes at both interfaces are not separated. A different approach has to

be taken. One approach is to apply the Fourier transform of the measured signal and

calculate the spectral phase under the first lobe in the frequency domain (Kim and

Kim, 1999). Figure 15.36 shows fringes for thin film (a), themagnitude of first spectral

lobe (b), and the corresponding spectral phase in the frequency domain (c). In general,

when using interferometry to measure thin or thick films, not only their thickness, but

the top and bottom profiles are also measured. The spectral phase for the thin film

interference has the form of a polynomial; thus, the polynomial for the chosen film

model (n and k) is fitted, and regression analysis is used to find the best fit and,

therefore, the film thickness. The spectral phase due to the dispersion of the system

FIGURE15.35. White light fringes as observed by a row of pixels during axial scan for (a) nonconformal

film, where the top fringes are created at the air/film interface while the bottom fringes correspond to film/

substrate interface but are located below the interface.
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needs to be known and subtracted for better accuracy. Instead of calculating the

spectral phase and finding best fitting simulated spectral phase, the magnitude can be

calculated, and the best fitting simulated magnitude can be found to determine film

thickness. These methods are used for films of thickness from a few microns down to

100 nanometers. For films of optical thickness less then 100 nm, the sensitivity of the

method drastically decreases.

Besides special analysis necessary for measuring objects with dissimilar materials

and films, objects with narrow trenches (10 mm wide and less) also require careful

examination of the fringes. For a narrow structure, additional unwanted fringes are

created that do not correspond directly to the object shape (Schmit et al., 2003;

Montgomery et al., 2004; Tavrov et al., 2005)

Measurement through the Glass Plate or Liquid Media. Many engineering

objects, like MEMS devices, are often protected by a cover glass, and some devices

in environmental chambers need to be tested under different pressures or tempera-

tures. Such objects require testing through a cover glass. Biological samples are often

immersed in liquid and require measurement through this liquid. Because of the

dispersion of the liquid layer or cover glass white light fringes may be totally washed

out. Thus, a compensating plate needs to be introduced in the reference arm of

interferometer. This compensation is the most easily done for Michelson-type

objectives. In addition, the contrast of fringes diminishes faster for higher numerical

aperture objectives, which are used as both illuminating and imaging optics. It is also

difficult to introduce compensation for higher NA objectives. In order to increase

fringe contrast for systems with high numerical aperture objectives, the numerical

aperture of the illumination can be reduced by delivering a nearly collimated

FIGURE15.36. (a)White light fringes for thin film, (b) the side lobe of the Fourier transformmagnitude,

and (c) spectral phase under the side lobe.
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illuminating beam (Han 2006) of very low numerical aperture directly to the

interferometer underneath the objective and not through the objective as shown in

Figure 15.37(a). Figure 15.37(b) shows a measurement of grating immersed in liquid

and a pitch standard as measured through 3 mm cover glass with 20X objective.

15.6.6. Other Names for Interferometric Optical Profilers

White light interferometry with an axial scan for the measurement of engineering

surfaces has been variously labeled and can also be found under the following names:

White light interferometry (WLI)

Vertical scanning interferometry (VSI)

Low coherence interferometry (LCI)

Coherence probe

Optical coherence profilometry (OCP)

Optical coherence microscopy

Objective

Fiber

Sample

IlluminatorBeam

splitter

TTM Module

Compensation slide

(a)

Reference mirror

Transmissive media

FIGURE 15.37. (a) Michelson type interferometric objective for observation of sample through cover

glass with illumination provided not through the objective but from the side of the interferometer with a

beam of a very low numerical aperture used to increase the contrast of the fringes, (b) cross hatch grating

immersed inwatermeasuredwith through themedia objectivewith compensating cell/plate in the reference

arm. Scan area 620� 460 mm. Grating height: 30 mm. Courtesy Reed and Gimzewski from UCLA.
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Scanning white light interferometry (SWLI)

White light scanning interferometry (WLSI)

Coherence probe microscopy (CPM)

Correlation microscopy

Phase correlation microscopy

Interference microscope

Microscopic interferometry

Wide band interferometry

Full field OCT

Wide field OCT

Coherence radar

Fringe peak scanning interferometry

The equivalent method for biological samples is called mainly optical coherence

tomography (OCT), but can also be called time domain OCT (TD-OCT), coherence

radar or confocal interference microscope.

15.7. WAVELENGTH SCANNING INTERFEROMETER

An alternative to white light and multiple wavelength interferometers is the spectral

interferometer, which takes advantage of spectral interference fringes for a wide

range of wavelengths. These spectral fringes can be obtained through the scanning

of the source wavelength or dispersing white light fringes with a spectrometer.

Spectral interferometry with wavelength scanning uses a setup that is typically

based on a Michelson interferometer with the difference being a light source

that is wavelength tunable (see Fig. 15.38). This system does not require point

by point axial mechanical scanning as in typical confocal microscopy, or field

axial scanning as in white light interferometry in order to find the best focal

position for each point. Instead, fringes of different frequencies are observed by

sweeping the light source through wavelengths from which the height of the object

with respect to the reference mirror is determined. This wavelength scanning

profiler delivers topographies of smooth and rough surfaces with no 2p-phase

ambiguity problem. One advantage that a wavelength scanning system has over

a white light setup is that the contrast of the fringes remains good even for

dispersive media.

15.7.1. Wavelength Tunable Light Sources

Because the tuning range of the wavelength determines the resolution of the

measurement and the tuning step of the wavelength determines the system’s

measurable depth (see Section 15.7.2), illuminating systems are continuously

being developed to increase the scanning range and decrease the scanning step.

At first, large expensive dye lasers, which were inconvenient for industrial pur-

poses, and Ti:Sapphire lasers (Kuwamura and Yamaguchi, 1997; Yamamoto et al.,

2001) were used. At the same time, new and much more convenient tunable solid
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state lasers were also being used. A standard method of varying the wavelength in

a diode laser is to change the injection current or chip temperature; however, these

methods are subject to mode hops and changing of mode shape. To avoid these

mode-hops. Tiziani et.al. (1997) used an external resonator like those used in dye

lasers. Later, broadband sources like a superluminescent diode in combination

with wavelength-tuning devices like an acustio-optical tunable filter or a liquid

crystal Fabry–Perot interferometer (Mehta et al., 2002) were proposed as more

convenient and stable illuminating systems.

15.7.2. Image Buildup

The interference signal at each x; y point can be described using Eq. (15.8), which is now

Iðk; hÞ ¼ IRðkÞ þ I0ðkÞ þ ½2IRðkÞI0ðkÞ�1=2 cosð2khÞ ð15:25Þ

where h is the path difference between corresponding points on the reference and the

object. Since the object is not moving, it is assumed that z ¼ 0. The variation in h

across the field determines height variations of the object. As mentioned in Section

15.6.1 the phase difference 2kh can be changed in a few different ways. With

mechanical axial scanning of the object by dh (previously marked as z) distance at

a time (like in scanning white light or phase shifting interferometry), the phase

difference for a given wave number k, for each point on the object, would change by

FIGURE 15.38. Schematic of spectral interferometer with wavelength scanning.
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the same amount dj ¼ 2kdh creating fringes of the same frequency for each point as

shown in Eq. (15.26) and Figure 15.39.

Iðk; hÞ ¼ IRðkÞ þ I0ðkÞ þ 2½IRðkÞI0ðkÞ�1=2 cosð2kðhþ dhÞÞ ð15:26Þ

In wavelength scanning interferometry the phase change for each point on the

object is caused by the wavelength change expressed as dk, and the change in the

phase difference is expressed as dj ¼ 2dkh. The irradiance during the wavelength

scan for each point can be expressed as in Eq. (15.27)

Iðk; hÞ ¼ IRðkÞ þ I0ðkÞ þ 2½IRðkÞI0ðkÞ�1=2 cosð2hðk þ dkÞÞ ð15:27Þ

And is called spectral interference. The variation in the optical path difference due

to the shape of the object creates fringes of different frequencies for points across

the object during the wavelength scan. Figures 15.39 and 15.40 show fringes as

obtained for a step object that is tilted around the x axis with the phase change

introduced by axial mechanical scanning and wavelength scanning, respectively.

For a mechanical scan that uses monochromatic illumination, fringes of the same

FIGURE 15.39. Fringes in monochromatic illumination for the step object as obtained with PZT

scanning.

FIGURE 15.40. Fringes for the step object as obtained with wavelength scanning.
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frequency but with a different initial phase for different step levels are created; for

wavelength scanning two distinct frequencies for two step levels are created.

Small variations in object shape result in small changes in the fringe frequency

across the object.

The phase change at each point as a function of wavelength change equals

dj ¼ 2dkh ¼ 4ph
dl

l2
ð15:28Þ

The period of the fringes at each point can be expressed in terms of wavelength

shift �k for which the phase change �j is equal to 2p

�j ¼ 2�kh ¼ 2p ð15:29Þ

From the frequency of the detected fringes, at each point the height of the object h can

be determined by Eq. (15.30)

h ¼ p=�k ¼ �j=2�k: ð15:30Þ

Finding the height from the fringe frequency is equivalent to finding the height

from the rate of the phase change at each point, called phase slope or spectral phase.

The scanning wavelength range can be from a few nanometers to tens of

nantometers and the tuning step of the wavelength is typically on the order of a

fraction of nantometers (see Fig. 15.41). With this technique submicron resolution is

possible with a height range of a few millimeters. The maximum measurable height

is determined by the wavelength’s tuning steps as

�hmax ¼ p=dk
l2

2dl
ð15:31Þ

FIGURE 15.41. Wavelength tuning in wavelength scanning interferometer.
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and the minimum measurable height difference is determined by the total tuning

range as

�hmin ¼ p=ðkmax � kminÞ ð15:32Þ

However, other factors influence these values; for example, the depth of field of the

objective may limit the maximum measurable depth of the object (see Section

15.4.1).

15.7.3. Signal Analysis

As explained in the previous section, information about the relative distance between

the object and reference plane can be retrieved by finding the fringe frequency or

phase change rate at a given point. At first, the fringe frequency was determined by

counting the number of zero-crossings of the signal at each pixel. Later, a method

based on the Fourier transform calculation was developed (Takeda and Yamamoto,

1994; Barnes et al., 1996; Yamaguchi et al., 1998). Figure 15.42 shows three

interferograms for three different objects at one wavelength during a wavelength

scan. Also shown is the signal as recorded by a pixel during a wavelength scan and

the Fourier transform of the signal with the peak position determining the height of

the object. To further improve the resolution of the Fourier transform technique, the

rate of phase change (spectral phase slope) along the spectral interference can be

calculated (Kinoshita et al., 1999; Mehta et al., 2003a; Mehta et al., 2003b).

Wavelength scanning interferometry requires tens or hundreds of registered inter-

ferograms during the wavelength scanning of the source. The measurement time in

wavelength scanning interferometry is the same for shallow and deep surfaces

because the number of required frames does not depend on sample’s depth like in

white light interferometry.

In theMichelson interferometer object height can be, in relative terms, on both sides

of the reference mirror. Because the methods described here solve only for the

magnitude of the object’s distance from the reference, not its direction, a height

ambiguity problem exists. Figure 15.43 shows the height ambiguity that can be created.

In these cases, a special phase unwrapping procedure must be applied (Paulson et al.,

2000), or a phase unwrapping procedure known as temporal phase unwrapping

(Huntley and Saldner, 1993, 1997; Saldner and Huntley, 1997a, 1997b, Huntley and

Coggrave, 1998) must be applied to wavelength scanning interferometry. If the object

were shifted above or below the focus plane, no unwrapping procedure would be

necessary because the object would be clearly on one side of focus or the other. Shifting

the object away from focus increases the frequency of fringes at each point as shown in

Figure 15.44. However, this shifting could limit themaximummeasurable height range

because the object may be shifted out of the focus range or the fringe frequency may

become too dense to be resolved (see Eq. (15.31)). The resolution of the measured

height, in addition to the wavelength scanning range, also depends on the roughness of

the tested object and the distance from the point of best focus (Yamaguchi et al., 1998).

In a Fizeau setupmultiple reflections between the reference and the object must be

accounted for in the signal analysis (Yamaguchi et al., 2000), and although the
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resultant signal is not sinusoidal as in a Michelson setup, the fundamental period of

the signal is the same. In the Fizeau setup the object is on one side of the reference

mirror and no ambiguity in height derivation exists.

Wavelength scanning is used in a number of optical methods such as optical

frequency domain reflectometry, distance measurement (Kikuta et al., 1986), speckle

interferometry and, recently, digital holography (Pawlowski et al., 2004). An over-

view of wavelength scanning interferometry and its applications was done by Tiziani

(2000) and Takeda et al. (2005).

15.7.4. Film and Plate Thickness Measurement

Awavelength scanning interferometer can be used not only for shape measurement but

also for thickness measurement (or its dispersion) of a transparent object. In this case

due to reflections of the wavefront of multiple optical interfaces many interferograms

are created and superimposed. Each interfering pair of reflected wavefronts of almost

plane and parallel wavefronts creates spectral fringes of the main frequency character-

istic for the average optical path difference during the wavelength scan. Some of these

FIGURE 15.42. Interference patterns at a single wavelength, interference signals (spectral fringes) as

seen by a single pixel during the wavelength scan in time, and the Fourier transform of the interference

signal for (a) polished steel, (b) milled duralumin, and (c) a MgO coated surface. Reprinted with permis-

sion from Yamaguchi et al., 2000.
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reflections are unwanted, and over the last 15 years methods based on separating these

different interferograms in the data processing stage have been developed so as to

avoid immersing the sample in oil or coating the surfaces with an index-matching

lacquer (Okada et al., 1990; Deck, 2003; de Groot, 2000; Burke et al., 2006; Hibino

et al., 2003; Hibino et al., 2004; Hibino and Takatsuji, 2002). However, these

techniques could not be applied to measure thicknesses down to a few microns.

Measurement of transparent layers of a few microns in thickness is often laid on

FIGURE 15.44. Fringes in wavelength scanning interferometer for two different positions of the object

along the optical axis. Increase in distance between reference mirror and object results in increased fringe

frequency.

FIGURE15.43. Wavelength scanning interferometry results for cylindrical surfacepositionedaway from

the virtual focus position of the reference mirror (a) surface, (b) plot and results showing possible sign

ambiguity problem if the object surface crosses virtual focus position of the reference surface, (c) surface,

and (d) plot. Reprinted with permission from Yamaguchi et al., 2000.
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optoelectronic devices, and at these small thicknesses separating the different frequen-

cies was impossible until Kim (Kim et al., 2002; Kim and Kim, 2004) proposed a

technique, similar to the one applied to WLI, to measure these tiny thicknesses.

15.8. SPECTRALLY RESOLVED WHITE LIGHT

INTERFEROMETRY (SRWLI)

Spectral interference fringes for a wide range of wavelengths can be also observed by

dispersing white light fringes with a spectrometer. This method of observation of

spectrally resolved fringes is called spectrally resolved white light interferometry

and is an alternative to wavelength scanning that was described in the previous

section. The main advantage of SRWLI is that profiles with discontinuities up to tens

of microns can be calculated from a single spectral interferogram.

Although the first spectrally resolved white light interferometer for surface pro-

filometry described by Schwider and Zhou (Schwider and Zhou, 1994) was based on

the Fizeau interferometer, these systems are typically based on a Michelson system.

In order to observe spectrally resolved fringes, these interferometers use a spectro-

meter in conjunction with the CCD camera. The plane of fringe localization is imaged

through the entrance slit of spectrometer onto the CCD camera as shown in Figure

15.45. The spectrometer splits the single line of the object’s white light fringes into

spectral fringes along the chromatic axis of the CCD camera. Different types of

spectrometers can be used, such as a prism or grating spectrometer.

The observed fringes are basically the ‘‘channeled spectrum’’ that scientists

observed about 100 years ago. In this respect spectrally resolved interferometry is

not a new technique; however, the development of computers and solid state devices

and spectrometers has allowed for the utilization of the channel spectrum for many

purposes. Spectrally resolved white light fringes are used for many different applica-

tions like measuring the differential index of refraction, the index of refraction

distribution, wavelength multiplexing, transmission of images, distance and displa-

cement measurements and recently for profile measurement.

15.8.1. Image Buildup

In the spectrally resolved white light interferometer the chromatic axis is along one

of the axes of CCD camera which is perpendicular to the slit of spectrometer. The row

(or column) of CCD pixels registers a spectral interference signal from which the

spectral phase or fringe frequency is calculated for a single object’s point delivering

information about the object’s distance from the corresponding reference point, and

one CCD frame delivers information about the profile of the object along one line as

shown in Figure 15.46. Thus, the object needs to be scanned laterally in order to

obtain a 3D profile.

A spectrally resolved white light interferometer with lateral scanning delivers the

same type of fringes as a wavelength scanning interferometer. We can think of the

collected data as a cube (compare Figs. 15.40 and 15.47). The difference lies in the
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axis labeling of both cubes of data. In wavelength scanning interferometry

(Fig. 15.40) one CCD frame delivers a monochromatic interferogram in spatial

coordinates x,y. The third coordinate, the chromatic axis, follows interferograms

that are registered in time during the scan of the source’s wavelength. In spectrally

resolved WLI, one CCD frame delivers spectral fringes in chromatic-spatial coordi-

nates. The third coordinate, the spatial axis, follows interferograms registered in time

during the lateral scan.

Like in wavelength scanning interferometry, the dynamic range for the measure-

ment is limited by the spectral resolution of the spectrometer (equivalent to the tuning

step in wavelength scanning interferometry), and the resolution is determined by the

spectral bandwidth (tuning range) of the light source.

The chromatic axis of the CCD camera is calibrated typically with a cadmium

(Cd) spectral lamp, which has four spectral lines, 643.8 nm, 508.6 nm, 480 nm, and

467.8 nm. These wavelengths are assigned to the corresponding pixels on the camera

(see Fig. 15.48(a)). The wavelengths for the rest of the pixels are calibrated (see

Fig. 15.48(b)) using Hartmann’s formula.

15.8.2. Signal Analysis

In order to determine the distance of an object with respect to the reference plane,

the spectral interferogram can be analyzed by measuring either the frequency of

the fringes (as shown for wavelength scanning interferometry) or the spectral phase

slope (Schwider and Zhou, 1994). Both methods require the carrier frequency of the

fringes, which can be regulated by the distance of the object from the reference mirror.

Spectral phase slope �j/2�k can be measured using the Fourier Transform (Takeda

and Yamamoto, 1994) or a spatial phase-shifting method (Sandoz et. al. 1996).

FIGURE 15.45. Schematic of a spectrally resolved white light interferometer.
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FIGURE 15.47. Cube of data in spectrally resolved interferometer for an object with step tilted with

respect to the reference mirror around axis perpendicular to the step.
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Although carrier methods require only a single frame, they do not distinguish the sign

of the spectral phase slope. Like in the wavelength scanning interferometer, the sign of

the spectral phase slope determines where the object is in relation to the reference

mirror, either above it or below it, and this information is lost. In addition, carrier

methods may be affected by the background irradiance variations of the object across

chromatic axis.

In a spectrally resolved white light interferometer, PSI methods have been

implemented to increase the resolution of the measured spectral phase and, thus,

also the height, and at the same time to overcome phase sign difficulties. PSI

methods deliver information about the spectral phase slope, do not require fringes
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of carrier frequency, and are insensitive to spatial variations in background

irradiance (Helen et al., 2001; Debnath and Kothiyal, 2005). With this method,

points on the object in relative terms can be on either side and very close to the

reference mirror.

Thick and Thin Film Measurement. Spectrally resolved interferometry also can

be used to measure film thicknesses as thin as 2 microns by mapping the peaks of the

Fourier transform (Haüsler and Lindner, 1998; Zuluaga and Richards-Kortum,

1999). The problems in this method, like in wavelength scanning interferometry,

are ghost frequency peaks coming from multiple reflections of many interfaces and

the inability of methods to distinguish the interface of the object as being above or

below the reference mirror. Wojtkowski et al. (2002) suggested that using a PSI

approach the position of the optical film interfaces can be determined without

ambiguity. Recently Debnath et al. (2006) showed that the spectral phase calculated

with a PSI method can measure engineering samples that have film thicknesses as

thin as 100 nm. A spectrally resolved WLI approach allows for the simultaneous

registration of the sample profile and film thickness.

15.8.3. Other Names for Spectral Interferometry

Spectrally resolved white light interferometry and wavelength scanning interfero-

metry are often called spectral interferometry. Each of these methods also has been

variously labeled. Spectrally resolved white light interferometry can be found in the

literature as dispersive (white light) interferometry, white light channeled spectrum

interferometry, or spatially resolved spectral interferometry. The wavelength scan-

ning interferometer can also be called spectrally scanned interferometer, frequency

scanning interferometer, wavelength tuning interferometer and optical frequency

domain microprofilometer.

Variations of spectral interferometry are employed in the biomedical field; the

term used there is frequency domain optical coherence tomography (FD-OCT).

Whereas typical OCT is a point method and requires lateral scanning, FD-OCT

works in the frequency domain, thus avoiding axial mechanical scanning. In the OCT

field, both methods are commonly called frequency (or Fourier) domain optical

coherence tomography (FD-OCT) or sometimes spectral radar.

15.9. POLARIZATION INTERFEROMETERS

In commercial interferometers the beam splitting is commonly done by amplitude

splitting like in the Twyman–Green, Michelson or Fizeau interferometers; these

systems were described in Section 15.4.1. Beam splitting can also be accomplished

through the use of a polarizing beam splitter when different polarization states in the

reference and object beams are required. These setups are called polarization inter-

ferometers and often utilize polarization techniques to introduce phase shifting

between interfering wavefronts in order to avoid mechanical axial or wavelength
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depended phase shift. Such systems were described by Hettwer et al. (2000).

Polarization technique for phase shifting will be described in Section 15.9.2.

Different type of polarization interferometers use polarizing beam splitter to split

the incident beam into two sheared beams incident on the object; this technique

creates a quasi-common path interferometer. Although the idea of the polarization

interferometer was known at the turn of 20th century, these systems became popular

when they were inserted into a microscope to create the differential interference

contrast microscope (DIC). An excellent review of different types of polarization

interferometers can be found in a few books (Françon and Mallick, 1971; Pluta,

1993; Polarvarapu, 1997) and also in an article by Françon (1963). In addition, the

previous edition of this book (Creath, 1992) details two other types of polarization

interferometers, Sommargren (Sommargren, 1981) and Downs (Downs et al., 1985).

While imaging small features, on the order of illuminating wavelength and well

below, in polarization interferometer it is important to understand how the reflected

or transmitted wavefront is affected by illuminating beam state of polarization in

order to interpret results correctly (Totzeck et al., 2005). To improve optical resolu-

tion of polarization interferometers, structure pupil filters are suggested to be used

(Totzeck et al., 2002).

15.9.1. Differential Interference Contrast Microscope (Nomarski)

The DIC interferometer was invented, a Polish-born French physicist, Georges

(Jerzy) Nomarski in 1955 (Nomarski, 1955) and is also called a polarization inter-

ference contrast microscope. In the Nomarski system, a typically broad source (like a

halogen lamp) is used for illumination followed by a polarizer (see Fig. 15.49). This

polarized light travels through the heart of the DIC microscope, which is a modified

Wollaston birefringent prism pair – Nomarski prism. The Wollaston prism splits the

polarized light into two orthogonally polarized beams that travel at slightly different

angles. Next, both beams are brought onto the object by the objective, and the

object is illuminated with orthogonally polarized beams slightly sheared from

each other. For this reason this interferometer is also called a shearing interferometer.

This shear is on the order of tens to hundreds of nanometers, well below the

resolution of the objective. Upon reflection two displaced beams travel back through

the objective and are recombined by theWollaston prism. To allow for observation of

interference between both beams, an analyzer is placed before the beams reach the

camera.

The interference pattern does not directly represent the shape of the image but

rather its gradient in the direction of the shear introduced by the Wollaston prism.

Thus, to fully characterize the object, an additional measurement at orthogonal shear

needs to be taken, which is achieved by sample or optics rotation. The observed

interference colors are phenomenal and give an effect of a pseudo three-dimensional

appearance of the object. These colors can be varied by changing the amount of shear

between beams via an axial shift of the Wollaston prism.

Initially, all DIC systems were manual and of a qualitative nature only. The user

manually chooses a Wollaston prism axial position so as to achieve an interference
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pattern that would be themost appealing and emphasize the features of the object that

were under test. The most common type of DIC interferometer is used for qualitative

observation of semitransparent biological samples; this systemworks in transmission

and not on reflection. Although neither as popular nor as commercially available as

white light interference microscopes, a DIC interferometer can also deliver quanti-

tative data about a surface profile while working in reflective mode. Some idea about

the optical path difference between sheared wavefronts can be achieved by looking at

created interference colors an comparing the to Michel-Lévy and Lacroix who came

up in 1889 with Interference Color Chart. A more reliable technique, one that does

not require color comparison and can be used with a black and white CCD camera, is

based on phase shifting interferometry (see chapter on Phase Shifting Interferometry

and Arnison et al., 2004). The phase shift between interfering beams can be obtained

by shifting the Wollaston prism laterally or by rotating the polarizer. However, the

phase shift will be wavelength dependent, and the fringes will change contrast during

the phase shift. To avoid this changing contrast, achromatic phase shifting based on

the geometric phase can be used (Hariharan, 1996). Once the optical path difference

between sheared replica of the wavefront reflected from the object is obtained in two

orthogonal directions, the original surface can be calculated. The advantage of the

DIC interferometer is that it is almost insensitive to vibrations since they are almost

common path interferometers. The major limitations of these interferometers, which

include a short measurable depth and thickness of the object and index gradient,

occur because of the limited depth of field of the objective like in any other non-

scanning interference microscope. On the contrary, a very small depth of field for

objectives with high NA can be utilized for optical sectioning if axial scan between

object and objective is introduced. Reflective DIC are often used for quality inspec-

tion of integrated circuits in semiconductor industry. A lot of useful information

about DIC interferometers working in reflection can be found on websites designed

by for example Nikon and Olympus.

FIGURE 15.49. Differential interference microscope in reflection mode.
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15.9.2. Geometric Phase Shifting

Many measurement techniques in interferometry involve shifting the phase of the

interfering wavefronts. Mechanical phase shifters, when used in white-light and

multiple-wavelength interferometry, introduce the same change in the optical path

difference, measured in nanometers, for all wavelengths; however, the resulting

phase shift, known as a dynamic phase shift, when measured in degrees or radians,

varies with the wavelength. A different technique of phase shifting, involving a cycle

of changes in the polarization of the light, can produce the same phase shift,

measured in degrees or radians, for all wavelengths. This phase shift, known as

the Pancharatnam phase (Pancharatnam, 1956), is a manifestation of the geometric

phase (Berry, 1987), and it can generate any required wavelength-independent phase

shift without a change in the optical path difference. As a result, geometric phase-

shifting has found many applications in interferometry (Hariharan, 2005).

In white-light interference, a change in the geometric phase shifts the fringes

under the coherence envelope (Hariharan et al., 1994), as shown in Figure 15.50,

while the coherence envelope stays in place, resulting in no change in the fringe

contrast at each point. In dynamic phase shifting, thewhole white-light interferogram

is shifted, resulting in changing fringe contrast at each point. With multiwavelength

interferometry, a geometric phase-shifter will produce the same phase shifts for any

wavelength used in the interferometer, without the need to make any changes in the

phase shifter.

Achromatic phase-shifters operating on the geometric phase use circularly polar-

ized light, as shown in Figure 15.51, and employ polarization elements such as a

rotating half-wave plate followed by a quarter-wave plate and polarizer or, in a

simpler arrangement, just a rotating polarizer. In order to introduce a phase shift

between two interfering beams, the two beams need to be orthogonally polarized.

Figure 15.52 shows an interferometer with two orthogonally linearly polarized

beams leaving the reference and object arms of the interferometer. The geometric

FIGURE 15.50. During achromatic phase shift only fringes shift, while envelope remains stationary.
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phase shifter, consisting of a rotating half-wave plate mounted between two quarter-

wave plates with their axes set at 45� to the angles of polarization of the two beams

(Hariharan and Ciddor, 1994; Hariharan et al., 1994), is placed at the exit of the

interferometer. This interferometer employs the first type of geometric phase shifter

shown in Figure 15.51a in which the first quarter-wave plate creates left- and right-

handed circularly polarized beams. The half-wave plate then changes the right-

handed circularly polarized beam to a left-handed one and the left-handed circularly

polarized beam to a right-handed one. Finally, the second quarter-wave plate brings

the two beams back to their original orthogonal linear polarizations. A rotation a of

the half-wave plate shifts the phase of one linearly polarized beam by þ2a and the

phase of the other, orthogonally polarized beam by �2a, so that a net phase

FIGURE 15.51. Geometric phase shifter with rotating (a) wave plate and (b) polarizer.

FIGURE 15.52. White light interference microscope with geometric phase shifting. At each position of

the axial scan, approximately every 150 nm, geometrical phase shifting is introduced, and a few frames are

collected to calculate the contrast of fringes.
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difference of 4a is introduced between the two beams. This phase difference is very

nearly independent of the wavelength over the whole visible spectrum. The polarizer

makes it possible for the two beams to interfere.

The second type of geometric phase shifter shown in Figure 15.51b only requires a

rotating polarizer to be placed after the quarter-wave plate that changes the two

beams leaving the interferometer to left- and right-circularly polarized beams. In this

case, if the test beam is left-circularly polarized and the reference beam is right-

circularly polarized and both beams are incident upon the linear polarizer which is set

at an angle a with respect to the x axis, both the test and reference beams, upon

passing through the polarizer, become linearly polarized at an angle a. However, a

phase offset þa is added to the test beam and a phase offset �a is added to the

reference beam. A rotation of the linear polarizer by a therefore introduces a phase

shift 2a between the two interfering beams. The linear polarizer acts as a phase

shifting device and also makes it possible for these beams to interfere. While an

achromatic quarter-wave plate could be used to extend the spectral range over which

this phase-shifter operates, it turns out that the variations in the phase shift produced

by this system due to variations in the retardation of the quarter-wave plate with the

wavelength are quite small (Helen et al., 1998; Millerd et al., 2004).

The measurement time, which can be critical in some industrial applications, can

be reduced if the interferograms are collected simultaneously. This can be done with

the system presented in Figure 15.53 (Millerd et al., 2004). In this setup, a polarizing

beamsplitter causes the reference and test beams to have orthogonal polarizations.

Quarter-wave plates are placed in the reference and test beams so that the beam

initially transmitted through the beamsplitter is reflected when it returns, and vice

versa. These two beams pass through a quarter-wave plate, which converts the two

orthogonally polarized beams to right- and left-handed circularly polarized beams,

and then through a phase mask. The quarter-wave plate can be placed at the exit of the

interferometer, or in front of the camera, while the phase mask is placed just in front

of the CCD array in the camera.

The phase mask is a micropolarizer array built up of groups of four linear polarizer

elements having their transmission axes at 0�, 45�, 90�, and �45� as shown in

FIGURE 15.53. Simultaneous phase-shifting interferometer. (Courtesy 4D Technology).
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Figure 15.54(a), or at 0�, 45�, �45� and 90� as shown in Figure 15.54(b), and is

structured so that each polarizer element is placed over a detector element. These

four linear polarizer elements introduce phase shifts between the test and reference

beams of 0�, 90�, 180�, and 270�. Thus, four phase-shifted interferograms, obtained

from each group of pixels (Fig. 15.54(c)), are recorded simultaneously using a single

CCD array.

As can be seen, the phase mask works as a geometric phase shifter. The two

essential requirements are that the test and reference beams have orthogonal

polarizations, and the micropolarizer array matches the CCD array.

15.10. OPTICAL RANGING METHODS

Optical ranging methods are typically single point methods used to measure for

example length, distance, vibrations or index of refraction. They can be based on

different principles; for example on geometry of light propagation used in laser

triangulations or based on interferometric principles or on time measurement of light

pulse flight. If scanning is employed all these methods can provide 3D measurement

of the object. Single point methods are usually based on optical fibers and fast single

point detectors. Some methods can and were made to be used with array detectors

delivering information about ranging parallelly at multiple points to deliver informa-

tion over the area without necessity of point by point scanning. Review of different

methods for optical ranging was presented by Amann et al. (2001), Blais (2004),

Chen et al. (2000), de Groot (2003), Friedman (2003), and Wagner and Hausler

(2003). Selected papers on laser distance measurements were collected by Bosch and

Lescure (1995).

15.10.1. Interferometric Ranging

Interferometric ranging is based on white light, two-wavelength, multiple wave-

length, and spectral interferometer (Gerges et al., 1987; Smith and Dobson, 1989;

Danielson and Boisrobert, 1991; de Groot and McGarvey, 1992; de Groot, 1992,

FIGURE 15.54. Phase filter. (a) 4 polarizer elements giving 0�, 90�, 180�, and �90� phase shifts;

(b) 4 polarizer elements giving 0�, 90�, �90�, and 180� phase shifts, (c) phase filter made up of array of

4 polarizer elements. Courtesy 4D Technology.
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Haruna et al., 1998; Bosch et al., 2001; Hariharan, 2003). Multiple wavelength

interferometry was already used in 1895 to measure the length of an etalon (Michel-

son and Benoit, 1895) to overcome limitations of single wavelength interferometry.

These methods evolved successfully into methods for very precise 3D profilometry

described in this chapter.

15.10.2. Optical Triangulation

Triangulation sensors detect the backscattered light from a narrow laser beam

impinging on an object (Dorsch et al., 1994). The reflected light is detected by a

position sensitive device. From the change in position of the spot on the sensor the

change in distance to the object can be determined. Laser scanning and slit scanning

are based on optical triangulation. The principles of optical triangulation can be used

in tactile profilometers like stylus profilometers and atomic force microscopes to

detect the position of scanning probe.

15.10.3. Time of Flight (TOF)

These systems use light propagation as a measuring tool since the speed of light is

one of the fundamental well-determined constants. Distance is measured by counting

the time it takes for light to travel to an object and back. Time-of-flight method is a

preferred method to measure long distances; this method was used to measure the

distance to the moon.With the addition of a scanning system, aerial topographies can

be obtained. The resolution of TOF measurements ranges from 0.3 mm to a few

centimeters or more. A good review of TOF systems was done by Blais (2004) and

Moring et al. (1989)

15.11. SUMMARY

All of the methods described in this chapter allow for the measurement of topogra-

phies through various contact (tactile) and noncontact (optical) means. Oftentimes

the needs of industry have pushed the development of methods that can extract

particular information from a specific kind of sample in a unique environment.

Testing MEMS devices, for example, with their irregular surfaces often present

unique challenges, such as measuring laterally and vertically moving and deforming

surfaces, where these measurements occur through a piece of glass that protects the

sample. In addition, the need to reduce measurement times is always a priority.

Tactile methods have striven to develop long, narrow and smaller radius tips,

lighter forces and new ways of tip motion so that a wider range of sample can be

measured with higher precision and without damaging the sample. The interaction of

AFM or SPM tips delivers an increasingly wider range of information about the

electrical, magnetic and mechanical properties of different materials. However, since

these techniques are point by point scanning techniques, decreasing measurement

time is always crucial.
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Optical methods continue to improve vertical resolution over a large range of

height measurements. Recent trends show the development of techniques to measure

more complex samples, those built of different materials or coated with transparent

layers. Algorithms have been developed that obtain information about film thickness

and profilemeasurement and correction due to phase change on reflection of different

materials. In addition, new optical methods that are insensitive to vibrations are being

developed to examine the topographies of very large objects.

We foresee that the current trends in developing new methods will continue to

increase vertical and lateral range and resolution. Moreover, methods and systems

continue to be modified to increase their application space. For example, foreseeable

new applications include ways to measure samples submerged in liquids, in situ

monitoring and measurement of difficult to reach areas, such as small millimeter-

sized holes, are presently being developed. Finally, we envision a larger overlap with

optical coherence tomography and confocal microscopy for measurement of

biological specimens.
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Longueurs D’ondes Lumineuses,’’ Trav. Mem. Bur. Int Poids Mes., 11, 1 (1895).

Millerd J. E., N. J. Brock, J. B. Hayes,M. North-Morris, M. Novak, and J. C.Wyant, ‘‘Pixelated

Phase-Mask Dynamic Interferometer,’’ Proc. SPIE, 5531, 304–314 (2004).

Minsky M., Microscopy Apparatus, US Patent No. 3,013,467, (1961).

Molesini G., G. Pedrini, P. Poggi, and F. Quercioli, ‘‘Focus Wavelength Encoded Optical

Profilometer,’’ Opt. Com., 49, 229–233 (1984).

Montgomery, P, D. Montaner, O. Manzardo, and H. P. Herzig, ‘‘Lateral Error Reduction in the

3D Characterization of Deep MOEMS Devices Using White Light Interference

Microscopy,’’ Proc. SPIE, 5458, 34–42 (2004).

Moring I., H. Ailisto, V. Koivunen, and R. Myllylä, ‘‘Active 3D Vision System for Automatic
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16

Optical Metrology of Diffuse Surfaces

K. Creath, J. Schmit, and J. C. Wyant

This chapter discusses moiré, fringe projection, structured illumination, holographic

interferometry, digital holography, and speckle interferometry techniques for testing

diffuse surfaces. Diffuse surfaces may be ground optical surfaces; or more often than

not, they are other types of engineering surfaces or human figures. The main

applications of these techniques are to determine surface form and shape or to

measure displacement due to stress and object motion. When measuring surface

form, these techniques provide a coarser and more flexible means of testing a wider

variety of surfaces than do conventional interferometers. For displacement measure-

ment due to applied stress, static as well as time-average and dynamic displacements

can be determined quantitatively. These techniques are used a lot in machine vision

applications, for process control, and for specialized measurement tasks on engineer-

ing components. Applications range from measuring the shape of an airplane

window to determining whether components will stay on a circuit board, to studying

vibration modes of turbine blades, to monitoring the alignment of segments in a large

segmented telescope, to making replicas of historic sculptures, producing a well-

fitting pair of jeans, and creating animated movies or video games with realistic

motion of live figures. The newest techniques pushing the limits of this technology

currently focus on rapid prototyping and real-time shape observation for multimedia

and security.

16.1. MOIRÉ AND FRINGE PROJECTION TECHNIQUES

16.1.1. Introduction

The term moiré is not the name of a person; in fact, it is a French word referring to

‘‘an irregular wavy finish usually produced on a fabric by pressing between engraved

rollers’’ (Webster’s, 1981). In optics, it refers to a beat pattern produced between two

Optical Shop Testing, Third Edition Edited by Daniel Malacara
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gratings of approximately equal spacing. It can be seen in everyday things, such as

the overlapping of twowindow screens, the rescreening of a half-tone picture, or with

a striped shirt seen on television. The use of moiré for reduced sensitivity testing was

introduced by Lord Rayleigh in 1874. Lord Rayleigh looked at the moiré between

two identical gratings to determine their quality even though each individual grating

could not be resolved under a microscope.

Fringe projection entails projecting a fringe pattern or grating on an object and

viewing it from a different direction. The first use of fringe projection for determining

surface topography was presented by Rowe and Welford in 1967. It is a convenient

technique for contouring objects which are too coarse to be measured with standard

interferometry. Fringe projection is related to optical triangulation using a single

point of light and light sectioning where a single line is projected onto an object and

viewed in a different direction to determine the surface contour (Case et al., 1987).

These techniques are usually used with diffuse objects; however, alternative methods

have been developed to measure specular surfaces by looking at the fringe reflection

(Ritter and Hahn, 1983; Hang et al., 2000).

Moiré and fringe projection interferometry complement conventional holographic

interferometry, especially for testing optics to be used at long wavelengths. Although

two-wavelength holography (TWH) can be used to contour surfaces at any longer-

than-visible wavelength, visible interferometric environmental conditions are

required. Moiré and fringe projection interferometry can contour surfaces at any

wavelength longer than 10–100 mmwith reduced environmental requirements and no

intermediate photographic recording setup. Moiré is also a useful technique for

aiding in the understanding of interferometry.

This chapter explains what moiré is and how it relates to interferometry. Con-

touring techniques utilizing fringe projection, projection and shadowmoiré, and two-

angle holography are all described and compared. All of these techniques provide the

same result and can be described by a single theory. The relationship between these

techniques and the holographic and conventional interferometry will be shown.

Errors caused by divergent geometries are described, and applications of these

techniques combined with phase-measurement techniques are presented. Further

information on these techniques can be found in the following books and book

chapters: Varner (1974), Vest (1979), Hariharan (1984), Gasvik (2002), Chiang

(1983) Patorski and Kujawinska (1993), Post et al. (1997), Amridror (2000), and

Walker (2004).

16.1.2. What is Moiré?

Moiré patterns are extremely useful to help understand basic interferometry and

interferometric test results. Figure 16.1 shows the moiré pattern (or beat pattern)

produced by two identical straight line gratings rotated by a small angle relative

to each other. A dark fringe is produced where the dark lines are out of step

one-half period, and a bright fringe is produced where the dark lines for one grating

fall on top of the corresponding dark lines for the second grating. If the angle

between the two gratings is increased, the separation between the bright and dark
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fringes decreases. (A simple explanation of moiré is given by Oster and Nishijima

(1963).)

If the gratings are not identical to the straight line gratings, the moiré pattern

(bright and dark fringes) will not be straight equi-spaced fringes. The following

analysis shows how to calculate the moiré pattern for arbitrary gratings. Let the

intensity transmission function for two gratings f1ðx; yÞ and f2ðx; yÞ be given by

f1ðx; yÞ ¼ a1 þ
X1

n¼1

b1n cos½nf1ðx; yÞ�

f2ðx; yÞ ¼ a2 þ
X1

m¼1

b2m cos½mf2ðx; yÞ�
ð16:1Þ

where f(x,y) is the function describing the basic shape of the grating lines. For

the fundamental frequency, f(x,y) is equal to an integer times 2p at the center of

each bright line and is equal to an integer plus one-half times 2p at the center of each

dark line. The b coefficients determine the profile of the grating lines (i.e., square

wave, triangular, sinusoidal, etc). For a sinusoidal line profile, bi1 is the only nonzero

term.

When these two gratings are superimposed, the resulting intensity transmission

function is given by the product

f1ðx; yÞf2ðx; yÞ ¼ a1a2 þ a1
X1

m¼1

b2m cos½mf2ðx; yÞ� þ a2
X1

n¼1

b1n cos½nf1ðx; yÞ�

þ
X1

m¼1

X1

n¼1

b1nb2m cos½nf1ðx; yÞ� cos½mf2ðx; yÞ�: ð16:2Þ

2 a 

Destructive
interference

Constructive
interference

l /2 sin a

Observation
plane

(a) (b)

y

x

FIGURE 16.1. (a) Straight line grating. (b) Moiré between two straight line gratings of the same pitch at

an angle 2a with respect to one another.
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The first three terms of Eq. (16.2) provide information which can be determined by

looking at the two patterns separately. The last term is the interesting one, and can be

rewritten as

Term 4 ¼ 1

2
b11b21 cos½f1ðx; yÞ � f2ðx; yÞ�

þ 1

2

X1

m¼1

X1

n¼1

b1nb2m cos½nf1ðx; yÞ � mf2ðx; yÞ�; n and m both 6¼ 1

þ 1

2

X1

m¼1

X1

n¼1

b1nb2m cos½nf1ðx; yÞ þ mf2ðx; yÞ� ð16:3Þ

This expression shows that by superimposing the two gratings, the sum and differ-

ence between the two gratings is obtained. The first term of Eq. (16.3) represents the

difference between the fundamental pattern making up the two gratings. It can be

used to predict the moiré pattern shown in Figure 16.1. Assuming that two gratings

are oriented with an angle 2a between them with the y axis of the coordinate system

bisecting this angle, the two grating functions f1ðx; yÞ and f2ðx; yÞ can be written as

f1ðx; yÞ ¼
2p

l1
ðx cos aþ y sin aÞ

and

f2ðx; yÞ ¼
2p

l2
ðx cos a� y sin aÞ ð16:4Þ

where l1 and l2 are the line spacings of the two gratings. Equation (16.4) can be

rewritten as

f1ðx; yÞ � f2ðx; yÞ ¼
2p

lbeat
x cos aþ 4p

l
y sin a ð16:5Þ

where l ¼ ðl1 þ l2Þ=2 is the average line spacing, and lbeat is the beat wavelength

between the two gratings given by

lbeat ¼
l1l2

l2 � l1
ð16:6Þ

Note that this beat wavelength is the same that was obtained for two-wavelength

interferometry as described in Chapter 15, and is also referred to as the synthetic or

equivalent wavelength. Using Eq. (16.3), the moiré or beat will be lines whose

centers satisfy the equation

f1ðx; yÞ � f2ðx; yÞ ¼ M2p ð16:7Þ

Three separate cases for moiré fringes can be considered.
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For the first case l1 ¼ l2 ¼ l. The first term of Eq. (16.5) is zero, and the fringe

centers are given by

Ml ¼ 2y sin a ð16:8Þ

where M is an integer corresponding to the fringe order (see Fig. 16.2(a)). As was

expected, Eq. (16.8) is the equation of equi-spaced horizontal lines as seen in

Fig. 16.1.

For the second simple case l1 6¼ l2 and the gratings are parallel to each other with

a ¼ 0. This makes the second term of Eq. (16.5) vanish. The moiré will then be lines

which satisfy

Mlbeat ¼ x ð16:9Þ

These fringes are equally-spaced lines parallel to the grating lines (see Fig. 16.2(b)).

For the third and more general case where the two gratings have different line

spacings l1 6¼ l2 and the angle between the gratings is nonzero a 6¼ 0, the equation

for the moiré fringes will now be

Ml ¼ l

lbeat
x cos aþ 2y sin a ð16:10Þ

This is the equation of straight lines whose spacing and orientation is dependent upon

the relative difference between the two grating spacings and the angle between the

gratings (see Fig. 16.2(c)).

The orientation and spacing of the moiré fringes for the general case can be

determined from the geometry shown in Figure. 16.3 (Chiang, 1983). The distance

AB can be written in terms of the two grating spacings,

AB ¼ l1

sinðy� aÞ ¼
l2

sinðyþ aÞ ð16:11Þ

FIGURE 16.2. Moiré patterns caused by two straight line gratings with (a) the same pitch tilted with

respect to one another, (b) different frequencies and no tilt, and (c) different frequencies tiltedwith respect to

one another.
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where y is the angle the moiré fringes make with the y axis. After rearranging, the

fringe orientation angle y is given by

tan y ¼ tan a
l1 þ l2

l2 � l1

� �

ð16:12Þ

When a ¼ 0 and l1 6¼ l2, y ¼ 0�, and when l1 ¼ l2 with a 6¼ 0, y ¼ 90� as

expected. The fringe spacing perpendicular to the fringe lines can be found by

equating quantities for the distance DE,

DE ¼ l1

sin 2a
¼ C

sinðyþ aÞ ð16:13Þ

where C is the fringe spacing or contour interval. This can be rearranged to yield

C ¼ l1
sinðyþ aÞ
sin 2a

	 


ð16:14Þ

By substituting for the fringe orientation y, the fringe spacing can be found in terms

of the grating spacings and angle between the gratings;

C ¼ l1l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l22 sin
2 2aþ ðl2 cos 2a� l1Þ2

q ð16:15Þ

In the limit that a ¼ 0 and l1 6¼ l2, the fringe spacing equals lbeat, and in the limit

that l1 ¼ l2 ¼ l and a 6¼ 0, the fringe spacing equals l=ð2 sin aÞ. It is possible to

determine l2 and a from the measured fringe spacing and orientation as long as l1 is

known (Chiang, 1983).

x

y

λ1λ2

Moiré
fringes

Gratings

C

D

A
B

 θ θ

a a

E

FIGURE 16.3. Geometry used to determine spacing and angle of moiré fringes between two gratings of

different frequencies tilted with respect to one another.
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16.1.3. Moiré and Interferograms

Now that we have covered the basic mathematics of moiré patterns, let us see how

moiré patterns are related to interferometry. The single grating shown in Figure 16.1

can be thought of as a ‘‘snapshot’’ of plane waves (like in a collimated beam)

traveling to the right where the distance between the grating lines is equal to the

wavelength of light. Superimposing the two sets of grating lines in Fig. 16.1b can be

thought of as superimposing two plane waves with an angle of 2a between their

directions of propagation. When the two waves are in phase, bright fringes result

(constructive interference) and when they are out of phase, dark fringes result

(destructive interference). For a collimated plane wave, the ‘‘grating’’ lines are really

planes (sheets) perpendicular to the plane of the figure and the dark and bright fringes

are also planes perpendicular to the plane of the figure. If the plane waves are

traveling to the right, these fringes would be observed by placing a screen perpendi-

cular to the plane of the figure and to the right of the grating lines as shown in

Figure 16.1. The spacing of the interference fringes on the screen is given by

Eq. (16.8), where l is now the wavelength of light. Thus, the moiré of two

straight-line gratings correctly predicts the centers of the interference fringes pro-

duced by interfering two plane waves. Since the gratings used to produce the moiré

pattern are binary gratings, the moiré does not correctly predict the sinusoidal

intensity profile of the interference fringes. (If both gratings had sinusoidal intensity

profiles, the resulting moiré would still not have a sinusoidal intensity profile because

of higher-order terms.)

More complicated gratings, such as circular gratings, can also be investigated.

Figure 16.4(b) shows the superposition of two identical circular grating patterns

shown in Figure 16.4(a). This composite pattern indicates the fringe positions

obtained by interfering two spherical wavefronts. The centers of the two circular

gratings can be considered the source locations for two spherical waves. Just as for

two plane waves, the spacing between the grating lines is equal to the wavelength of

light. When the two patterns are in phase, bright fringes are produced, and when the

patterns are completely out of phase, dark fringes result. For a point on a given

fringe, the difference in the distances from the two source points and the fringe point

is a constant. Hence, the fringes are hyperboloids. Due to symmetry, the fringes seen

on observation plane A of Figure 16.4(b) must be circular. (Plane A is along the top

of Fig. 16.4(b) and perpendicular to the line connecting the two sources as well as

perpendicular to the page.) Figure 16.4(c) shows a representation of these inter-

ference fringes and represents the interference pattern obtained by interfering a non-

tilted plane wave and a spherical wave. (A plane wave can be thought of as a

spherical wave with an infinite radius of curvature.) Figure 16.4(d) shows that the

interference fringes in plane B are essentially straight equi-spaced fringes going into

the page. (These fringes are strictly speaking still hyperbolas, but in the limit of large

distances, they are essentially straight lines. Plane B is along the side of Fig. 16.4(b)

and parallel to the line connecting the two sources as well as perpendicular to

the page.)
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FIGURE 16.4. Interference of two spherical waves. (a) Circular line grating representing a spherical

wavefront. (b) Moiré pattern obtained by superimposing two circular line patterns. (c) Fringes observed in

plane A. (d) Fringes observed in plane B.
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The lines of constant phase in plane B, if there were only a single spherical wave

(single point source), are shown in Figure 16.5(a). (To first-order, the lines of constant

phase in plane B are the same shape as the interference fringes in plane A.)

The pattern shown in Figure 16.5(a) is commonly called a zone plate.

Figure 16.5(b) shows the superposition of two linearly displaced zone plates. The

resulting moiré pattern of straight equi-spaced fringes illustrates the interference

fringes in plane B shown in Figure 16.4(b).

Superimposing two interferograms and looking at the moiré or beat produced can

be extremely useful. The moiré formed by superimposing two different interfero-

grams shows the difference in the aberrations of the two interferograms. For

example, Figure 16.6 shows the moiré produced by superimposing two computer-

generated interferograms. One interferogram has 20 waves of tilt across the radius

(Fig. 16.6(a)), while the second interferogram has 20 waves of tilt plus 4 waves of

defocus (Fig. 16.6(b)). If the interferograms are aligned such that the tilt direction is

the same for both interferograms, the tilt will cancel and only the 4 waves of defocus

remain (Fig. 16.6(c)). In Figure 16.6(d), the two interferograms are rotated slightly

FIGURE 16.5. Moiré pattern produced by two zone plates. (a) Zone plate. (b) Straight line fringes

resulting from superposition of two zone plates.
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with respect to each other so that the tilt will not quite cancel. These results can be

described mathematically by looking at the two grating functions:

f1ðx; yÞ ¼ 2pð20r cosjþ 4r2Þ

and

f2ðx; yÞ ¼ 2p½20r cosðjþ aÞ� ð16:16Þ

A bright fringe is obtained when

f1 � f2

2p
¼ 20r½cosj� cosðjþ aÞ� þ 4r2 ¼ M ð16:17Þ

If a ¼ 0, the tilt cancels completely and 4 waves of defocus remain; otherwise, some

tilt remains in the moiré pattern.

Figure 16.7 shows similar results for interferograms containing third-order aber-

rations. A computer-generated interferogram having 22 waves of tilt across the

radius, 4 waves of spherical and �2 waves of defocus is shown in Figure 16.7(a).

Net spherical aberration with defocus and tilt is shown in Figure 16.7(d). This is the

result of moiré between the interferogram in Figure 16.7(a) with an interferogram

FIGURE 16.6. Moiré between two interferograms. (a) Interferogram having 20 waves tilt. (b) Interfer-

ogramhaving20waves tilt plus 4wavesof defocus. (c) Superpositionof 16.6a and16.6bwith no tilt between

patterns. (d) Slight tilt between patterns.
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having 20 waves of tilt (Fig. 16.6(a)). Figure 16.7(e) shows the moiré between an

interferogram having 20 waves of tilt (Fig. 16.6(a)) with an interferogram having 20

waves of tilt and 5 waves of coma (Fig. 16.7(b)) netting 5 waves of coma in the moiré.

The moiré between an interferogram having 20 waves of tilt (Fig. 16.6(a)) and one

having 20 waves of tilt, 7 waves third-order astigmatism, and �3.5 waves defocus

(Fig. 16.7(c)) is shown in Figure 16.7(f). Thus, it is possible to produce simple fringe

patterns using moiré. These patterns can be printed or photocopied onto transpar-

encies and used as a learning aid to understand interferograms obtained from

FIGURE 16.7. Moiré patterns showing third-order aberrations. Interferograms containing (a) 22 waves

tilt, 4 waves of third-order spherical aberration, and �2 waves of defocus, (b) 20 waves tilt and 5 waves

coma, and (c) 20 waves tilt, 7 waves astigmatism, and �3.5 waves of defocus. (d) Moiré pattern between

Figure 16.6a and 16.7a. (e) Moiré pattern between Figures 16.6(a) and 16.7(b). (f) Moiré pattern between

Figures 16.6(a) and 16.7(c).
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third-order aberrations. Electronic copies are available at JC Wyant’s website

(Wyant, 2006) as well as on the accompanying CD to this book.

Figure 16.8(a) shows two identical interferograms superimposed with a small

rotation between them. As we might by now expect, the moiré pattern consists of

nearly straight equi-spaced lines. However, when one of the two interferograms is

flipped over, the aberrations will add rather than subtract, and the resultant moiré is

shown in Figure 16.8(b). When one interferogram is flipped, the fringe deviation

from straightness in one interferogram is to the right and, in the other, to the left.

Thus, the signs of the defocus and spherical aberration for the two interferograms are

opposite and the resulting moiré pattern has twice the defocus and spherical of each

of the individual interferograms.

When two identical interferograms given by Figure 16.7(a) are superimposed with

a displacement from one another, a shearing interferogram is obtained. Figure 16.9

shows vertical and horizontal displacements with and without a rotation between the

two interferograms. The rotations indicate the addition of tilt to the interferograms.

These types of moiré patterns are very useful for understanding lateral shearing

interferograms.

Moiré patterns are produced by multiplying two intensity distribution functions.

Adding two intensity functions does not give the difference term obtained in

Eq. (16.3). A moiré pattern is not obtained if two intensity functions are added.

The only way to get a moiré pattern by adding two intensity functions is to use a

nonlinear detector. For the detection of an intensity distribution given by I1 þ I2, a

nonlinear response can be written as

Response ¼ aðI1 þ I2Þ þ bðI1 þ I2Þ2 þ � � � ð16:18Þ

This produces terms proportional to the product of the two intensity distributions in

the output signal. Hence, a moiré pattern is obtained if the two individual intensity

patterns are simultaneously observed by a nonlinear detector (even if they are not

multiplied before detection). If the detector produces an output linearly proportional

to the incoming intensity distribution, the two intensity patterns must be multiplied to

produce the moiré pattern. Since the eye is a nonlinear detector, moiré can be seen

FIGURE 16.8. Moiré pattern by superimposing two identical interferograms (Figure 16.7(a)). (a) Both

patterns having the same orientation. (b) One pattern is flipped.
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whether the patterns are added or multiplied. A good TV camera, on the other hand,

will not see moiré unless the patterns are multiplied.

16.1.4. Historical Review

Since Lord Rayleigh first noticed the phenomena of moiré fringes, moiré techniques

have been used for a number of testing applications. Righi (1887) first noticed that

the relative displacement of two gratings could be determined by observing the

movement of the moiré fringes. The next significant advance in the use of moiré was

presented by Weller and Shepherd (1948). They used moiré to measure the deforma-

tion of an object under applied stress by looking at the differences in a grating pattern

before and after the applied stress. They were the first to use shadow moiré, where a

grating is placed in front of a nonflat surface, to determine the shape of the object

behind it by using the shape of the moiré fringes. A rigorous theory of moiré fringes

did not exist until the mid-fifties when Ligtenberg (1955) and Guild (1956, 1960)

explained moiré for stress analysis by mapping slope contours and displacement

measurement, respectively. Excellent historical reviews of the early work in moiré

have been presented by Theocaris (1962, 1966). Books on this subject have been

written by Guild (1956, 1960), Theocaris (1969), and Durelli and Parks (1970).

Projection moiré techniques were introduced by Brooks and Helfinger (1969) for

FIGURE 16.9. Moiré patterns formed using two identical interferograms (Figure 16.7(a)) where the two

are sheared with respect to one another. (a) Vertical displacement. (b) Vertical displacement with rotation

showing tilt. (c) Horizontal displacement. (d) Horizontal displacement with rotation showing tilt.
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optical gauging and deformation measurement. Until 1970, advances in moiré

techniques occurred mostly in stress analysis. Some of the first uses of moiré to

measure surface topography were reported by Meadows et al., (1970), Takasaki

(1970), and Wasowski (1970). Moiré has also been used to compare an object to a

master and for vibration analysis (Der Hovanesian and Yung, 1971; Gasvik, 2002). A

theoretical review and experimental comparison of moiré and projection techniques

for contouring is given by Benoit et al. (1975). Automatic computer fringe analysis of

moiré patterns by finding fringe centers was reported by Yatagai et al. (1982).

Heterodyne interferometry was first used with moiré fringes by Moore and Truax

(1979), and phase measurement techniques were further developed by Perrin and

Thomas (1979), Shagam (1980), and Reid (1984b). Review papers on moiré tech-

niques include Post (1982), Reid (1984a), and Halioua and Liu (1989) and recent

books include Patorski and Kujawinska (1993), Post et al. (1997), Amridror (2000),

and Walker (2004).

The projection of interference fringes for contouring objects was first proposed by

Rowe and Welford (1967). Their later work included a number of applications for

projected fringes (Welford, 1969) and the use of projected fringes with holography

(Rowe, 1971). In-depth mathematical treatments have been provided by Benoit et al.

(1975) and Gasvik (2002). The relationship between projected fringe contouring and

triangulation is given in a book chapter by Case et al. (1987). Heterodyne phase

measurement was first introduced with projected fringes by Indebetouw (1978),

and phase measurement techniques were further developed by Takeda, Ina, and

Kabayashi (1982), Takeda and Mutoh (1983), and Srinivasan, Liu, and Halioua

(1984, 1985). Today phase measurement techniques are the norm as described in

the list of recent books listed above.

Haines and Hildebrand first proposed contouring objects in holography using two

sources (Haines and Hildebrand, 1965; Hildebrand and Haines, 1966, 1967). These

two sources were produced by changing either the angle of the illumination beam on

the object or the angle of the reference beam. A small angle difference between the

beams used to produce a double-exposure hologram creates a moiré in the final

hologram which corresponded to topographic contours of the test object. Further

insight into two-angle holography has been provided by Menzel (1974), Abramson

(1976a,b), and DeMattia and Fossati-Bellani (1978). The technique has also been

used in speckle interferometry (Winther, 1983). These holographic and speckle

techniques are described more in the second half of this chapter.

Since all of these techniques are so similar, it is sometimes hard to differentiate

developments in one technique versus another. MacGovern (1972) provided a theory

that linked all of these techniques together. The next part of this chapter will explain

each of these techniques and then show the similarities among all of these techniques

and provide a comparison to conventional interferometry.

16.1.5. Fringe Projection

A simple approach for contouring is to project interference fringes or a grating

onto an object and then view from another direction. Figure 16.10 shows the optical
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setup for this measurement. Assuming a collimated illumination beam and viewing

the fringes with a telecentric optical system, straight equally-spaced fringes are

incident on the object producing equally-spaced contour intervals. The departure

of a viewed fringe from a straight line shows the departure of the surface from a

plane reference surface. An object with fringes of spacing p projected onto it can be

seen in Figure 16.11. When the fringes are viewed at an angle a relative to the

projection direction, the spacing of the lines perpendicular to the viewing direction

will be

d ¼ p

cos a
ð16:19Þ

The contour interval C (the height between adjacent contour lines in the viewing

direction) is determined by the line or fringe spacing projected onto the surface and

the angle between the projection and viewing directions;

C ¼ p

sin a
¼ d

tan a
ð16:20Þ

These contour lines are planes of equal height and the sensitivity of the measurement

is determined by a. The larger the angle a, the smaller the contour interval. If

a ¼ 90�, then the contour interval is equal to p, and the sensitivity is a maximum.

The reference plane will be parallel to the direction of the fringes and perpendicular

to the viewing direction as shown in Figure 16.12. Even though the maximum

sensitivity can be obtained, a 90� angle between the projection and viewing direc-

tions will produce a lot of unacceptable shadows on the object. These shadows

will lead to areas with missing data where the object cannot be contoured. When

a ¼ 0, the contour interval is infinite, and the measurement sensitivity is zero. To

provide the best results, an angle no larger than the largest slope on the surface should

be chosen.

C

p

a

Project fringes

or grating

View

d

FIGURE16.10. Projection of fringes or grating onto object and viewed at an angle a. p is the grating pitch

or fringe spacing and C is the contour interval.
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When interference fringes are projected onto a surface rather than using a grating,

the fringe spacing p is determined by the geometry shown in Figure 16.13 and is

given by

p ¼ l

2 sin�y
ð16:21Þ

FIGURE 16.11. Mask with fringes projected onto it. (a) Coarse fringe spacing. (b) Fine fringe spacing.

(c) Fine fringe spacing with an increase in the angle between illumination and viewing.
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where l is the wavelength of illumination and 2�y is the angle between the two

interfering beams. Substituting the expression for p into Eq. (16.20), the contour

interval becomes

C ¼ l

2ðsin�yÞ sin a ð16:22Þ

If a simple interferometer such as a Twyman–Green is used to generate projected

interference fringes, tilting one beam with respect to the other will change the

contour interval. The larger the angle between the two beams, the smaller the contour

interval will be. Figures 16.11(a and b) show a change in the fringe spacing for

interference fringes projected onto an object. The direction of illumination has been

moved away from the viewing direction between Figures 16.11(b and c). This

increases the angle a and the test sensitivity while reducing the contour interval.

Projected fringe contouring has been covered in detail by Gasvik (2002).

If the source and the viewer are not at infinity, the fringes or grating projected onto

the object will not be composed of straight, equally-spaced lines. The height between

contour planes will be a function of the distance from the source and viewer to the

object. There will be a distortion due to the viewing of the fringes as well as due to

the illumination. This means that the reference surface will not be a plane. As long as

the object does not have large height changes compared to the illumination and

viewing distances, a plane reference surface placed in the plane of the object can be

Reference

plane

a = 90°

View

FIGURE 16.12. Maximum sensitivity for fringe projection with a 90� angle between projection and

viewing.

FIGURE 16.13. Fringes produced by two interfering beams.
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measured first and then subtracted from subsequent measurements of the object. This

enables the mapping of a plane in object space to a surface which will serve as a

reference surface. If the object has large height variations, the plane reference surface

may have to be measured in a number of planes to map the measured object contours

to real heights. Finite illumination and viewing distances will be considered in more

detail with shadow moiré in Section 16.1.6.

Fringe Projection using Microdisplays. For many years fringe projectionmethods

relied on Ronchi gratings, which were often made as imprinted chrome lines on a

glass substrate, but present-day systems employ a number of different types of

microdisplays (digital light projectors); three commonly-used types of microdisplays

(Armitage et al., 2002), namely micro-electro-mechanical-systems (MEMS), liquid-

crystal and electroluminescent technologies, allow for active addressing of indivi-

dual pixels high resolution matrix display area. The first type, which includes digital

micromirror displays (DMD – Texas Instrument trademark), uses an array of

individual, approximately 13 mm square mirrors that are switched on and off at

different frequencies so as to obtain different levels of projected light. The second

type of microdisplays are liquid crystal displays (LCD), where standard LCDs are

build of twisted nematic liquid crystal layers and work in transmission. The newer

type of LCDs is based on ferroelectric crystal placed on silicon (LCoS) and works in

reflection. LCD displays act as spatial light modulators (SLM) and require incident

polarized light. The third type is microdisplay made of an array of organic (polymer)

light emitting diodes (OLEDS or PLEDS). This type is best suited for small systems

because pixels made of organic polymers are Lambertian emitters itself and do not

require additional illuminator. The advantage of any fringe projection system using

microdisplays controlled by computer is that they do not require a mechanical phase

shifting grating and the type of projected fringes can be changed with a mouse click.

Fringes are changed by addressing pixels of microdisplay. Additional advantage of

microdisplays is that the period and brightness (Kowarschik et al., 2000; Proll et al.,

2003) of light patterns can be adapted to the type of object and also patterns can be

displayed in different colors allowing for simultaneous collection of three patterns

with color CCD camera. Many authors have analyzed performance of microdisplays

in fringe projection for shape measurement (Frankowski et al., 2000; Proll et al.,

2003; Notni, Riehemann et al., 2004).

16.1.6. Shadow Moiré

A simple method of moiré interferometry for contouring objects uses a single grating

placed in front of the object as shown in Figure 16.14. The grating in front of the

object produces a shadow on the object which is viewed from a different direction

through the grating. A low frequency beat or moiré pattern is seen. This pattern is due

to the interference between the grating shadows on the object and the grating as

viewed. Assuming that the illumination is collimated and that the object is viewed at

infinity or through a telecentric optical system, the height z between the grating and
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the object point can be determined from the geometry shown in Figure 16.14

(Meadows et al., 1970; Takasaki, 1973; Chiang, 1983). This height is given by

z ¼ Np

tan aþ tan b
ð16:23Þ

where a is the illumination angle, b is the viewing angle, p is the spacing of the

grating lines, and N is the number of grating lines between the points A and B (see

Fig. 16.14). The contour interval in a direction perpendicular to the grating will

simply be given by

C ¼ p

tan aþ tan b
ð16:24Þ

Again, the distance between the moiré fringes in the beat pattern depends upon the

angle between the illumination and viewing directions. The larger the angle, the

smaller the contour interval. If the high frequencies due to the original grating are

filtered out, then only the moiré interference term is seen. The reference plane will

be parallel to the grating. Note that this reference plane is tilted with respect to

the reference plane obtained when fringes are projected onto the object. Essentially,

the shadow moiré technique provides a way of removing the ‘‘tilt’’ term and

repositioning the reference plane. The contour interval for shadow moiré is the

same as that calculated for projected fringe contouring [Eq. (16.20)] when one of

the angles is zero with d ¼ p. Figure 16.15 shows an object which has a grating

sitting in front of it. An illumination beam is projected from one direction and viewed

z

b

a

B

A

p
Illuminate

View

Grating &

reference plane

FIGURE 16.14. Geometry for shadow moiré with illumination and viewing at infinity, that is, parallel

illumination and viewing.

774 OPTICAL METROLOGY OF DIFFUSE SURFACES



from another direction. Between Figures 16.15a and b, the angles a and b have

been increased. This has the effect of decreasing the contour interval, increasing the

number of fringes, and rotating the reference plane slightly away from the viewer.

Most of the time, it is difficult to illuminate an entire object with a collimated

beam. Therefore, it is important to consider the case of finite illumination and

viewing distances. It is possible to derive this for a very general case (Meadows,

Johnson, and Allen, 1970; Takasaki, 1970; Bell, 1985); however, for simplicity, only

the case where the illumination and viewing positions are the same distance from the

grating will be considered. Figure 16.16 shows a geometry where the distance

between the illumination source and the viewing camera is given by w, and the

distance between these and the grating is l. The grating is assumed to be close enough

to the object surface so that diffraction effects are negligible. In this case, the height

between the object and the grating is given by

z ¼ Np

tan a0 þ tan b0
ð16:25Þ

where a0 and b0 are the illumination and viewing angles at the object surface. These

angles change for every point on the surface and are different from a and b in

Figure 16.16 which are the illumination and viewing angles at the grating (reference)

surface. The surface height can also be written as (Meadows et al., 1970; Takasaki,

1973; Chiang, 1983)

z ¼ NCðzÞ ¼ Npðlþ zÞ
w

¼ Npl

w� Np
ð16:26Þ

FIGURE 16.15. Mask with grating in front of it. (a) One viewing angle. (b ) Larger viewing angle.
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This equation indicates that the height is a complex function depending upon the

position of each object point. Thus, the distance between contour intervals is

dependent upon the height on the surface and the number of fringes between the

grating and the object. Individual contour lines will no longer be planes of equal

height. There are now surfaces of equal height. The expression for height can be

simplified by considering the case where the distance to the source and viewer is

large compared to the surface height variations, l � z. Then the surface height can be

expressed as

z ¼ Npl

w
¼ Np

tan aþ tan b
ð16:27Þ

Even though the angles a and b vary from point-to-point on the surface, the sum of

their tangents remains equal to w/l for all object points as long as l � z. The contour

interval will be constant in this regime and will be the same as that given by

Eq. (16.24).

Because of the finite distances, there is also distortion due to the viewing

perspective. A point on the surface Q will appear to be at the location Q0 when
viewed through the grating. By similar triangles, the distances x and x0 from a

line perpendicular to the grating intersecting the camera location can be related

using

x

zþ l
¼ x0

l
ð16:28Þ

where x and x0 are defined in Figure 16.16. Equation (16.28) can be rearranged to

yield the actual coordinate x in terms of the measured coordinate x0 and the

z

b ′

a ′

Q ′

Q

b

a

w

x
x ′

l

p

Source

Camera

FIGURE 16.16. Geometry for shadow moiré with illumination and viewing at finite distances.
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measurement geometry,

x ¼ x0 1þ z

l

� �

ð16:29Þ

Likewise, the y coordinate can be corrected using

y ¼ y0 1þ z

l

� �

ð16:30Þ

This enables the measured surface to be mapped to the actual surface to correct for

the viewing perspective. These same correction factors can be applied to fringe

projection.

16.1.7. Projection Moiré

Moiré interferometry can also be implemented by projecting interference fringes or a

grating onto an object and then viewing through a second grating in front of the

viewer (see Fig. 16.17) (Brooks and Helfinger, 1969). Instead of using a second

grating to observemoiré fringes, the spacing of pixels on a digital camera can be used

if the pitch is close to the observed fringe spacing (Bell 1985).

The difference between projection and shadow moiré is that in projection moiré

two different gratings are used in projection moiré. The orientation of the reference

plane can be arbitrarily changed by using different grating pitches to view the object.

The contour interval is again given by Eq. (16.24), by substituting a period of

d ¼ p= cos a for p where a is the angle of illumination direction. Fringes of spacing

p or a grating of pitch p perpendicular to the direction of illumination will have a

period of d ¼ p= cos a in the y plane (see Fig. 16.16). As long as the grating pitches

are matched for both illumination and viewing to have the same value of d in the y

plane then the contour interval can be found using Eq. (16.24) with d substituted for

p. This implementation makes projection moiré the same as shadow moiré, although

Project fringes

or grating

View through

grating

FIGURE 16.17. Projection moiré where fringes or a grating are projected onto a surface and viewed

through a second grating.
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projection moiré can be much more complicated than shadow moiré. A good

theoretical treatment of projection moiré is given by Benoit et al. (1975).

16.1.8. Two-angle Holography

Projected fringe contouring can also be done using holography. First a hologram of

the object is made using the optical setup shown in Figure 16.18. Then the direction

of the beam illuminating the object is changed slightly. When the object is viewed

through the hologram, interference fringes are seen which correspond to the inter-

ference between the wavefront stored in the hologram and the livewavefront with the

tilted illumination. This process is depicted by Figure 16.19. These fringes are

exactly what would be seen if the object were illuminated with the two illumination

beams simultaneously. The beams would be tilted with respect to one another by the

same amount that the illumination beam was tilted after making the hologram. These

Laser

Variable beamsplitter

Reference beam

Spatial

filter Spatial

filter

Object

Tiltable

mirror

Collimating

lens

Hologram

Test beam

FIGURE 16.18. Setup for two-angle holographic interferometry.

Change angle after

making hologram

View through

hologram

2∆q

FIGURE 16.19. Two-angle holographic interferometry. Get interference fringes from shifting the illu-

mination beam.
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fringes will look the same as those produced by projected fringe contouring and

shown in Figure 16.11. To produce straight, equally-spaced fringes, the object

illumination should be collimated. The surface contour is measured relative to a

surface which is a plane when collimated illumination is used. The theory of

projected fringe contouring can be applied to two-angle holographic contouring

yielding a contour interval given by Eq. (16.22), where 2�y is the change in the angle

of the object illumination. More detail on two-angle holographic contouring can be

found in Haines and Hildebrand (1965), Hildebrand and Haines (1967, 1966), Vest

(1979), and Hariharan (1984).

Surface contours can also be obtained using the digital holography and speckle

interferometry techniques described in the second half of this chapter by utilizing this

type of optical setup and taking data from two different angles. For those techniques,

quantitative precisions of 1/100th of the contour interval are obtainable after system

calibration.

16.1.9. Common Features

All of the techniques described produce fringes corresponding to contours of equal

height on the object. They all have a similar contour interval determined by the fringe

spacing or grating period and the angle between the illumination and viewing

directions as long as the illumination and viewing are collimated.

Extracting Quantitative Information from Fringe Projection and Moiré

Techniques. Phase-shifting techniques (see Chapter 14) can be applied to any of

the techniques to produce quantitative height information as long as sinusoidal

gratings or fringes are used. The surface heights measured are relative to a reference

surface which is a plane as long as the fringes or grating lines are straight and equally

spaced at the object. The only difference between the moiré techniques and the

projected fringes and two-angle holography is the change in the location of the

reference plane. If the fringes are digitized or phase-measuring interferometry

techniques are applied, the reference plane can be changed in the computer math-

ematically.

The precision of these contouring techniques depends upon the number of fringes

used. When the fringes are digitized using fringe following techniques, the surface

height can be determined to 1/10 of a fringe. If phase-measurement is used, the

surface heights can be determined to 1/100 of a fringe. Therefore it is advantageous

to use as many fringes as possible. And because a reference plane can easily be

changed in a computer by changing the amount of tilt subtracted, projected fringe

contouring is the simplest way to contour an object interferometrically.

16.1.10. Comparison to Conventional Interferometry

Themeasurement of surface contour can be related to making the samemeasurement

using a Twyman–Green interferometer assuming a long effective wavelength. The

loci of the lines or fringes projected on to the surface (assuming illumination and
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viewing at infinity) is given by

y ¼ z tan aþ nd ð16:31Þ

where z is the height of the surface at the point y, d is the fringe spacing measured

along the y axis, and n is an integer referring to fringe order number. If the same

surface were tested using a Twyman–Green interferometer, a bright fringe would be

obtained whenever

2z� y sin g ¼ nl ð16:32Þ

where l is the wavelength and g is the tilt of the reference plane. By comparing

Eqs. (16.31) and (16.32), it can be seen that they are equivalent as long as

d ¼ leffective

sin g
ð16:33Þ

and

2

sin g
¼ tan a ð16:34Þ

where leffective is the effective wavelength. The effective wavelength can then be

written as

leffective ¼ 2C ¼ 2d

tan a
¼ 2p

cos a tan a
ð16:35Þ

where C is the contour interval as defined in Eq. (16.20). Thus, contouring using

these techniques is similar to measuring the object in a Twyman–Green interferom-

eter using a source with wavelength leffective.

16.1.11. Coded and Structured Light Projection

A method that is often used in place of moiré methods combines projection of

multiple binary grey code patterns and sinusoidal fringes. Projection of grey code

patterns was used in photogrametry, and now it is used in fringe projection in order to

resolve unwrapping ambiguities and extending the range of PSI methods used in

fringe projection (Reich et al., 2000; Huang and Zhang, 2005) and can be utilized

adaptively to follow objects in real time (Koninckx and Van Gool, 2006). The use of

multiple patterns with different frequencies is analogous to using multiple wave-

length sources in conventional interferometric techniques to resolve phase ambigu-

ities. The mathematical mergence of photogrametry methods with fringe projection

methods can be called phasogrammetry or phase value photogrammetry. A large

number of different coding strategies for structure light projection have been

proposed (Salvi et al., 2004) for applications including machine vision, industry
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inspection, reverse engineering, rapid prototyping, biomedicine, and art. Advances

in image processing and fringe projection techniques have enabled great strides in

the measurement of object shape. These techniques provide realistic data that can

follow motion almost in a real time. They have created many new applications in the

multimedia industry for computer graphics and animation as well as for virtual

reality and facial recognition. Recent reviews of various applications can be found in

(Kujawińska and Malacara, 2001; Harding, 2005; D’Apuzzo, 2006).

16.1.12. Applications

All these techniques can be used for displacement measurement or stress analysis as

well as for contouring objects. Displacement measurement is performed by compar-

ing the fringe patterns obtained before and after a small movement of the object or

before and after applying a load to the object (similar to holographic interferometry

techniques described in Section 16.2). Because the sensitivity of these tests are

variable, they can be used for a larger range of displacements and stresses than the

holographic techniques. Differential interferometry comparing two objects or an

object and a master can also be performed by comparing the two fringe patterns

obtained. Finally, time-average vibration analysis can also be performed with moiré

yielding results similar to those obtained with time-average holography with a much

longer effective wavelength (see Section 16.2.2.2).

Using phase-measurement techniques, the surface height relative to some refer-

ence surface can be obtained quantitatively. If the contour lines are straight and

equally spaced in object space, then the reference plane will be a plane. In the

computer any plane (or surface) desired can be subtracted from the surface height to

yield the surface profile relative to any plane. This is similar to viewing the contour

lines through a grating (or deformed grating) to reduce their number. If the contour

lines are not straight and equally spaced, the reference surface will be something

other than a plane. The reference surface can be determined by placing a flat surface

at the location of the object and measuring the surface height. Once this ref-

erence surface is measured, it can be subtracted from subsequent measurements to

yield the surface height relative to a plane surface. Thus, with the use of phase-

measuring interferometry techniques, the surface height can be made relative to any

surface and transformed to surface heights relative to another surface. Taking this one

step further, a master component can be compared to a number of test components to

determine if their shape is within the specification. It should also be pointed out that

this measurement is sensitive to a certain direction, and that there may be areas where

data are missing because of shadows on the surface.

As an example, Figure 16.20 shows the mask of Figures 16.11 and 16.15 con-

toured using fringe projection and phase-measurement interferometry. The fringes

are produced using a Twyman–Green interferometer with a He–Ne laser. A high-

resolution camera with 1320� 900 pixels and a zoom lens is used to view the fringes.

Surface heights are calculated using phase-measurement techniques at each detector

point. A total of five interferograms were used to calculate the surface shown in

Figure 16.20(a). The best fit plane has been subtracted from the surface to yield
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Figure 16.20(b). In this way, the reference plane has been changed. Figure 16.20(c)

shows a two-dimensional contour map of the object after the best-fit plane is

removed. These contours can also be thought of as the fringes which would be

viewed on the object. Figure 16.20c shows the fringes with a second reference grating

chosen to minimize the fringe spacing. The contour interval for this example is

10 mm, and the total peak-to-valley height deviation after the tilt is subtracted is

about 30 mm.

FIGURE 16.20. Mask measured with projected fringes and phase-measurement interferometry. (a)

Isometric plot of measured surface height. (b) Isometric plot after best-fit plane removed. (c) Two-

dimensional contour plot after best-fit plane removed. Units on plots are in numbers of contour intervals.

One contour interval is approximately 10 mm. The surface is about 150 mm in diameter.
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16.1.13. Summary

The techniques of projected fringe contouring, projection moiré, shadow moiré,

and two-angle holographic contouring are all similar. They all involve projecting a

pattern of lines or interference fringes onto an object and then viewing those

contour lines from a different direction. In the case of the moiré techniques, the

contour lines are viewed through a grating to reduce the total number of fringes. In

all of the techniques, the surface height is measured relative to a reference surface.

The reference surface will be a plane if the projected grating lines or interference

fringes are straight and equally spaced at the object and viewed at infinity or with a

telecentric imaging system. The use of the second grating in the moiré techniques

changes the reference plane, but does not affect the contour interval. The sensitivity

of the techniques is maximum when the contour lines are viewed at an angle of 90�

with respect to the projection direction. Quantitative data can be obtained from any

of these techniques using phase-measurement interferometry techniques. The

precision of the surface height measurement will depend upon the number of

fringes present. Surface height measurements can be made with a repeatability

of 1/100 of a contour interval RMS. Thus, the number of fringes used should be as

many as can easily be measured. The contour interval can be changed to increase

the number of fringes, and once the surface height is calculated, a reference surface

can be subtracted in the computer to find the surface height relative to any desired

surface.

16.2. HOLOGRAPHIC AND SPECKLE TESTS

16.2.1. Introduction

Diffusely reflecting or polished surfaces that are subject to stress can be interfer-

ometrically compared with their normal states using holographic interferometry

techniques. Direct measurements as well as shearing methods are possible for static,

dynamic and time-average measurements.

Traditional holographic interferometry techniques require the recording of an

intermediate hologram of a previous or ideal object state to compare with the current

state or shape of the object. Speckle interferometry and digital holography techni-

ques do not require the use of an intermediate holographic recording as the phase data

are directly recorded and reconstructed using electronic or digital techniques. These

techniques can provide interference fringes corresponding to a change in the object

shape or displacement.

This chapter describes holographic and speckle techniques useful in optical

testing. This subject has such a large amount of information to cover that emphasis

is placed on basic descriptions of some of the techniques, and examples showing

results of measurements using these tests. Since the publication of the 2nd edition of

this book, several books have been published that cover this topic more in depth

(Jacquot and Fournier, 2000; Gasvik, 2002; Gastinger et al., 2003; Steinchen and

Yang, 2003; Yaroslavsky, 2004; Kreis, 2005; Mix, 2005; Schnars and Jueptner,
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2005). The reader may look into these references for more in-depth mathematics and

descriptions of these techniques.

16.2.2. Holographic Interferometry for Nondestructive Testing

Holographic interferometry techniques have been in use for more than 4 decades in

the field of stress analysis. Historical reviews can be found in Vest (1979), Gasvik

(Gasvik 2002), and Kreis (Kreis 2005). There are two basic types of techniques:

static and time average. Static tests, such as double-exposure holography and real-

time holographic interferometry, measure an object in two different states of applied

stress and find the difference between them. In these tests, the object is assumed to

not be moving during the exposure time. A single exposure of the object is made

before stress is applied, and a second single measurement is made after the stress is

applied. Static tests can also be performed using pulsed lasers to freeze motion and

obtain dynamic measurements (Vest, 1979; Gasvik, 2002; Kreis, 2005), where the

length of the pulse is small compared to the change in object motion. For time-

average techniques, the object is excited at some vibrational frequency providing a

periodic motion. A single measurement averaged over multiple periods of vibration

is evaluated.

The optical layout shown in Fig. 16.21 is used for holographic nondestructive

testing to measure out-of-plane displacement. It can be modified to measure in-plane

displacement as well as out-of-plane displacement and to do shearing holographic

interferometry measurements. A laser beam is split into two paths using a variable-

density beamsplitter to control the ratio of the amount of light in one beam with

respect to the other beam. The object beam illuminates the object with a diverging

beam of light. The object, usually diffuse, scatters the light, and some of this light is

FIGURE 16.21. Holographic interferometer for nondestructive testing.
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incident upon the hologram plane. The other beam is a reference beam directly

incident upon the hologram plane. The angle between the object beam and the

reference beam at the hologram plane will determine the spacing of the interference

fringes in the hologram. Because the hologram is simply the interference of two

beams of light, the difference between the path lengths of the object and reference

beams must be within the coherence length of the laser being used. If an argon-ion

laser with an etalon or a single-mode helium–neon laser is used, a coherence length

of manymeters is attainable; whereas, if a multi-mode helium–neon laser is used, the

path lengths must be within a few centimeters of one another. To make an efficient

hologram, the reference beam should be 6–8 times brighter than the object beam at

the hologram plane, the polarizations of the two beams should be in the plane of

incidence, and the angle between the object and reference beams needs to be small

enough to produce resolvable interference fringes in the recording material.

Holographic interferometry techniques can be used to measure thermal changes in

optical elements, changes in optical surface shape due to mounting, changes in

deformable mirror shapes, and to study vibrational modes of optical elements,

mounts, or entire optical systems. These techniques can be used with diffuse

(ground) surfaces, specularly reflecting surfaces, and transmissive optical compo-

nents. One particular application of holographic nondestructive testing is to deter-

mine the mechanical and thermal properties of large unworked mirror blanks before

any time and money are spent to put optical surfaces on the blanks (Van Deelen and

Nisenson 1969). Both qualitative fringe data and quantitative displacement data may

be obtained.

Static Holographic Interferometry. For a static holographic measurement of an

object, a hologram of the object is madewhile the object is in one stress state. In order

for static measurements to work, the object must not move while the hologram is

being made. After the object stress state is changed, either a second hologram is

exposed as in double-exposure holographic interferometry, or the object is observed

through the hologram as in real-time holographic interferometry. In both cases, there

is a secondary interference between the wavefront generated before the change in

applied stress and the wavefront generated after the change in applied stress. For

double-exposure holography, both wavefronts are stored in the hologram. When the

hologram is illuminated with the reference wavefront, both wavefronts are recon-

structed. When these wavefronts are viewed through the hologram, cosinusoidal

secondary interference fringes are visible. The secondary interference fringes corre-

spond directly to the amount of object displacement between the two exposures. If

there is no change in the object between exposures, a single interference fringe will

be produced. Each fringe in the secondary interference pattern indicates one wave of

displacement along a direction bisecting the illumination and viewing directions of

the object.

For real-time holographic interferometry, one of the two wavefronts is stored in

the hologram, and the other wavefront is produced live by the test object. Once the

hologram is made and developed, care must be made to ensure that the hologram is

replaced in the same location so that the wavefront stored in the hologram can be
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interfered with the live wavefront. Real-time holographic interferometry is very

similar to the use of the holographic test plate. Fringe location, fringe shape, and

test sensitivity are the same for real-time techniques as they arewith double-exposure

techniques. If the object is in motion, static techniques can be used to provide

cosinusoidal fringes as long as a pulsed laser or high-speed shutter is used to freeze

the motion. The exposure time must be short enough that the object does not

move during it.

Figure 16.22 shows the recording geometry indicating the object displacement

vector L, and the sensitivity vector K. The sensitivity vector is defined as the

direction along which the object displacement is measured. The direction of the

sensitivity vector can vary across the object surface if the field of view is large, and if

the source illuminating the object and the viewing position are not located at infinity.

Mathematically, the secondary interference fringes for a static holographic measure-

ment at a single point in the viewing plane can be written as

I ¼ I0ð1þ g cos�fÞ ð16:36Þ

where I0 is the dc intensity, g is the fringe visibility, and �f is the phase of the

secondary interference fringes corresponding to the difference (displacement)

between the two object states. The phase difference can be written as

�f ¼ K � L ð16:37Þ

The displacement of the object at a point x,y in the direction of the sensitivity vector

is given by

Dðx; yÞ ¼ �fðx; yÞl
4p cosðc=2Þ ð16:38Þ

FIGURE 16.22. Recording geometry showing sensitivity vector and displacement vector.
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where l is the illumination wavelength and c is the angle between the illumination

and viewing directions. The displacement measurement is usually a combination of

in-plane (along the surface of object) and out-of-plane (perpendicular to the object

surface) displacement. Specific setups can be made to measure only one of these

components. If all three components of displacement (x,y, and z) are desired, three

measurements must be made (Pryputniewicz and Stetson, 1976; Stetson, 1979, 1990;

Nakadate et al., 1981; Kakunai et al., 1985; Hariharan et al., 1987). As long as the

change in the object shape is small, the secondary interference fringes will be

localized at the object. If the applied stress causes the object to move (rigid-body

translation or rotation) as well as deform, the secondary interference fringes may not

be localized at the object (Vest, 1979; Hariharan, 1984).

An example showing the use of static holographic interferometry to test a

coupling flange from a helicopter is shown in Figure 16.23. This part was stressed

between exposures by applying a static force between the rim and the center of the

part.

In addition to displacement measurement and stress analysis, real-time or double-

exposure holographic interferometry can be used to contour objects with two

wavelengths, two indices of refraction, or two different angles of object illumination

(Hariharan, 1984).

Time-Average Holographic Interferometry. If the object is excited in a periodic

motion, a measurement can be made using a single exposure which averages over

many vibrational periods creating a time-average hologram (Powell and Stetson,

FIGURE 16.23. Double-exposure holographic interferometry fringes of helicopter coupling flange.

(Courtesy K. A. Stetson, United Technologies Research Center.)
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1965; Stetson and Powell, 1965; Vest, 1979; Hariharan, 1984). The secondary

interference fringes at a single point in the viewing plane for this case can be written

as

I ¼ I0gjMð�Þj2 ð16:39Þ

where M(�) is the secondary fringe function due to the object motion. When the

object is moving sinusoidally,

Mð�Þ ¼ J0ð�Þ ð16:40Þ

where J0 is a zero-order Bessel function, and � ¼ K � L / A=l for a vibration

amplitude A and illumination wavelength l. Note that this result is independent of the

vibration excitation frequency. The time-average secondary interference fringes for a

sinusoidal vibration become

I ¼ I0gJ0
2ð�Þ ð16:41Þ

These fringes are shown in Figure 16.24. For positions on the object which are

stationary, the intensity is a maximum for the zero-order fringe. As the amplitude of

the object movement increases, the intensity of the secondary interference fringes is

reduced substantially. Figure 16.25 shows an example of a helicopter gear excited at

5812 Hz tested using time-average holography. It is obvious from the presence of

four fringe orders in this example that the intensity of higher-order fringes diminishes

rapidly.

Holographic Interferometry with Phase Measurement. Until the 1980s, holo-

graphic techniques provided only qualitative data in the form of fringe patterns

requiring a skilled operator to interpret. With the advent of TV camera frame

grabbers for personal computers and fast CPUs, quantitative data using phase-

shifting interferometry techniques could be generated in less than a minute. To

obtain phase data from object displacement, a phase shifter is placed in one beam

FIGURE 16.24. Time-average holography (Bessel function) fringes.
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of the interferometer shown in Figure 16.21. Standard phase-shifting techniques (as

described in Chapter 14) can be used with holographic interferometry techniques

which produce cosinusoidal fringes to generate a phase map of�f(x,y) correspond-

ing to the object displacement D(x,y) (Hariharan, 1984, 1985; Gasvik, 2002; Kreis,

2005).

An example of a phase measurement of out-of-plane displacement using real-time

holographic interferometry to measure changes due to mechanical stress is shown in

Figure 16.26. A hologram was made of a metal plate bolted on all four corners, and

the phase measurement was performed after tightening a screw pushing on the back

of the plate. The contour interval for Figure 16.26(a) is 0.3653 mm, and the angle

between the illumination and viewing directions is 60� yielding a peak-to-valley

displacement of 7.3 mm.

Quantitative data can also be extracted from time-average vibration fringes using

phase-shifting techniques (Neumann et al., 1970; Stetson, 1982; Oshida et al., 1983;

Nakadate and Saito, 1985; Stetson and Brohinsky, 1988). In one embodiment three

separate phase measurements need to be taken (Stetson and Brohinsky, 1988). The first

one is madewith the object vibrating and shifting the relative phase between the object

and reference beams as in standard phase-shifting interferometry. The second mea-

surement is made by applying a vibration of the same frequency as the object vibration

to a PZT in the reference beam of the interferometer. A bias phase between the object

and reference vibration is added such that the relative phase difference between the

vibrations is þp=3. Relative phase shifts between the object and reference beams are

then applied and standard phase-shifting methods are used to calculate the phase. A

third measurement is taken such that the relative phase difference between the object

and reference vibrations is �p=3. Assuming a sinusoidal object vibration and 90�

relative phase shifts for the phase calculations, one of the total of 12 frames of data

FIGURE16.25. Time-average holographic fringes of helicopter gear excited at 5812 Hz. (CourtesyK.A.

Stetson, United Technologies Research Center.)
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recorded can be written as

Iji ¼ I0½1þ g cosðfþ diÞJ0ð�þ bjÞ� ð16:42Þ

where di ¼ 0, p=2, p, and 3p/4, and bj ¼ �p=3; 0, and p/3. The amplitude of the

vibration can then be calculated using

� ¼ tan�1 1
ffiffiffi
3

p H1 � H3

2H2 � H1 � H3

� �	 


ð16:43Þ

where

H1 ¼ ðI11 � I13Þ2 þ ðI12 � I14Þ2 ¼ 4I20g
2J20ð�� p=3Þ ð16:44Þ

H2 ¼ ðI21 � I23Þ2 þ ðI22 � I24Þ2 ¼ 4I20g
2J20ð�Þ and ð16:45Þ

H3 ¼ ðI31 � I33Þ2 þ ðI32 � I34Þ2 ¼ 4I20g
2J20ð�þ p=3Þ ð16:46Þ

Eq. (16.43) assumes the form of cos2 for the fringes. Because of this, a look-up table

is necessary to find the difference between the J20ð�Þ and cos2ð�Þ functions

FIGURE 16.26. Out-of-plane displacement of a metal plate using phase-shifting interferometry techni-

queswith real-time holographic interferometry. (a) Two-dimensional contour plotwith a contour interval of

0.3653 mmand (b) isometric contour plot. The angle between the illumination and viewing directions is 60�

yielding a peak-to-valley displacement of 7.3 mm.
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(Stetson and Brohinsky, 1988). The error due to the difference between the J20ð�Þ and
cos2ð�Þ functions is dependent upon the fringe order, which can be determined from

the H2 measurement.

When the object under observation is not stable enough to capture consecutive

exposures with different phase shifts, phase information can be obtained from a

single interferogram using the Fourier-transform technique (Kreis, 1986, 1987) or

using a multiplexing scheme encoding all the phase information for multiple phase

shifts either onto multiple cameras (Koliopoulos, 1992) or onto a single camera

(North-Morris et al., 2005). For the Fourier transform technique, the Fourier Trans-

form of the fringe pattern is computed, one diffraction order is filtered out and then

shifted to zero frequency, and then this single order is inverse Fourier transformed to

obtain the phase distribution. This technique requires sinusoidal fringes and enough

straight ‘‘tilt’’ fringes to separate orders. When multiple phase shifts are encoded

within a single snapsnot, dynamic and random motion can be followed and tracked

quantitatively. These techniques are sensitive enough to be able to track thermal

microbreezes related to pulse and respiration cycles in humans (Creath and

Schwartz, 2005).

Digital Holographic Interferometry. In digital holographic interferometry, phase

and amplitude information are captured electronically. The intermediate hologram is

stored in digital memory and used to reconstruct the object after the second exposure

is made (Yaroslavsky, 2004; Kreis, 2005; Schnars and Jueptner, 2005). All of the

processing is done numerically and because of this these systems are more flexible

and faster than using a separate holographic recording media. With the availability of

megapixel cameras and sensors these types of measurements have become easier and

easier. More about this topic is discussed in the next section.

16.2.3. Speckle Interferometry and Digital Holography

The first digital holography techniques were based on speckle interferometry

(Dandliker, 2000; Joenathan and Tiziani, 2003). When TV cameras began being

used and digital images stored and processed in hardware via electronics, these

techniques were first named ‘‘electronic speckle pattern interferometry’’ (ESPI) and

often called TV holography (Løkberg and Slettemoen, 1987; Jones and Wykes,

1983). Because of the low spatial frequency response of TV cameras these techni-

ques measured in-line holograms (Gabor type holograms). The next step was to get

quantitative information by applying phase shifting methods utilizing a computer

with these ESPI techniques. These were called either ‘‘digital speckle pattern

interferometry’’ or ‘‘phase shifting speckle interferometry’’ (Nakadate and Saito,

1985; Creath, 1985b, 1986; Robinson and Williams, 1986). As cameras with higher

spatial resolutions became available it became possible to make the off-axis holo-

grams that we are more familiar with. These techniques became know as digital

holography (Kreis, 2005; Schnars and Jueptner, 2005) or phase shifting ESPI

(Jacquot and Fournier, 2000; Gasvik, 2002). When encountering these techniques
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in the literature there is not a common name, yet they are all based upon the same

principles. Nowadays the term digital holography refers to any type of hologram

stored and reconstructed digitally, and the term speckle interferometry also refers to

the same systems where it is obvious that speckle is present. The mechanisms for

creating interference are similar in both, and results are as well. What differentiates

one technique from another is how well different spatial frequency structures are

reconstructed, and how immune to noise the techniques are. Keep this in mind

through the rest of this chapter where speckle interferometry and digital holography

techniques are discussed.

Basics of Speckle Interferometry. When a laser beam is scattered off of a diffuse

surface, the scattered light has a grainy appearance. The grains are an interference

phenomenon known as speckle. The statistics of the speckle distribution depend upon

the statistics of the object surface. If imaged by a lens, the speckle are said to be

subjective, and the smallest speckle in the image will have a size equal to the Airy

disk 2.44 l/F/# generated by the optical system, where F/# is the working F-number

of the system (Goodman, 1975a). The intensity distribution and the statistics of the

speckle pattern are an indication of the roughness of the surface used to generate the

speckle pattern (Goodman, 1975a,b; Erf, 1978; Fujii and Lit, 1978). A speckle

pattern generated by an object surface can be thought of as the object’s fingerprint.

When the object is perturbed in some way, the speckle pattern will change in a

predictable way. Two different types of techniques are speckle photography and

speckle interferometry (Ennos, 1975; Stetson, 1975; Pryputniewicz, 1985; Huntley,

1989). Both techniques involve the comparison of two or more speckle patterns. A

recently published book by Goodman (2006) reviews the uses and properties of

speckle.

Speckle interferometry usually includes a reference beam to enable measurement

of the phase change in the speckles. In speckle interferometry, it is assumed that the

speckles from one speckle pattern to another are correlated so that they do not shift by

more than the diameter of a speckle between exposures. Speckle photography looks

at the correlation between two speckle patterns where the fringes arise from a

translation between exposures and can be used to measure larger displacements.

The speckles from a small area of the two speckle patterns (translated with respect to

one another) generate Young’s fringes in the Fourier plane. For the rest of this

discussion we are going to concentrate upon speckle interferometry techniques

utilizing a reference beam.

To aid in understanding how speckle interferometry works, consider a diffuse

object placed in the object beam of a Twyman–Green interferometer and a photo-

graphic plate placed at the image of the object with an F/# large enough to produce

visible speckle. After the speckle pattern is recorded and the photographic plate

replaced in the original position, no light will get through the negative plate because

the speckles line up with those stored in the photographic plate. This is similar to a

single fringe using the holographic test plate. As the object is tilted, fringes will be

seen which correspond to the tilt of the object. These fringes are modulated by a

speckle pattern, and appear noisy. The secondary interference fringes are also known
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as speckle correlation fringes because they correspond to the correlation between the

speckles in the two fringe patterns (Jones andWykes, 1983; Løkberg and Slettemoen,

1987). For speckle interferometry, the speckles are usually resolved by the recording

system; however, this is not a necessary condition (Creath, 1985a).

Speckle interferometry techniques can be used for the same applications as

holographic interferometry techniques (Dandliker, 2000; Jacquot and Fournier,

2000; Gasvik, 2002; Gastinger et al., 2003; Joenathan and Tiziani, 2003). Using a

single illumination wavelength, static and dynamic measurements of object displa-

cement provide the same results as holographic nondestructive testing. Just as in

holographic interferometry, the speckle interferometry nondestructive testing tech-

niques can measure only a single component of object displacement. This compo-

nent, in the direction of the sensitivity vector, is described in the section on

holographic interferometry for nondestructive testing. Two-wavelength techniques

can also be used to perform a reduced-sensitivity test equivalent to two-wavelength

holography or interferometry.

An in-line speckle interferometry setup for the measurement of out-of-plane

displacement is shown in Figure 16.27. The optical system is similar to those

described for holographic test techniques where the path lengths must be adjusted

to be within the coherence length of the source, the polarizations of the two beams

must be such that they are in the plane of incidence at the viewing plane, and the

speckle should be recorded in a plane conjugate to the test surface so that the

interference corresponds directly to changes in the object surface. Speckle inter-

ferometry techniques also utilize a small aperture which determines the size of the

speckle at the recording plane.

Essentially, speckle interferometry techniques perform the holographic interfero-

metry techniques described earlier without the need to make an intermediate

FIGURE 16.27. Speckle interferometry setup similar to that for making an in-line hologram.
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hologram. The basic digital speckle interferometry technique was coined electronic

speckle-pattern interferometry (ESPI) (Archbold et al., 1970; Butters and Leendertz,

1971; Macovski et al., 1971; Biedermann and Ek, 1975; Ennos, 1975; Jones and

Wykes, 1983; Løkberg and Slettemoen, 1987). This technique originally used a TV

camera as the recording device and processed interferograms in either electronics or

a computer or array processor. It was often sometimes called TV holography and now

is more often simply called digital holography. A slightly different variation on ESPI

which provides improved fringe contrast has been coined electro-optic holography

(EOH) by Stetson and Brohinsky (Stetson and Brohinsky, 1985, 1986, 1987;

Bushman, 1989; Feit, 1989; Stetson, 1989; Stetson et al., 1989). Phase measurements

can be applied to ESPI, DH and EOH to provide quantitative displacement maps of

the same data obtained in holographic interferometry.

Electronic Speckle-Pattern Interferometry. ESPI uses an optical setup similar to

that of Figure 16.27, where a TV camera, CCD camera, or detector array is placed at

the image of the test surface (Archbold et al., 1970; Butters and Leendertz, 1971;

Macovski et al., 1971; Biedermann and Ek, 1975; Ennos, 1975; Jones and Wykes,

1983; Løkberg and Slettemoen, 1987). Historically all of the processing was per-

formed in electronic hardware and results were displayed in real-time on a TV

monitor. Because standard video signals were generated, the results of a test could be

stored electronically for later viewing and processing.

For ESPI the limiting aperture size is adjusted so that the speckle will be resolved

by the camera. (When the speckles are reduced in size, the effect is to reduce the

contrast of the secondary interference fringes.) With static ESPI measurements, a

speckle interferogram of the object is recorded by the camera and stored electro-

nically. A single interferogram can be written as

I ¼ I0ð1þ g cosfÞ ð16:47Þ

where I0 is the dc intensity, g is the visibility, and f is the phase of the interference

between the reference beam and the speckle pattern scattered by the object. After the

stress applied to the object is changed, Eq. (16.47) becomes

I ¼ I0ð1þ g cosf0Þ ð16:48Þ

where f0 ¼ fþ�f, and �f is the phase change. The stored interferogram is then

subtracted from exposures recorded after a change in applied stress to the object, and

the difference is squared to yield

I2 ¼ 4I20g
2ðsin2 fÞ½sin2ð�f=2Þ� ð16:49Þ

This equation shows that there are fringes due to object displacement�f as well as

fringes due to the phase of speckles f resulting from the interference between the

reference and speckled object beams. The sin2f term causes modulation of the

speckle andmakes the fringes noticeably noisy. Much of the research effort in the last
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two decades has been to reduce this noise due the inherent properties of the speckle

(see for example (Federico et al., 2000; Kolenovic et al., 2003)). That which is the

signal is also a noise source depending upon your point of view (Creath, 1993).

Time-average measurements can be made with ESPI using a single frame of data.

For a vibrating object, the signal at the camera for a single detector point averaged

over many cycles of vibration is given by

I ¼ I0½1þ g cosðfÞMð�Þ� ð16:50Þ

where f is the phase difference between the object and reference beams, and � is

proportional to the amplitude of the object displacement. In order to process this

signal, the dc component is filtered out, and then the signal is rectified and squared to

yield

I ¼ I0gðcos2 fÞjMð�Þj2 ð16:51Þ

Note that this expression has a factor of cos2f, which is not included in the time-

average holographic vibration fringes given by Eq. (16.39). The cos2f term is due to

the phase of the speckles, and causes the secondary fringes to be noisy. For a

sinusoidal object motion, Eq. (16.51) can be rewritten as

I ¼ I0gðcos2 fÞJ20ð�Þ ð16:52Þ

Because the processing for static and dynamic measurements is performed in

electronics, fringe data can be obtained with ESPI at video frame rates (25 or

30 frames per second) or faster depending upon the camera and data acquisition

hardware. This speed enables measurements to be made even when the object is not

very stable. This same math also can be used to describe time-average digital

holography.

Example of fringes obtained using ESPI are shown in Figures 16.28 and 16.29.

Fringes for a single frame of time-average data for a vibrating flat plate are shown in

Figure 16.28(a). By averaging a number of statistically independent fringe patterns

obtained by changing the angle of illumination on the object, the speckle noise in the

fringe pattern can be reduced as shown in Figure 16.28(b) (Creath, 1985c).

Figure 16.29 shows a time-average interferogram of a car body vibrating at

110 Hz (Malmo and Vikhagen, 1988). These data were taken with the car sitting

in a parking lot. The body was covered with retroreflective tape and excited using a

loud speaker on the seat. A commercially-available ESPI instrument with a 7 mW

helium–neon laser was used for the measurements.

Electrooptic Holography. A major disadvantage of ESPI is that after processing

the interference fringe data, there are terms proportional to the phase of the speckle

produced by the interference between the reference beam and the speckle in the

object beam. These terms cause noisy-looking fringes. By processing the data

differently, Stetson and Brohinsky have shown that the speckle term can be removed
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(Stetson and Brohinsky, 1985, 1986, 1987; Bushman, 1989; Feit, 1989; Stetson,

1989; Stetson et al., 1989). The electro-optic holography (EOH) system uses the

same optical setup as ESPI; however, one mirror in the reference beam is mounted on

a piezo-electric translator (PZT) to provide relative phase shifts between the object

and reference beams. Data can be taken at TV frame rates and stored on videotape.

The major difference of EOH from ESPI is the use of a pipeline image processor to

handle a large number of images at once instead of the simple electronics of ESPI

which process a single frame at a time.

For static measurements, this technique utilizes four frames of data with 90�

relative phase shifts between the object and reference which are stored in an array

processor. One of these frames of data is written as

Ii ¼ I0½1þ g cosðfþ diÞ� ð16:53Þ

FIGURE16.28. ESPI interferogramof vibrationmode of a flat plate using (a) single interferogramand (b)

with speckle averaging. (From Creath, 1985c.)

FIGURE 16.29. ESPI interferogram of car body vibrating at 110 Hz taken in parking lot. (FromMalmo

and Vikhagen, 1988.)
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where di ¼ 0, p/2, p, and 3p/4 are the applied phase shifts for I1, I2, I3, and I4. After

the applied stress on the object is changed, four more frames of data are recorded

with 90� relative phase shifts:

I0i ¼ I0½1þ g cosðf0 þ diÞ� ð16:54Þ

where f0 ¼ fþ�f. The eight frames of data are combined in a pipeline image

processing system to yield

I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðI1 � I3Þ þ ðI01 � I03Þ�
2 þ ½ðI2 � I4Þ þ ðI02 � I04Þ�

2
q

¼ 4I0g cosð�f=2Þ
ð16:55Þ

This calculation produces fringes proportional to the phase change due to the object

displacement. There is no extra term due to the speckles. The calculation involves

only addition, subtraction, and the application of a look-up table to find the square

root of the sum of the squares of two numbers. This is easily accomplished using an

array processor. As the applied stress to the object changes, four new frames need to

be obtained. As long as the applied stress is slowly varying, the secondary inter-

ference fringes can be calculated after each video frame is recorded and 90� relative
phase shifts are applied between consecutive video frames. Thus, these fringes can be

calculated and displaced at TV frame rates using an image-processing system.

For a time-average measurement using EOH, four time-average frames of data are

taken while the object is vibrating with 90� relative phase shifts. One of these frames

is written as

Ii ¼ I0½1þ g cosðfþ diÞMð�Þ� ð16:56Þ

where the phase shifts di are 0, p/2, p, and 3p/4. These four frames can then be

combined to obtain secondary fringes using

I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðI1 � I3Þ2 þ ðI2 � I4Þ2
q

¼ 2I0gjMð�Þj ð16:57Þ

which can be written as

I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðI1 � I3Þ2 þ ðI2 � I4Þ2
q

¼ 2I0gjJ0ð�Þj ð16:58Þ

for a sinusoidal object vibration. Note that the speckle modulation term is not present

with this technique.

An example of fringes produced with EOH is shown in Figure 16.30. Figure 16.30(a)

shows a rectangular plate undergoing static deflection and Figure 16.30(b) shows a time-

average vibration mode of the same plate. EOH can also be used for shearography

(shearing speckle interferometry) by utilizing a different optical system (Stetson, 1989).
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Extracting Quantitative Data Using Phase Measurement. A straight-forward

technique similar to the two-wavelength interferometry method can be used for

quantitative measurement of object displacement or deformation in EPSI

(Nakadate and Saito, 1985; Creath, 1985b, 1986; Robinson and Williams, 1986).

Using a single measurement wavelength, intensity data are taken for an object, and

the phase of the interference pattern is calculated using standard phase-shifting

techniques. This is essentially recording the intermediate hologram digitally in the

computer by resolving the interference data present on the detector plane. After the

stress applied to the object is changed, a second set of intensity data are taken.

Modulo 2p phases are calculated for each object state, and the phase due to the

change in the object state is found by taking the difference of these two phases

�f ¼ f� f0 ð16:59Þ

where f and f0 are the phases before and after the applied force, and�f is the phase

due change in the object position and shape. �f can also be thought of as the phase

due to the secondary interference fringes produced in double-exposure holographic

interferometry.

A more direct way of determining the phase is to take all the frames of data for

both object states and then calculate the phase directly from the intensity data. This

FIGURE 16.30. EOH interferograms of (a) rectangular plate undergoing static deflection, and

(b) time-average vibration mode of same plate. (Courtesy K. A. Stetson, United Technologies Research

Center.)
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can be written as

�f ¼ tan�1 sinð�fÞ
cosð�fÞ

	 


¼ tan�1 sinðf� f0Þ
cosðf� f0Þ

	 


¼ tan�1 sinf cosf0 � cosf sinf0

cosf cosf0 þ sinf sinf0

	 


ð16:60Þ

which for the four-frame method becomes

�f ¼ tan�1 ðI4 � I2ÞðI01 � I03Þ � ðI1 � I3ÞðI04 � I02Þ
ðI1 � I3ÞðI01 � I03Þ þ ðI4 � I2ÞðI04 � I02Þ

	 


ð16:61Þ

where Ii and Ii
0 are the ith data frames taken for each object state. This process will

work for any phase measuring algorithm where the phase fi can be written in terms

of a numerator function Ni and a denominator function Di as

fi ¼ tan�1 sinfi

cosfi

	 


¼ tan�1 Ni

Di

	 


ð16:62Þ

The phase of the difference between measurement 1 and measurement 2 is then

given by

�f ¼ tan�1 sinðf1 � f2Þ
cosðf1 � f2Þ

	 


¼ tan�1 N1D2 � D1N2

D1D2 þ N1N2

	 


ð16:63Þ

Another type of phase calculation requires data at only two different phase shifts

for displacement/deformation measurement. A total of four frames of data, two

before and two after are all the data required in a method developed by Kerr et al.

(1990).

Another variation utilizes EOH. The eight frames of data taken for a static

measurement [Eqs. (16.53) and (16.54)] can be used to calculate the phase change

�f due to the displacement of the object,

�f ¼ tan�1 C3 � C4

C1 � C2

� �

ð16:64Þ

where the quantities Ci are given by

C1 ¼ ½ðI1 � I3Þ þ ðI01 � I03Þ�
2 þ ½ðI2 � I4Þ þ ðI02 � I04Þ�

2 ð16:65Þ
C2 ¼ ½ðI1 � I3Þ � ðI01 � I03Þ�

2 þ ½ðI2 � I4Þ � ðI02 � I04Þ�
2 ð16:66Þ

C3 ¼ ½ðI1 � I3Þ þ ðI02 � I04Þ�
2 � ½ðI2 � I4Þ þ ðI01 � I03Þ�

2 ð16:67Þ
C4 ¼ ½ðI1 � I3Þ � ðI02 � I04Þ�

2 � ½ðI2 � I4Þ � ðI01 � I03Þ�
2 ð16:68Þ
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These calculations only involve simple calculations and the use of lookup tables

which can be done in an array processor. The modulo 2p phase corresponding to the

object displacement can be calculated in real time at video frame rates. Quantitative

measurements of time-average interferograms can be made using the techniques

described for holographic nondestructive testing in section 16.2.2 and Eqs. (16.42)

thru (16.46) (Pryputniewicz and Stetson, 1989).

In practice there are numerous other ways that have been developed to extract

phase information for speckle interferometry and holographic interferometry. Most

of the algorithms are tailored to a specific application and a specific type of

measurement and optical system.

Dynamic Techniques. In the real world of testing diffuse objects using speckle

interferometry and digital holography, it can be difficult to ensure that an object is

stable and not moving relative to the instrument. It is desirable to have instrumenta-

tion that is either insensitive to vibration or can freeze motion tomakemeasurements.

For this, many different techniques have been developed to cope with these situa-

tions. This essentially enables taking data of arbitrarily moving objects and being

able to track motion, modes of vibration, flows, and even watch shock waves travel.

For dynamic measurements, there are many different commercial systems available

that fit in a briefcase size or are mounted on a tripod. Most of the work published on

dynamic techniques in the past decade has originated in Europe and been initiated to

find solutions for automotive applications.

To freeze motion, some sort of pulsed laser is usually implemented. Pulsed lasers

can provide enough energy in a single pulse to get a decent exposure on the return

with a standard silicon detector array. Fast shutters can also be used, but then more

overall power is needed from the source to get a sufficient exposure unless low-light

level imaging systems are implemented. Any of the techniques mentioned so far in

this chapter can be implemented using a pulsed laser or fast shutter including all of

the quantitative techniques that determine phase. It is also possible to unwrap phase

in time as well as space to follow motion in time (Ruiz et al., 2003). Amplitude and

phase information can both be extracted and added to shape information to determine

complex motions and perform active metrology measurements (Osten, 2003). Mod-

ifications of the optical system utilizing endoscopes and fibers can enable getting

measurements in tight spaces of otherwise hidden surfaces (Pedrini et al., 2003) or

biological objects (Pedrini et al., 2005). These types of developments drastically

increase the possible applications and usefulness of digital holography and speckle

interferometry.

Shearography as described in the next subsection is one way to ensure that

vibrations and relative motions between the interferometer and object don’t hamper

the data. Another way to get quantitative data from a single fast snapshot is to use

phase measuring techniques that either require only a single interferogram such as

Fourier Transform techniques (Kreis, 1986, 1987) or those that multiplex phase data

using polarization techniques to take all necessary data at once (Koliopoulos, 1992)

(North-Morris et al., 2005).
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Shearography. Just as there are manyways to test optical components with shearing

interferometry, so there are many ways to test diffuse surfaces with speckle shearing

interferometry also known as shearography (Joenathan and Tiziani, 2003; Steinchen

and Yang, 2003). Shearography tests a surface relative to itself. Because it is common

path, it is insensitive to vibrations and relative motion between the part under test and

the interferometer. But, like all shearing interferometers, it does not directly measure

displacement or shape. Instead it measures the slope of the displacement or shape in

the direction of the shear. It can be used with phase measurement techniques as

described earlier in this chapter to quantitatively extract the slope. To get to

displacement or shape from the slope data, the techniques are similar to those

described in the shearing interferometer chapter of this book. Steinchen and Yang

outline numerous techniques in their book Digital Shearography (Steinchen and

Yang, 2003).

Low Coherence Techniques. Low coherence techniques combine a longer depth-

resolved measurement range with speckle interferometry and digital holography

techniques (Gastinger et al., 2003; Martinez-Leon et al., 2004; Gastinger and

Winther, 2005). Like low coherence interferometry (also known as white light

interferometry, or vertical scanning interferometry) low coherence speckle techni-

ques follow the high coherence fringe and map out where the greatest fringe contrast

is. These techniques require scanning in depth in order to make up a composite phase

map and are similar to the interference microscope techniques described in Chapter

15 of this book.
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Durelli A. J. and V. J. Parks, Moiré Analysis of Strain, Prentice-Hall, Englewood Cliffs, NJ,

1970.

Ennos A., ‘‘Speckle Interferometry,’’ in Laser Speckle and Related Phenomena, J. C. Dainty,

Ed., Springer-Verlag, New York, 1975, pp. 203–253.

Erf R. K., Speckle Metrology, Academic Press, New York, 1978.

Federico A., G. H. Kaufmann, E. P. Serrano, ‘‘Speckle Noise Reduction in ESPI Fringes Using

Wavelet Shrinkage,’’ Interferometry in Speckle Light, P. Jacquot and J.-M. Fournier (Eds.),

Springer Verlag, Berlin, 2000, pp. 397–404.

Feit E., ‘‘Electronic Holography for Non-Destructive Testing,’’ Advanced Imaging, January,

42–45, (1989).

Frankowski G., M. Chen, T. Huth, ‘‘Real-Time Shape Measurement With Digital Stripe

Projection by Texas Instruments Micromirror Devices DMDTM,’’ Proc. SPIE 3958, 90–

105 (2000).

Fujii H. and J. W. Lit, ‘‘Surface Roughness Measurement Dichromatic Speckle Patterns: An

Experimental Study,’’ Appl. Opt., 17, 2690–2694 (1978).

802 OPTICAL METROLOGY OF DIFFUSE SURFACES



Gastinger K. and S. Winther, ‘‘Optimisation of Low Coherence Speckle Interferometry

(LSCI) for Characterisation of Multi-layered Materials,’’ Proc. SPIE 5858, 58580K:1-12

(2005).

Gastinger K., O. J. Lokberg, and S. Winther, Speckle Metrology 2003, SPIE Proc, Bellingham,

WA, SPIE, 2003.

Gastinger K., S. Winther, and K. Hinsch, ‘‘Low-Coherence Speckle Interferometry (LCSI)

for Characterisation of Adhesion in Adhesive Bonded Joints,’’ Proc. SPIE, 4933, 59–65

(2003).

Gasvik K. J., Optical Metrology, 3rd Ed., John Wiley and Sons, Chichester, England, (2002).

Goodman J. W., ‘‘Dependence of Image Speckle Contrast on Surface Roughness,’’ Opt.

Commun., 14, 324–327 (1957b).

Goodman J. W., ‘‘Statistical Properties of Laser Speckle Patterns,’’ in Laser Speckle and

Related Phenomena, J. C. Dainty, Ed., Springer Verlag, Berlin, 1975a, pp. 9–75.

Guild J., The Interference Systems of Crossed Diffraction Gratings, Clarendon Press, Oxford,

1956.

Guild J., Diffraction Gratings as Measuring Scales, Oxford University Press, London, 1960.

Haines K. and B. P. Hildebrand, ‘‘Contour Generation by Wavefront Reconstruction,’’ Phys.

Lett., 19, 10–11 (1965).

Halioua M. and H.-C. Liu, ‘‘Optical Three-Dimensional Sensing by Phase Measuring Profi-

lornetry,’’ Opt. Lasers Eng., 11, 185–215 (1989).

HardingK., ‘‘Latest OpticalMethods for Industrial DimensionalMetrology,’’Proc. SPIE 6000,

600001:1–14 (2005).

Hariharan P., ‘‘Quasi-Heterodyne Hologram Interferometry,’’ Opt. Eng., 24, 632–638 (1985).

Hariharan P., Optical Holography, Camrbidge University Press, Cambridge, 1984.

Hariharan P., B. F. Oreb, and C. H. Freund, ‘‘Stroboscopic Holographic Interferometry:

Measurements of Vector Components of a Vibration,’’ Appl. Opt., 26, 3899–3903 (1987).

Hildebrand B. P. and K. A. Haines, ‘‘Interferometric Measurements Using the Wavefront

Reconstruction Techniques,’’ Appl. Opt., 57, 155–162 (1967).

Huang P. S. and S. Zhang, ‘‘3D Optical Measurement Using Phase Shifting Based Methods,’’

Proc. SPIE 6000, 600002:1–10 (2005).

HungY.Y., L. Lin, andB. G. Park, ‘‘Practical Three-Dimensional Computer Vision Techniques

for Full-Field Surface Measurement,’’ Opt. Eng., 39, 143–149 (2000).

Huntley J. M. ‘‘Speckle Photography Fringe Analysis: Assessment of Current Algorithms,’’

Appl. Opt., 28, 4316–4322 (1989).

Indebetouw G., ‘‘Profile Measurement Using Projection of Running Fringes,’’ Appl. Opt., 17,

2930–2933 (1978).

Jacquot P. and J.-M. Fournier, Interferometry in Speckle Light: Theory and Applications,

Springer Verlag, Berlin, 2000.

Joenathan C. andH. J. Tiziani, ‘‘Speckle and SpeckleMetrology,’’ The Optics Encyclopedia, T.

G. Brown, K. Creath, H. Kogelnik (Eds.), Wiley-VCH, Berlin, 2003, pp. 2709–2773.

Jones R. and C.Wykes,Holographic and Speckle Interferometry, Cambridge University Press,

Cambridge, 1983.

Kakunai S., K. Iwata, R. Nagata, and H. Sekiguchi, ‘‘Measurement of Three Components of a

Displacement Vector using Heterodyne Holographic Interferometry,’’ Opt. Lasers Eng., 6,

213–223 (1985).

REFERENCES 803



Kerr D., F. Mendoza-Santoyo, and J. R. Tyrer, ‘‘Extraction of Phase Data from Electronic

Speckle Pattern Interferometric Fringes Using a Single-Step Method: A Novel Approach,’’

J. Opt. Soc. Am. A, 7, 820–826 (1990).

Kolenovic E., W. Osten, and W. P. Juptner, ‘‘Improvement of Interferometric Phase Measure-

ments byConsideration of the Speckle Field Topology,’’Proc. SPIE, 4933, 206–211 (2003).

Koliopoulos C. L., ‘‘Simultaneous Phase-shift Interferometer,’’ Advanced Optical Manufactur-

ing and Testing II, vol. 1531, V. J. Doherty (Ed.), SPIE, Bellingham,WA, 1992, pp. 119–127.

Koninckx T. P. and L. VanGool, ‘‘Real-TimeAcquisition byAdaptive Structured Light,’’ IEEE

Trans Pattern Analysis and Machine Intelligence, 28, 432–445 (2006).

Kowarschik R., P. Kuhmstedt, J. Gerber, W. Schreiber, and G. Notni, ‘‘Adaptive Optical Three-

Dimensional Measurement with Structural Light,’’ Opt. Eng., 39, 150–158 (2006).

Kreis T. M., ‘‘Digital Holographic Interference-Phase Measurement Using the Fourier Trans-

form Method,’’ J. Opt. Soc. Am. A, 3, 847–855 (1986).

Kreis T. M., ‘‘Fourier-Transform Evaluation of Holographic Interference Patterns,’’ Proc.

SPIE, 814, 365–371 (1987).

Kreis T., Handbook of Holographic Interferometry. Wiley-VCH, Weinheim, Germany, 2005.
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Topography and Comparison with Photogrammetry,’’ Appl. Opt., 18, 563–574 (1979).
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17

Angle, Prisms, Curvature, and Focal
Length Measurements

Z. Malacara

17.1. INTRODUCTION

Geometrical measurements of a lens in the optical workshop are necessary to obtain

precise lens and optical system parameters. On doing so, one is not only looking for

precision but also for speed and simplicity. These measurements should be made

following international units and in some cases, must be certified by a laboratory

from a secondary standard. A review of this topic may be found in the article by

Geiser (1965). Geometrical measurements in optical testing may be classifiedmainly

in angle, distance, curvature, and focal length measurements.

In the production run, it is preferred not to make measurements but comparisons

or null measurements. This calls for gauges and templates that are more appropriate

for the shop rather than expensive and precise equipment.

17.2. ANGLE MEASUREMENTS

Angle measurements in the optical shop require different levels of accuracy. While

for glass cutting the accuracy can be several degrees, for standard test plates, less than

a second of arc may be required. For every case, different measurement methods are

developed. For angle measurements, the most common unit remains the degree,

which divides the circle in 360 parts. A radian is an angle such that the arc length is

equal to the radius of the circle. A gradient which is scarcely used is an attempt to use

decimal fractions of a quadrant.

17.2.1. Divided Circles and Goniometers

Protractors are used as main angle measuring devices. Although a typical protractor

has an accuracy of about 30 min, (Fig. 17.1(a)) modern electronic protractors can
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attain up to 0.5 min of precision. During the manufacturing process, several methods

are used to cut a block of glass at a given angle. An angle vise (Fig. 17.1(b)) and a sine

plate are mechanisms to support the glass and to measure the angle precisely. For

these supporting heads, the table is tilted or raised at some known distance for a

known hypotenuse length. For glass cutting machine tools, a rotary table is frequently

used. An accuracy of about 30 min is attainable for these instruments. Horne (1972)

describes a serrated table for angle measurements up to 0.1 seconds. For a semi-

finished glass wedge, the angle can be compared to an angle block set. Angle blocks

are templates commercially available to a degree and accuracy of 
20 s, to virtually

obtain any angle between 1� and 90�. By reversing the blocks, negative angles are

obtained as described by Horne (1974). Angle blocks are made from hardened steel

with a flat precision-polished face. This permits angle blocks in conjunction with a

goniometer to be used as an angle standard. Angle blocks are sometimes certified up

to
0.1 s of arc. Similar to angle blocks, polygons are available from 3 up to 12 faces,

although Horne (1974) reports a 72-faces polygon. Polygons are mostly used with an

FIGURE 17.1. (a) A shop protactor; (b) an angle vise.
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autocollimator for divided circles and goniometer calibration. Modern numerically

controlledmachines can cut a piece of glass to a prism or a polygon within a precision

of a few minutes.

A goniometer (Fig.17.2) is a precision spectrometer tablewith a fixed collimator and

a moving telescope. Microscopes or magnifiers are located at opposite ends in the

divided circle; the mean value of the readings is calculated to compensate for centering

errors. Goniometers’ accuracy can typically yield up to 20 s arc, although Geiser (1965)

reviews a system for checking such a circle to better than one arc second. For some

precise angle measurements, a theodolite could be used, reaching accuracy up to a

second arc. Goniometers are used to check prisms angles; in this case the telescopewith

illuminated reticle is used as an autocollimator. The glass surface must be semipolished

and wet; for a precision work it must be fully polished and flat.

17.2.2. Autocollimator

An autocollimator, is essentially a telescope focused to infinity. An illuminated

reticle located at the focal plane is sent to infinity by the objective. A reflecting

surface perpendicular to the beam, images the reticle on itself. When the reflecting

surface fails to be perpendicular to the beam, the reticle image is displaced at the

focal plane. The amount of displacement d is

d ¼ 2af ð17:1Þ

with a being the tilt angle for the mirror and f the focal length of the objective

(Fig. 17.3).

Objective lenses are usually a corrected doublet, although sometimes a negative

lens is included to form a telephoto lens to increase effective focal length,

maintaining compactness at the same time. The collimating lens adjustment is

FIGURE 17.2. A goniometer.
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critical for the final accuracy. A means to adjust the collimator has been widely

described (De Vany, 1976), with the aid of a lateral shear interferometry (Murty, 1964

and Choi et al., 1995). Talbot interferometry can also be used for a precise adjustment

(Kothiyal and Sirohi, 1987) (Sriram et al., 1993).

For observation at the focal plane, several means have been developed. An

illuminated reticle at the eyepiece, with a calibrated reticle is used to measure the

displacement. Rank (1946) modified a Gauss eyepiece to give dark field. In others

systems, a drum micrometer displaces a reticle to be positioned at the image plane.

Some autocollimators have a microscope to observe the returning image; such

system is called a microptic autocollimator.

Autocollimators are used for angle measurements in prisms and polygons, but are

also used in other applications such as measurement of parallelism in optical flats,

manufacturing of divided circles (Horne, 1974) and, by integrating values for a scan in

position, flatness formachine tool and optical beds can also bemeasured (Young, 1967).

Some variants to the basic autocollimator include dual-axis reticle or micrometer

for measurements for both axes. A moving slit can be included in the focal plane and

an electronic synchronous detection system serves for the purpose of indicating a null

position for the return beam. Also, a position-measuring detector at the focal plane

and a display indicates the angular deviation. Particularities about electronic auto-

collimators are described by Thurston (1986). Some new computerized versions

include software for on-line data reducing.

Direct-reading autocollimators canmeasure over a field of about one degree, and this

field is reduced with the distance to be measured. Precision in an autocollimator is

limited by themethod formeasuring the image’s centroid. In a diffraction-limited visual

system, diffraction image sets the limit for the precision. Usually the effective f-number

is small and the image odd-shaped, like in a prism. For a precision electronic measuring

system centroid measurement is limited by the electronic detector, independent from

the diffraction image itself, and can go beyond the diffraction limit. In some photo-

electric system, precision is improved up to more than 10 times.

Reflecting surface in autocollimator measurements must be kept close to the

objective, otherwise the reflected beam fails to enter the system, with a subsequent

decrease in the range. The reflecting surface must be a high-quality one. A curved

surface has the effect of introducing another lens in the system with a change in the

effective focal length (Young, 1967). Irregular surfaces affect the shape of the

reflecting beam too.

Light
source

Eyepiece

Reticle

Reticle

Beam
splitter

Objective

FIGURE 17.3. An autocollimator.

17.2. ANGLE MEASUREMENTS 811



Several accessories are part of an autocollimator. For a single-axis angle mea-

surement, a pentaprism is used; an optical square permits angle measurements for

surfaces at right angles. Perpendicularity is measured with a pentaprism and a mirror

(Fig. 17.4). A handy horizontal reference can be produced with an oil pool; care must

be taken with the surface stability. A complete description for the autocollimator is

found in Hume (1965).

17.2.3. Interferometric Measurements of Angles

Interferometric methods find their main applications in measuring very small wedge

angles in glass slabs (Met, 1966, Leppelmeier and Mullenhoff, 1970) and in paralle-

lism measurements (Wasilik et al., 1971). Refer to Chapter 1 for further details.

Interferometric measurements of large angles may also be performed. In one

method a collimated laser beam is reflected from the surfaces from a rotating glass

slab; the produced fringes can be considered as coming from a Murty lateral shear

interferometer (Malacara and Harris, 1970). This device can be used as a secondary

standard to produce angles from 0� to 360� with accuracy within a second of arc.

Further analysis of this method is done by Tentori and Celaya (1986). In another

system a Michelson interferometer is used with an electronic counter to measure

within a range of 
5� with a resolution of 10�4 degrees (Stijns, 1986) and (Shi and

Stijns, 1988). An interferometric optical sine bar for angles in the millisecond of arc

was built by Chapman (1974).

A precise angle measurement interferometer has been built by measuring the

phase shift of a total internal reflection in a prism. This method, originally proposed

by Huang (Huang et al., 1992; Huang and Ni, 1996; Huang and Li, 1998), has been

improved by Chiu (Chiu and Su 1997a, 1997b).

17.3. TESTING OF PRISMS

A problem frequently encountered in the optical shop is precise angle measurement

in the manufacturing of prisms. In most cases, prism angles are 90�, 45�, and 30�.

Mirror

Mirror
Pentaprism Autocollimator

FIGURE 17.4. Perpendicularity measurement with an autocollimator.
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These angles are easily measured by comparison from a standard, other angles need

an autocollimator or a goniometer to be accurately measured. Prism angle testing

becomes very involved for precision production. Extensive work has been done and

is described mainly by Twyman (1957) De Vany (1968) and Fantone (1991).

To accurately measure angles, it is important that the prism be free of pyramidal

error. Suppose a prism with angles A, B and C (Fig. 17.5(a)), and let OA be

perpendicular to plane ABC. If line AP is perpendicular to segment BC, then the

angle AOP is a measure for the pyramidal error. In a prism with pyramidal error, the

angles between the faces, as measured in planes perpendicular to the edges between

these faces, adds to over 180�. To simply detect pyramidal error in a prism, Johnson

(1947) and Martin (1924) suggest looking at both the refracted and the reflected

image from a straight line (Fig. 17.5(b)). When pyramidal error is present, the line

appears to be broken. A far target could be graduated to measure directly in minutes.

A sensitivity of up to 3 minutes could be obtained.

During the milling process of a prism in a production run, a glass blank is mounted

on a jig collinear to a master prism (Fig. 17.6). An autocollimator pointing to the

master prism accurately sets the position for each prism faces (Twyman, 1957;

DeVany, 1971). With a carefully set diamond lap, pyramidal error is minimized. In

A

B

C

P

O

(a)

(b)

FIGURE 17.5. Pyramidal error in a prism. (a) Nature of the error; (b) Test for the error.
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a small quantity run, angles can be checked with a bevel gauge. Visual tests for a

prism in a bevel gauge can measure an error less than a minute of arc (Noble, 1978).

A 90� angle in a prism can bemeasuredwith an autocollimator by internal reflection

(Fig. 17.7(a)). At the autocollimator, two images are seen and their angular separation

is being the prism angle error, although it is not possible to know the sign for the angle

error. Since the hypotenuse face has to be polished and the glassmust be homogeneous,

the measurement of the external angle with respect to a reference flat is preferred

(Fig. 17.7(b)). In this case, the angle error is determined by a change in the angle by

tilting the prism. If the external angle is decreased and the images separate further, then

the external angle is less than 90�. Conversely, if the images separate by tilting in such a

way that the external angle increases, then the external angle is larger than 90�.
Several methods to determine the sign of the error have been proposed. DeVany

(1978) suggested that when looking at the double image from the autocollimator, the

image should be defocused inward; if the images tend to separate, then the angle in

the prism is greater than 90�. Conversely, an outward defocusing will move the

images closer to each other for an angle greater than 90�. Another way to eliminate

the sign of the error in the angle is by introducing between the autocollimator and the

prism a glass plate with a small wedgewhose orientation is known. Thewedge should

cover only one half of the prism aperture. Ratajczyk and Bodnar (1966) suggested a

different method using polarized light.

Right angle prisms can be measured with an autocollimator with acceptable

precision (Tareev, 1985). With some practice, perfect cubes with angles more

accurate than 2 s of arc can be obtained (DeVany, 1979).

An extremely simple test for the 90� angle in prisms (Johnson, 1947) is performed

by looking to the retro-reflected image of the observer’s pupil without any

instrument. The shape of the image of the pupil determines the error, as shown in

Figure 17.8. The sensitivity of this test is not very high, and may be used only as a

coarse qualitative test. As shown by Malacara and Flores (1990), a small improve-

ment in the sensitivity of this test may be obtained if a screen with a small hole is

placed in front of the eye, as in Figure 17.9(a). A cross-centered on the small hole is

Master

prism

Autocollimator

Prisms blank Clamp

Diamond

tool

FIGURE 17.6. Milling prisms by replication.
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painted on the front face of the screen. The observed images are as shown in the same

Figure 17.9(b). It is easy to see the similarity between this test and the Placido disc

used some years ago in optometry and ophthalmology, for observing irregularities in

the cornea of a patient.

It is interesting to notice that as opposed to the collimator test, there is no error

sign uncertainty in the tests just described. The reason is that the observed plane is

q = 90° q < 90° q > 90°

FIGURE 17.8. Retroreflected images of the observer’s pupil on a 90 prism.

(a)

Autocollim
ator

(b)

FIGURE 17.7. Right angle measurement in prisms. (a) Internal and (b) external measurements.
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located where the two prism surfaces intersect. An improvement described by

Malacara and Flores (1990), combining these simple tests with an autocollimator,

is obtained with the instrument in Figure 17.10. In this system, the line defining the

intersection between the two surfaces is out of focus and barely visible, while the

reticle is in perfect focus at the eyepiece.

The bevel gauge consists of two hinged straight bars hinged at their edges by a pivot,

as shown in Figure 17.11. This device may be used to generate a master prism whose

angles are of 45� to about 20 arc second (Deve, 1945). To accomplish this, first, the

bevel gauge is approximately set to 45�. The second step is to find two right-angle

prisms with the same size, for which an angle on each of them is close to 45�, but
almost equal, as far as the bevel gauge can measure. During the measurements, the

gauge is held between the eye and a bright light, in order to see very small spaces.

Let us now assume that the two angles that were found are equal to 46�. These two
prisms are cemented with the two equal angles together, as shown in Figure 17.11.

The cemented surface is the bisector of a 92� angle. The next step is to regrind the

large face until it becomes flat and the angles at the ends appear equal as measured

with the bevel gauge. Under these conditions, when the two prisms are separated, the

right angle should be exactly 90� to the accuracy available with the bevel gauge. The
final step is to regrind the large face of each prism until the end angles are equal.

Then, these angles will be exactly 45�.

Observing
Eye

Screen
with
cross

Prism
under
test

(a)

q = 90° q < 90° q > 90°

(b)

FIGURE 17.9. Testing a right angle prism. (a) Screen in front of the eye and (b) its observed images.

Observed

image

Illuminated

reticle

Objective

lens

Prism

under

test

FIGURE 17.10. Modified autocollimator for testing the right angle in prisms without sign uncertainty.
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If the measured prism has a 50-mm hypotenuse, a space of 5 mm at one end

represents an angle of 0.0001 rad or 20 arc s.

17.4. RADIUS OF CURVATURE MEASUREMENTS

The curvature of a spherical optical surface or the local curvature of an aspherical

surface may be measured by mechanical or optical methods, as described next. Some

methods measure the sagitta, some the surface slope, and some others directly the

position of the center of curvature.

17.4.1. Mechanical Measurement of Radius of Curvature

Templates. The easiest way to measure the radius of curvature is by comparing it with

metal templates with different radius of curvature until the best fit is obtained. The

template is held against the optical surface, with a bright light source in front of the

observer and behind the template and the optical surface. If the surface is polished,

openings close to one wavelength may be detected. If the opening is very narrow, the

light becomes blue due to diffraction.

Test Plates. Another method for curvature measurement is to use a test plate with

opposite curvature as template; Newton rings reflect the curvature difference. The

use of an interferometer increases its accuracy. For this method, to be practical the

surface has to be polished. (See Chapter 1).

Spherometers. This is the most popular mechanical device for measuring the radius

of curvature. The value of the radius is calculated by measuring the sagitta (See

Fig. 17.12). A classical spherometer consists of three equally spaced feet with a

central moving plunger. The spherometer is first placed on top of a flat surface and

then on top of the surface to be measured. The difference in the position of the central

plunger is the sagitta of the spherical surface. Several practical problems may arise.

One is that sharp legs may scratch the surface; thus, a steel ball is placed at the end of

the legs as well as at the end of the plunger (Aldis spherometer). In this case if the

46°

44°44°

46°

FIGURE 17.11. A bevel gauge to measure a 45� prism.
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measured sagitta is z, the radius of curvature R of the surface is given by: (Cooke,

1964)

R ¼ z

2
þ y2

2z

 r ð17:2Þ

where r is the radius of curvature of the balls. The plus sign is used for concave

surfaces, and the minus sign for convex surfaces.

The precision of this instrument may be obtained by differentiating Eq. (17.2), as

follows:

dR

DZ
¼ 1

2
� y2

2z2
ð17:3Þ

to obtain:

�R ¼ �z

2
1� y2

z2

� �

ð17:4Þ

This result is valid assuming that the spherometer is perfectly built and that the

dimensional parameters y and r are well known. The uncertainty comes only from the

measurement of the sagitta. Noble (1978) has made an evaluation of this precision for

a spherometer with y ¼ 50mm. and a sagitta reading uncertainty equal to 0.005 mm.

and found the results in Table 17.1. We may see that the precision is better than 2%.

FIGURE 17.12. Three leg spherometer.
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An extensive analysis of the precision and accuracy of several types of spherom-

eters is given in the book by Jurek (1977).

Another type of spherometer is the so-called ring spherometer, which has a cup

instead of the three legs. The cup is flat in the upper part and has its outside and its

external walls with a cylindrical shape, as in Figure 17.13. A concave surface touches

the external edge of the cup, whereas the convex surface touches the internal edge of

the ring. Thus, Eq. (17.2) may be used if a different value of y is used for concave and

convex surfaces, and r is taken as zero. In this instrument the cups may be inter-

changeable with different ring diameters, for different surface diameters and radii of

curvature. There is an averaging effect because the ring strikes the high spots only.

The main advantage is that an astigmatic deformation of the surface is easily

detected, but it cannot be measured. With the three-leg spherometer, the astigmatic

deformations cannot be even detected.

The spherometer accuracy may be improved in many ways, by different methods

of taking the readings of the sagitta. One method is the Steinheil spherometer

(Martin, 1924) in which a mechanical device is employed to indicate the pressure

between the central plunger and the surface to be measured. In the Abbe spherometer

(Martin, 1924), the displacement of the central plunger is measured with the aid of a

TABLE 17.1. Spherometer precision.

Radius of Sagitta Precision Fractional

sphere R (mm) Z (mm) �R (mm) precision �R=R

10 000 0.125 �400 �0.040

5 000 0.250 �100 �0.020

2 000 0.625 �16 �0.008

1 000 1.251 �4 �0.004

500 2.506 �1 �0.002

200 6.351 �0.15 �0.0008

FIGURE 17.13. Ring spherometer.

17.4. RADIUS OF CURVATURE MEASUREMENTS 819



scale and a reading microscope. The dial spherometer is very popular for quick

measurements in industrial processes. The movement of the plunger activates the

hand of a circular measuring dial.

Some modern spherometers use a differential transformer as a transducer to

measure the plunger displacement. This transformer coupled to an electronic circuit

produces a voltage linear with the plunger displacement. This voltage is then

analyzed by a microprocessor. The microprocessor then calculates the radius or

curvature in any desired units and displays it. In another case, a precise laser distance

measuring equipment is used for sagitta measurement (Soares and Fernández, 1988).

The bar spherometer permits the measurement of toric or cylindrical surfaces,

since it measures the curvature along any diameter. However, the accuracy of the

measurement may not be as high as in the previous devices, due to tilting of the

instrument. A commercial version of a small bar spherometer for the specific

application in optometric work is the Geneva gauge (Fig. 17.14). In this gauge the

scale is directly calibrated in diopters since the power is linear with the sagitta,

assuming a nominal refractive index of 1.53 for the glass.

A problem indirectly related is the calculation of the sagitta from a knowledge of

the radius of curvature, in order to mount a lens properly in its mechanical holder.

Different graphical and algebraic procedures have been described (Zanker, 1981;

Foote, 1981; Brixner, 1982).

17.4.2. Optical Measurement of Radius of Curvature

Foucault Test. One of the easiest optical methods to find the radius of curvature of

a concave surface is by means of the knife-edge test (See Chapter 8) in order to locate

the center of curvature. Then, the distance from the knife-edge to the optical surface

is measured with a scale. The accuracy of this method depends on the distance

measurement tool. A measuring tape may be a bad tool because the scale may sag

due to gravity. Foucault test can be used to determine the radius of curvature of both

FIGURE 17.14. AGeneva gauge.
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surfaces in a convergent lens as suggested by Hugo and Lessing, (1964). In this

method – suitable for long radius of curvature – a light from a Foucault tester is

refracted in the first lens surface and then reflected in the second surface. From this, a

distance from the tester-lens is obtained; then the lens is reversed and a new tester-

lens distance is obtained. If the glass refractive index and lens thickness is known,

both curvatures can be known.

Autocollimator. In the autocollimator technique, (Horne, 1972) the radius of curva-

ture is determined through the measurements of the slopes of the optical surface. The

well-known property that a pentaprism deflects a light beam 90�, independently of

small errors in its orientation, is used. This method, appropriate for large aperture

optical surfaces, is illustrated in Figure 17.15, where we may see that the pentaprism

travels over the optical surface to be measured, along one diameter. The first step is to

center the light on the reticle of the autocollimator when the vertex of the surface is

being examined. Then, the pentaprism is moved outside the central part of the surface

in order to measure the slope variations. From these measurements, the radius of

curvature and even its shape may be calculated. This method is used only for large

radii of curvature, and it is equally applicable for both, concave and convex surfaces.

Confocal Cavity Technique. The optical cavity technique (Gerchman and Hunter,

1979 and 1980) permits the interferometric measurement of very long radii of

curvature with an accuracy of 0.01%. The method consists of forming the cavity

of a Fizeau interferometer (See Chapter 1) as illustrated in Figure 17.16. This is a

confocal cavity of nth order, where n is the number of times the path is folded. The

radius of curvature is approximately 2n times the cavity length Zn, but for a higher

accuracy values listed in Table 17.2 should be used.

Traveling Microscope. This is one of the most popular methods for measuring the

radius of curvature of small concave optical surfaces, with short radius of curvature.

As shown in Figure 17.17 a point light source is produced at the front focus of a

microscope objective. This light source illuminates the concave optical surface to be

measured, near its center of curvature. Then, this concave surface forms an image,

also close to its center of curvature. This image is observed with the samemicroscope

used to illuminate the surface. During this procedure the microscope is focused both

at the center of curvature and at the surface to bemeasured. A sharp image of the light

source is observed at both places. The radius of curvature is the distance between

these two positions for the microscope.

Autocollimator

Traveling
pentaprism

Optical surface to be measured

FIGURE 17.15. Autocollimator and pentaprism used to determine the radius of curvature bymeasuring

surface slopes.
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This distance traveled by the microscope may be measured on a scale, to obtain a

precision of about 
0.1 mm. If a bar micrometer is used, the precision may be

increased by an order of magnitude. In this case two small convex buttons are

required, one fixed to the microscope carriage and the other to the stationary part

of the bench. They must face each other when the microscope carriage is close to the

optical bench fixed component.

Carnell and Welford (1971) describe a method that requires only one measure-

ment. The microscope is focused only at the center of curvature. Then, the radius of

curvature is measured by inserting a bar micrometer with one end touching the vertex

of the optical surface, and the other end is adjusted until it is observed in focus on the

microscope. Accuracies of a few microns are obtained with this method.

In order to focus the microscope properly, the image of an illuminated reticle must

fall after reflection on the same reticle itself.

A convex surfacemay also bemeasuredwith this method, if awell-corrected lens with

a conjugate longer than the radius of curvature of the surface under test is used (O’Shea

TABLE 17.2. Constants relating cavity length to

radius of curvature Z0 ¼ CnR.

N Cn

1 0.5

2 0.25

3 0.1464466

4 0.0954915

5 0.0669873

6 0.0495156

7 0.00380603

8 0.0301537

n = 1

n = 2 n = 3

Flat beam

splitter
Surface to

measure

FIGURE 17.16. Confocal cavity arrangements used to measure radius of curvature.
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and Tilstra, 1988). Another alternative for measuring convex surfaces is by inserting an

optical device with prisms in front of the microscope, as described by Jurek (1977).

Some practical aspects of the traveling microscope are examined by Rank (1946),

who obtained a dark field at focus with an Abbe eyepiece, which introduces the

illumination with a small prism. This method has been implemented using a laser

light source by O’Shea and Tilstra (1988).

A traveling microscope device for curvature measurement can be improved for high-

precision by bringing the focus determination up to the diffraction limit and the position

determination by the use of a coordinate measuring machine (Jiaming et al., 1995).

Additional optical methods to measure the radius of curvature of a spherical

surface have been described. Evans (1971, 1972a, and 1972b) determines the radius

by measuring the lateral displacements on a screen of a laser beam reflected on the

optical surface, when this optical surface is laterally displaced. Cornejo-Rodrı́guez

and Cordero-Dávila (1980), Klingsporn (1983) and Dı́az-Uribe et al. (1986) rotate

the surface about its center of curvature in a nodal bench.

17.5. FOCAL LENGTH MEASUREMENTS

Two distances from the focal point are commonly used; one is the back focal length,

defined as the distance from the last surface of the system to the focus. The other is

the focal distance defined as the distance from the principal plane to the focal point.

The back focal length is easily measured following the same procedure used for

measuring the radius of curvature, using a microscope and the lens bench (Chandler,

1974). Additionally, for photo and video camera lenses, the flange focal distance is

defined as the distance from the focal point to mounting flange in an optical system.

Flange focal distance can be measured with an autocollimator (Foote and Townsley,

1947).

17.5.1. Nodal Slide Bench

For an optical system in air, the principal points (intersection of the principal plane

and the optical axis) coincide with the nodal points. Thus, to locate this point we may

use the well-known property that small rotations of the lens about an axis, perpendi-

cular to the optical axis and passing through the nodal point, do not produce any

Microscope at
center of
curvature

Microscope at
mirror

surface

Mirror
under
test

FIGURE 17.17. Traveling microscope to measure radii of curvature.
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lateral shift of the image. The instrument used to perform this procedure, is called an

optical nodal slide bench (Kingslake, 1932). The use of a nodal slide is described in

Chapter 11: Star test in this book. Besides a precise measurement of the focal

distance, one can measure of others parameters like aberrations. A nodal slide bench

can be used also for measurements of reflecting surfaces (Cornejo-Rodrı́guez and

Cordero-Dávila, 1980) and even toric surfaces (Dı́az Uribe et al., 1986).

17.5.2. Focimeters

A focimeter is an instrument designed to measure the focal length of lenses in a

simple manner. It is a commonly used instrument by optometrists. Actually, a

focimeter or vertometer measures the back focal length or vertex power. A typical

focimeter is shown in Figure 17.18(a). When there is no lens in the measuring

position (Zero dioptric power), a light source illuminates a target (reticle) and a

convergent lens with focal length f is placed at a distance x from the reticle. The

reticle is imagined at infinity and a telescope permits the observation of the target at

that position. The lens to be measured is placed at a distance d from the converging

lens (Fig. 17.18b). The position of the target x is variable, and is adjusted until the

light beam going out from the lens under test becomes collimated. This collimation is

verified by means of the small telescope in front of this lens, focused to infinity. The

values of d and the focal length f are chosen to be equal. Then, the back focal length fb
of the lens under test is given by thin lens formula:

1

fb
¼ 1

d
� x

d2
¼ Pv ð17:5Þ

where Pv is the vertex power defined as Pv ¼ 1=fb.
From here we see that the power of the lens being measured is linear with the

distance x. Also, we can see that the measurement range of the focimeter goes from a

maximum positive power Pmax ¼ 1=d without a limit for negative powers. There are

(a)

(b)

Telescope

Reticle
Target Light

Source

x

f

d

x

FIGURE 17.18. Focimeter (a) without test lens and (b) with test lens.
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many variations of this instrument. Some modern focimeters measure the lateral

deviation of a light ray from the optical axis, (transverse aberration) as in

Figure 10.21 (Chapter 10), when a defocus is introduced (Evans 1971, 1972a,

1972b and Bouchaud and Cogno, 1982). This method is mainly used in somemodern

automatic focimeters for optometric applications.

The power error determination in a focimeter can be easily obtained by derivation

of Eq. 17.5:

dPv ¼ � dx

f 2c
ð17:6Þ

hence, the power error is linear with the target position error (Martı́nez-Corral et al.,

1998) and decreases with the square of the collimating lens focal distance.

To measure the transverse aberration, a position-sensing detector is frequently

used. An array of holes in a Hartmann-like test can be used. In particular an array of

four holes and a position sensing detector can be used to measure the lens vertex

power (Malacara and Malacara, 1992) as shown in Figure 17.19. With this method it

is possible to measure Vertex power, prism and cylinder for an ophthalmic lens. A full

Hartman screen can be used to obtain a power map of an ophthalmic lens (Salas-

Peimbert et al., 2004). Power map is obtained for a progressive lens by scanning the

lens aperture with a laser beam (Castellini et al., 1994), (Gnavo et al., 2002).

17.5.3. Other Focal Length Measurements

(a) Moiré deflectometry. Moiré deflectometry uses collimated light to impinge in

two Ronchi rulings (Fig. 17.20). Convergent or divergent beams of light

produce a rotation in the fringe orientation of a moiré pattern. This rotation

of magnitude a is related to the focal distance by (Kafri and Glatt, 1990)

f � d

y tan a
ð17:7Þ

Ta

Lens
under
test

FIGURE 17.19. Focal length determination by transverse aberration measurements.

17.5. FOCAL LENGTH MEASUREMENTS 825



where d is the ruling’s line pitch, y is the angle between the ruling’s lines, and a

is the rotation angle of the moiré pattern (Fig. 17.21). This method is useful for

long focal distance lenses (> 1 m). A variant of this method is shown in Figure

17.22 (Glatt and Kafri, 1987). This setup looks for a collimated beam of light

that is achieved through the mirror displacement. Under perfect collimation,

the mirror position defines the focal point position. Back focal distance could

be measured by measuring the distance between the mirror position and the last

lens surface. This new set-up allows the focal distance measurement for a lens

of any focal distance, not only long focal distances.

(b) Talbot Autoimages. Talbot autoimages are produced by periodic Ronchi

rulings in a coherent beam of light (see Chapter 9.). Talbot method is done

with a coherent collimated beam of light illuminating a periodic amplitude or

phase grating. Periodically and equally spaced, an image of the grating will be

produced as shown in Figure 17.23. Every Talbot autoimage is considered an

object for the lens that produces an image of the same autoimage at the lens

image space. Two methods are used to find the focal lens: One is to put

another ronchi ruling coincident with one of the autoimages (Malacara-

Doblado and Malacara-Hernández, 1996) (Nakano and Murata, 1985).

a

FIGURE 17.21. Moiré pattern for a lens in a moiré deflectometer.

Point
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lens

Ronchi
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Ground

glass

Observing
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FIGURE 17.20. Set-up for a moiré deflectometry lens power measurement.

826 ANGLE, PRISMS, CURVATURE, AND FOCAL LENGTH MEASUREMENTS



A moiré interferometer results with the same procedure described in the

moiré deflectometer case. Another method consists in measuring the position

of several autoimages. In this case, the lens power can be measured, not just

the back focal length (Bernardo and Soares, 1988)

(c) Fourier Transforms. Fourier transforming properties of a lens can be used to

determine the focal length of a lens. In one case (Horner, 1989), a slit is placed

in the object plane and the diffraction pattern is analyzed on the image plane.

Bymeasuring the diffraction pattern maxima and spacing, the focal length can

be determined. One advantage of this method is that the incoming beam of

light does not has to be perfectly collimated.

(d) Microlenses. Microlenses impose several practical problems in focal distance

measurement. The main problem is related to the small distances to be

measured. A proposed solution is by the analysis of the propagation of a

Gaussian beam of a laser (Camacho et al., 2000) (Camacho et al., 2002).

A lens is placed in the beam waist. From here, it is possible to know the focal

length of a lens when the shape of the propagating is measured.

(e) Fiber Optics Bundle. A clever method used to automatically find the position of

the focus has been described byHowland and Proll (1970). They used a fiber optics

bundle mixed to illuminate at the focal plane of a lens, mixed to another bundle to

collect the retroreflected beam of light in an autocollimating configuration.

Collimated
beam

Ronchi
ruling

Talbot autoimages

(object)

Images from

Talbot autoimages

P–2 P–1 P0 P1 P2 P3
I2 I1 I0 I–1I–2 I–3 I–4

FIGURE 17.23. Talbot autoimages in a lens.

Collimated
beam

Beam
SPLITTER

Lens
under
test

Mirror

Ronchi
rulings

FIGURE 17.22. Moiré deflectometry set-up for long and short focal length measurement.
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18

Mathematical Representation of an Optical
Surface and Its Characteristics

D. Malacara

18.1. DEFINITION OF AN OPTICAL SURFACE

Aspherical surfaces are extremely important in optical systems and have been

studied and described by many authors, for example, by Schulz (1988) and Shannon

(1980). Of special interest are surfaces with rotational symmetry, which may be

defined by means of the following relation, taking the z axis as the axis of revolution:

z ¼ cS2

1þ ½1� ðK þ 1Þc2S2�1=2
þ A1S

4 þ AsS
6 þ A3S

8 þ A4S
10 ð18:1Þ

where S2 ¼ x2 þ y2 and c ¼ 1=r ¼ 1/radius of curvature. Also, A1, A2, A3, and A4 are

the aspheric deformation constants, and K is a function of the eccentricity of a conic

surface (K ¼ �e2), called the conic constant. If the Ai are all zero, the surface is a

conic surface of revolution, according to the following Table 18.1:

In an ellipsoid with rotational symmetry about the z axis, the excentricity is

defined as

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2
p

a
ð18:2Þ

where a is the major semi-axis, along the z axis and b is the minor semi-axis, along

the y axis. For the case of the oblate spheroid, the same definition (18.2) holds but

then a is the minor semiaxis, along the z axis and b is the major semi-axis, along the y

axis. Thus, the excentricity is an imaginary number and K > 0, since a < b.

As it is easy to see, the conic constant is not defined for a flat surface (c ¼ 0). An

alternative expression for the conic constant in terms of the vertex radius of curvature
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r and the distance L from the center of curvature to the focus of the conic optical

surface located between the center of curvature and the optical surface is

K ¼ � L2

ðL� rÞ2
ð18:3Þ

The sign of L and the corresponding values of K for different values of L and r are

graphically described in Figure 18.1.

For conic surfaces of revolution there is an expression for z somewhat simpler

than the general expression (18.1)

z ¼ 1

K þ 1
r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � ðK þ 1Þs2
ph i

ð18:4Þ

TABLE 18.1. Values of conic constants for conic surfaces.

Type of conic Conic constant value

Hyperboloid K < �1

Paraboloid K ¼ �1

Prolate spheroid or ellipsoid:

(ellipse rotated about its major axis) �1 < K < 0

Sphere K ¼ 0

Oblate spheroid

(ellipse rotated about its minor axis) K > 0

E
lli

p
s
o
id

s

C

C

L < 0 L = 0 L > r
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e
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FIGURE 18.1. Values of the conic constant K as a function of the vertex radius of curvature and the

distance L from the center of curvature of the conic surface to one of the focii.
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This serves for all conics except the paraboloid, where

z ¼ S2

2r
ð18:5Þ

An illustration of the profiles of some conic optical surfaces are in Figure 18.2. A

surface of the axicon type (McLeod, 1960) that has the shape of a cone may be

represented by means of a hyperboloid with an extremely large curvature, as shown

in Figure 18.3, thus obtaining

K ¼ �ð1þ tan2 yÞ < �1 ð18:6Þ

and

c ¼ 1

ðK þ 1Þb ð18:7Þ

S

K = –6
K = –4

K = –1

K = 0

K = 2

K = 4

K = 6

z(S)

K = –0.5

Center of
Curvature

FIGURE 18.2. Profiles for aspheric surfaces with the same curvature but different conic constants.

b

q

FIGURE 18.3. Axicon surface.
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18.1.1. Parameters for Conic Surfaces

The positions of the foci for the conic surfaces are functions of r and K and are given

by the following relations, as illustrated in Figure 18.4:

d1 ¼
r

K þ 1
ð18:8Þ

d2 ¼
r

K þ 1
ð2

ffiffiffiffi

K
p

Þ ð18:9Þ

d3; d4 ¼
r

K þ 1
ð1


ffiffiffiffiffiffiffiffi

�K
p

Þ ð18:10Þ

d5 ¼
r

2
; ð18:11Þ

d6; d7 ¼
r

K þ 1
ð
ffiffiffiffiffiffiffiffi

�K
p


 1Þ ð18:12Þ

18.1.2. Some Useful Expansions of z

Sometimes it is convenient to consider an aspheric or conic optical surface as the sum

of its osculating sphere plus some deformation terms, as follows:

z ¼ cS2

1þ ½1� c2S2�1=2
þ B1S

4 þ BsS
6 þ B3S

8 þ B4S
10 ð18:13Þ

d

d
d

d

2

3

4

5

(a) Oblate spheroid  (K >0) (b) Ellipsoid  (–1<K<0)

(d) Hyperboloid  (K<–1)(c) Paraboloid  (K >–1)

d1

CC

C

d6 d7

C C

CC

FIGURE 18.4. Some parameters for conic surfaces. The vertex center of curvature is labeled as C.
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where

B1 ¼ A1 þ
½ðK þ 1Þ � 1�c3

8
;

B2 ¼ A2 þ
½ðK þ 1Þ2 � 1�c5

16
;

B3 ¼ A3 þ
5½ðK þ 1Þ3 � 1�c7

128
;

B4 ¼ A4 þ
7½ðK þ 1Þ4 � 1�c9

256
;

ð18:14Þ

or some other times this expression is preferred:

z ¼ D2S
2 þ D4S

4 þ D6S
6 þ D8S

8 þ D10S
10; ð18:15Þ

where

D2 ¼
c

2
; ð18:16Þ

D4 ¼
c

2

c

2

� �2

þB1 ¼ c3

8
þ B1; ð18:17Þ

D6 ¼ c
c

2

� �4

þB2 ¼ c5

16
þ B2; ð18:18Þ

D8 ¼
5c

2

c

2

� �6

þB3 ¼ 5c7

128
þ B3; ð18:19Þ

D10 ¼
14c

2

c

2

� �8

þB4 ¼ 7c9

256
þ B4 ð18:20Þ

18.1.3. Aberration of the Normals to the Surface

A normal to the optical surface intersects the optical axis at a distance Zn from the

vertex of the surface. To compute this distance, we need to know the value of the

derivative of z with respect to S, which is given by

dz

dS
¼ cs

½1� ðK þ 1Þc2S2�1=2
þ 4A1S

3 þ 6A2S
5 þ 8A3S

7 þ 10A4 S
9 ð18:21Þ

The distance Zn is then given by

Zn ¼
S

dz=dS
þ z ð18:22Þ

and as shown by Buchroeder et al. (1972), for conic surfaces, this expression

becomes

Zn ¼
1

c
� Kz ð18:23Þ
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It is interesting to see that for the case of a paraboloid (K ¼ �1) as shown in

Figure 18.5 this aberration of the normals becomes

Zn ¼
1

c
þ Z ¼ 1

c
þ tan2 j ð18:24Þ

where the angle j is the angle between the normal to the surface and the optical axis,

as illustrated in this figure, and f is the focal length of the paraboloid. Wemay see that

for this case of the paraboloid, the distance Zn from the center of curvature to the

intersection of the normal with the optical axis is equal to the sagitta Z as shown in

Figure 18.5. In the general case of aspheric surfaces, the intersection of the normals

may be approximated by

Zn ¼
1

c
� ðKc3 þ 8A1ÞS2

2c2
ð18:25Þ

18.2. CAUSTIC PRODUCED BY AN ASPHERIC SURFACE

When testing an aspheric surface at its center of curvature, it is useful at times to

know the pertinent dimensions for the caustic, which may be derived by the method

to be explained. The envelope of the caustic produced by the light reflected from the

aspheric surface when illuminated with a point source at the center of curvature is

C

Z

2

Z

F

f

L n

S

n

Paraboloid

Normal

FIGURE 18.5. Rays reflection in a reflecting concave paraboloid.
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called the evolute in analytic geometry. The wavefront W(S) reflected from the

aspheric surface can be written as (see Fig. 18.6)

WðSÞ ¼ Kc3

4
S4 þ ð�LÞc2

2
S2 ð18:26Þ

where �L is the distance of the plane under consideration from the paraxial focus.

The distance �L from the paraxial to the marginal focus can be found by means of

the condition

dW

dS

� �

S¼Smax

¼ 0 ð18:27Þ

where Smax is the semidiameter of the surface under test. Thus we obtain

ð�LÞmarginal focus ¼ L ¼ �KcS2max ð18:28Þ

The distance �L to the end of the caustic from the paraxial focus is found with the

condition

d2W

dS2

� �

S¼Smax

¼ 0 ð18:29Þ

thus obtaining

ð�LÞend of caustic ¼ 3L ð18:30Þ

End of caustic

Marginal focus
Waist (best focus)

W =0 at edge of pupil

Paraxial focus

L

L

L

L

2

3

1

4

FIGURE18.6. Caustic produced by a reflective concave aspheric surface tested at the center of curvature.
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The distance �L from the waist of the caustic to the paraxial focus is obtained with

the condition

dW

d S

� �

S¼Smax

¼ � dW

d S

� �

S¼s

ð18:31Þ

where s is the value of S that gives a maximum or minimum for dW / dS or,

equivalently, (d2W/dS2)S¼ s¼ 0. Then it is possible to obtain

ð�LÞwaist of caustic ¼
3

4
L ð18:32Þ

The diameter w of the waist, or circle of least confusion, is given by

w ¼ 2

c

dW

dS

� �

S¼Smax

ð18:33Þ

using the value of �L for the waist of the caustic. The result is

w ¼ � 1

2
Kc2S3max ð18:34Þ

The diameter at the beginning of the caustic (paraxial focus) is equal to 4w, and at the

end of the caustic, it is equal to 8w.

18.3. PRIMARY ABERRATIONS OF SPHERICAL SURFACES

The usual expressions for the primary aberrations of spherical refracting and reflect-

ing optical surfaces will be described in the next sections.

18.3.1. Spherical Aberration of and Aspherical Surface

A system of k-centered reflective or refractive aspherical surfaces has a transverse

third-order spherical aberration given by

SphT ¼
Xk

j¼1

Sphj ð18:35Þ

with

Sphj ¼ � yðN�1 � NÞ
2Nkuk

ð8A1 þ Kc3Þy3 þ n�1

n2
ðnþ n�1Þu�1 þ n�1yc�ðycþ u1Þ2

n o

ð18:36Þ
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where u�1 and u are the slopes of the incident and refracted or reflected rays, u�1 and

n are the refractive indices, and y is the height of the rayon the surface.

The sign convention is in Figure 18.7. For a reflective surface we may write

u�1 ¼ �n ¼ 1, hence the transverse spherical aberration becomes

Sphj ¼
y

Nkuk
½ð8A1 þ Kc3Þy3 þ ðycþ u�1Þyc� ð18:37Þ

Considering now the particular case of a mirror tested at its center of curvature

(nk ¼ �1; u�1 ¼ 0, and u ¼ �yc), the transverse spherical aberration is given by

Sph ¼ �ð8A1 þ Kc3Þy3
c

ð18:38Þ

while with a point source at infinity and the image at the focus (u ¼ �2yc) we have

Sphf ¼
�ð8A1 þ Kc3 þ c3Þy3

2c
ð18:39Þ

18.3.2. Coma of a Concave Mirror

The expression for the third-order sagittal comawith the pupil at the optical surface is

independent of the asphericity of the mirror and is given by

Comas ¼ ðycþ uÞcyh ð18:40Þ

where h is the image height (or deviation from the optical axis). It is quite interesting

that if a surface is tested near the center of curvature (u ¼ �yc), no third-order coma

is introduced if the light source is placed slightly off axis.

I

n n ¢

P

I
I ¢ I–I ¢

–U ¢

C
L

L ¢

r

V

BA

N

–U
Y

FIGURE 18.7. Sign convention (all shown quantities are positive).
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18.3.3. Astigmatism of a Concave Mirror

The Petzval surface of a concave reflecting optical surface depends only on the

curvature of the surface and has a curvature 1=rp given by

1

rp
¼ �2c ð18:41Þ

We restrict ourselves to the case of an optical surface and its pupil at the same place

since this is the most interesting configuration in optical testing.

Then we can show that the sagittal surface is always flat and that the tangential

surface has a curvature 1=rT given by

1

rT
¼ �4c ð18:42Þ

The expression for the third-order transverse sagittal astigmatism (pupil at the

optical surface) as measured on the Petzval surface is

AstT ¼ cuh2 ð18:43Þ

The tangential astigmatism on the Petzval surface has three times the magnitude

of the sagittal astigmatism. The difference between these two aberrations is a residual

transverse aberration, given by

TAast ¼ Astt � Asts ¼ 2Asts ð18:44Þ

Thus, when testing with the light source slightly off axis, the apparent astigmatic

difference between the tangential and the sagittal wavefront profiles is

W ¼ � 2

l

Z y

0

Astsdy ð18:45Þ

where l is the distance from the surface to the image (y ¼ ul). It may be shown that

W ¼ �cu2h2 ¼ � ch2y2

l2
ð18:46Þ

Therefore an apparent astigmatism equal toW /2 will be found on the surface under

test. The tangential curvature appears stronger than the sagittal curvature. Notice

that, if the surface is tested at the center of curvature, l is the radius of curvature and h

is half the separation between the point source and the image.

18.4. ASTIGMATIC SURFACES

An astigmatic surface is one that has two different curvatures in two perpendicular

directions, called normal curvatures. These surfaces do not have rotational symmetry,

but have symmetry at about two orthogonal planes that intersect at the optical axis. An
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astigmatic surface may be generated in several manners, for example, as described by

Malacara and Malacara, (1971). Sasian (1997) has shown that an astigmatic surface

can sometimes be replaced by an off-axis paraboloid, which is relatively easier to

manufacture. The curvature at the vertex in any direction y is related to the two normal

curvatures by the Euler formula as follows:

cy ¼ cx cos
2 yþ cy sin

2 y ð18:47Þ

There is an infinite number of astigmatic surfaces that have these properties

(Malacara-Doblado et al., 1996), but the main ones used in optics will now be briefly

described.

18.4.1. Toroidal Surface

A toroidal surface frequently has the shape of a doughnut, but the central hole may

also be missing. The expression for a toroidal surface, with its axis of symmetry

parallel to the y axis, is shown in Figure 18.8 is given by

z ¼ rx � ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2y � y2
q

þ rx � ryÞ2 � x2
h i1

2

¼

cxx
2 þ cyy

2 þ 2
ðcy � cxÞy2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� c2yy
2

q

0

B
@

1

C
A

1þ 1� cx cxx2 þ cxy2 þ 2
ðcy � cxÞy2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� c2yy
2

q

Þ

0

B
@

1

C
A

2

6
4

3

7
5

8

><

>:

9

>=

>;

1=2

ð18:48Þ

Here, rx is the radius of curvature on the x-z plane (semidiameter of the doughnut),

and ry is the radius of curvature in the y-z plane. The cross sections in the y-z plane as

well as in all other planes containing the axis of symmetry are circles with curvature

cy. The cross section in the plane x-z is a circle with curvature cx. The cross sections in

all other planes containing the optical axis have complicated shapes that are nor

circles neither ellipses. If the toroid has a hole like a doughnut (ry < rx=2), it is called
a ring toroid, if the hole is not present (ry > rx=2), it is called a spindle toroid.

This expression is not invariant if we rotate the toroid 90� about the optical axis.
However, the expression for a toroid with its axis of symmetry along the x axis can be

found from Eq. (18.49) by just interchanging x and y, as well as cx and cy. Depending

on the orientation of the toroid as well as on the relation between cx and cy, the toroid

becomes either a ring or a spindle toroid, as illustrated in Table. 18.2.

18.4.2. Astigmatic Ellipsoidal and Oblate Spheroidal Surfaces

An astigmatic ellipsoidal surface is generated by rotating an ellipse about an axis that

we call an axis of symmetry. This axis is perpendicular to the optical axis and passes
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FIGURE 18.8. Astigmatic toroidal surface.

TABLE 18.2. Cross sections for a toroidal surface for two orthogonal orientations of

the axis of symmetry, and the relation between the two normal curvatures.

Axis of symmetry Cross-sections

parallel to: Curvatures Surface type Plane x-z Plane y-z

cy < 2cx Spindle toroid

x
y

z z

Axis of
symmetry

y axis

cy > 2cx Ring toroid

x
y

z z

symmetry
Axis of

cx < 2cy Spindle toroid

x

z

symmetry
Axis of y

z

x axis

cx > 2cy Ring toroid

x
y

z z

symmetry
Axis of

8

>>>>><

>>>>>:

8

>>>>>><

>>>>>>:
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through it. When the axis of symmetry is parallel to the y axis (see Fig. 18.9), the

expression for the sagitta z is

z ¼
1� ½1� ðcxcyx2 þ c2yy

2Þ�1=2

cy
¼ ðcxx2 þ cyy

2Þ
1þ ½1� cyðcxx2 þ cyy2Þ�1=2

ð18:49Þ

If the major semi-axis of the generating ellipse is along the y axis, the generated

surface is an ellipsoid. On the contrary, if the major semi-axis is along the z axis, the

surface is an oblate spheroid. As in the case of the toroid, this expression is not

invariant to rotations about the optical axis. The expression for z when the axis of

symmetry is along the x axis can be found from Eq. (18.49) by interchanging x and y,

as well as cx and cy.

The two cross sections on the planes x-z and y-z will depend on the orientation for

the axis of symmetry as well as in the relative values of curvatures cx and cy, as

illustrated in Table 18.3.

18.4.3. Sphero-Cylindrical Surface

A sphero-cylindrical surface, illustrated in Figure 18.10 may be represented by the

expression (Menchaca and Malacara, 1986)

z ¼ cxx
2 þ cyy

2

1þ 1� ðcxx2 þ cyy
2Þ2

x2 þ y2

" #1=2
ð18:50Þ
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FIGURE 18.9. Astigmatic ellipsoidal surface.
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If the curvatures cx and cy, are equal to c, this expression becomes identical to

Eq. (18.1). This expression is symmetrical with respect to x and alsowith respect to y.

As a result, if x and y as well as cx and cy are interchanged, the form of this expression

is preserved. Another interesting property of this surface is that the cross section in a

plane containing the optical axis is always a circle, with a curvature cy given by the

Euler formula.

The sphero-cylindrical and the toroidal surfaces have in common that their cross

sections in the x-z and y-z planes are circles.

An important difference between the sphero-cylindrical and the toroidal surface is

that the first has only two possible solutions for z since there is only one square root.

For the toroidal surface we have two square roots, one inside the other. For a spindle

toroid two of the four solutions may be imaginary.

TABLE 18.3. Cross sections for an ellipsoidal or oblate spheroidal surface for

two different orientations of the axis of symmetry, and the relation between the

two normal curvatures.

Axis of Cross-sections

symmetry Semi-axis along Surface Plane x-z Plane y-z

parallel to: Curvatures optical axis (Z) type

cy < cx Minor Ellipsoid

x
y

z z

Axis of
symmetry

semi-axis

y axis

cy > cx Major Oblate

semi-axis spheroid

yx

zz

symmetry
Axis of

cx < cy Minor Ellipsoid

semi-axis z

yx

z

symmetry
Axis of

x axis

cx > cy Major Oblate

semi-axis spheroid z

x y

z

Axis of
symmetry

8

>>>>>><

>>>>>>:

8

>>>>>><

>>>>>>:
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18.4.4. Testing Astigmatic Surfaces and Reference Astigmatic Surface

If we test the preceding astigmatic surfaces with a point light source at one of the two

normal centers of curvature, wewould expect a perfect image with the shape of a thin

line formed at the same plane by the reflected light, as described in Chapter 12. This

is the basis of some tests used for astigmatic surfaces. This line image is not always a

perfectly thin image from the geometrical point of view since some transverse

aberration in the perpendicular direction to the line image may be present in the

reflected wavefront. However, it is possible to have a perfect line image. The

requirement is that the surface under test has an axis of rotational symmetry

perpendicular to the optical axis, as in the cases of the toroidal, ellipsoidal and

oblate spheroidal surfaces, and that the illuminating point source is located at the

point where the axis of symmetry and the optical axis intersect. This condition

guarantees that the reflected wavefront has no transverse aberration TAx in the x

direction. Then, the image is a perfectly thin and straight line oriented along the axis

of symmetry of the optical surface.

The only problem with the surfaces previously described with an axis of sym-

metry is that the reflected light rays in the plane containing this axis of symmetry may

have some transverse spherical aberration TAy, which, of course, does not broaden the

thin line image; only the light distribution along this line is not evenly distributed. If it

is necessary to eliminate this remaining aberration, a perfect astigmatic reflecting

surface is produced if the surface generating ellipse is rotated not about its semi-axis

but about a line passing through one of the focii of the ellipse and parallel to the y

axis. The astigmatic surface is illustrated in Figure 18.11. The cross section in the

plane y-z is a section of an ellipse. As in the toroidal, ellipsoidal and oblate spheroidal

surfaces, the cross sections in any plane parallel to the plane x-z are circles whose

centers of curvature are all aligned on the axis of symmetry in this case, passing

through one of the ellipse focii. This surface could be considered as an ellipsoidal

spindle toroidal surface. For simplicity, we will call it a reference astigmatic surface.

z

y
Circle

z

x Circle

rx

yr

y

z

x

FIGURE 18.10. Astigmatic sphero-cylindrical surface.
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The general expression for a surface generated by rotating an ellipse about any

axis of symmetry parallel to the y axis and passing thorough the optical axis can be

found to be

z ¼ rx � a2 � ay2

ry

� �1=2

þrx � a

" #2

�x2

8

<

:

9

=

;

1=2

¼

cxx
2 þ cyy

2 þ 1
a
� cx

� � cyy
2

1þ 1� cyy2

a

� �1=2

0

B
@

1

C
A

2

1þ 1� cx cxx2 þ cyy2 þ 1
a
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� � cyy
2
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>:
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>;
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ð18:51Þ

where a is the major semi-axis of the generating ellipse. As it can be easily noticed,

the axis of symmetry is at a distance cx from the vertex.

It is interesting to notice that from this expression the reference astigmatic surface

as well as several other surfaces can be obtained by setting the value of a as in

Table 18.4.

Once more, as in the cases of the toroid and the ellipsoid, this surface can be

rotated to have its axis of symmetry parallel to the x axis by interchanging x and y, as

well as cx and cy.

18.4.5. Comparison Between Astigmatic Surfaces

All the astignmatic surfaces described here have in common the property that the

cross section in the plane x-z are circles (if the axis of symmetry is parallel to the y

y
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FIGURE 18.11. Perfect astigmatic reflecting surface.
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axis). The Taylor expansion up to the fourth power of the astigmatic surfaces have in

common the first three terms as follows:

z ¼ 1

2
cxx

2 þ 1

2
cyy

2 þ 1

8
c3xx

4 þ z4 ð18:52Þ

where z4 represents the next two fourth order terms, and the coefficient of x2y2 is a

square ashtray term:

(a) For the sphero-cylindrical surface:

z4 ¼
1

16
ð3ðcx þ cyÞcxcy � ðc3x þ c3yÞÞx2y2 þ

1

8
c3yy

4 ð18:53Þ

(b) For the toroidal surface with axis of symmetry parallel to the y axis:

z4 ¼
1

4
c2xcyx

2y2 þ 1

8
c3yy

4 ð18:54Þ

(c) For the ellipsoidal surface with axis of symmetry parallel to the y axis, passing

through one of the semi-axes:

z4 ¼
1

4
c2xcyx

2y2 þ 1

8
cxc

2
yy

4 ð18:55Þ

(d) For the reference surface with axis of symmetry parallel to the y axis, passing

through one of the focii, by approximating Eq. (18.51) with a Taylor ex-

pansion up to the fourth power and using the corresponding value of a in

Table 18.4:

z4 ¼
1

4
c2xcyx

2y2 þ 1

8
cycxð2cx � cyÞy4 ð18:56Þ

It must be pointed out that despite these formal differences for the astigmatic

surfaces, in practice they might be almost identical if the two normal curvatures are

similar.

TABLE 18.4. Values of a in Eq. (18.51) to produce

astigmatic surfaces with an axis of symmetry parallel

to y axis.

Astigmatic surface Value of a

Toroid 1=cy

Ellipsoid or oblate spheroid 1=cx

Reference astigmatic surface
cy

cxð2cx � cyÞ
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18.5. OFF-AXIS CONICOIDS

Wemay think of a conicoid in terms of an ellipsoid, where the sphere, the paraboloid

and the hyperboloid are particular cases where the only difference is the excentricity.

The surface of any off-axis conicoid, as illustrated in Figure 18.12, can be repre-

sented by

zðx; yÞ ¼ 1

2
cxx

2 þ 1

2
cyy

2 þ a3x
2yþ a4y

3 þ a5x
4 þ a6x

2y2 þ a7y
4 ð18:57Þ

where cx and cy are the curvatures at the origin of coordinates in the off-axis conicoid

and the coefficients a3, a4, a5 and a7 depend on the parameters defining the conicoid.

In general, for all off-axis conicoids we may see that

cyc
2 ¼ c2x ð18:58Þ

as shown by Menchaca and Malacara (1984). Frequently, the curvature in the y

direction is called the tangential curvature, and the curvature in the x direction is

called the sagittal curvature.

If we define the ellipsoid parametersW and z0 in terms of the off-axis angle y and

the semiaxes a and b by

W2 ¼ ða2 � b2Þ sin y cos y ð18:59Þ

and

z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 cos2 yþ b2 sin2 y
p

ð18:60Þ

as illustrated in Figure 18.12, we obtain the coefficients as

cx ¼
z0

b2
ð18:61Þ

cy ¼
z30

a2b2
ð18:62Þ

a3 ¼ � z20W
2

2a2b4
ð18:63Þ

a4 ¼
z40W

2

2a4b4
ð18:64Þ

a5 ¼
z0ða2b2 þW4Þ

8a2b6
ð18:65Þ

a6 ¼
z30

4a4b6
ða2b2 þ 3W4Þ ð18:66Þ

a7 ¼
z50

8a2b2ða2b2 þW4Þ
5W8

a4b4
þ 6W4

a2b2
þ 1

� �

ð18:67Þ
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These coefficients indicate the presence of coma, triangular astigmatism, as well

as quadratic astigmatism (also known as ashtray astigmatism). These expressions can

also be written in terms of the axial curvature c of the ellipsoid, that is, the curvature

at the end of the semi-axis a, the conic constant K, and the off-axis angle y by using

a ¼ 1

cðK þ 1Þ ð18:68Þ

b ¼ 1

c
ffiffiffiffiffiffiffiffiffiffiffiffi
K þ 1

p ð18:69Þ

Then, it easy to see that the sagittal and tangential curvatures become

cx ¼ c ð1þ K sin2 yÞ3=2 ð18:70Þ
and

cy ¼ c ð1þ K sin2 yÞ1=2 ð18:71Þ
respectively.

18.5.1. Off-Axis Paraboloids

As pointed out by Sasian (1997) an astigmatic surface, like a toroid, can sometimes

replace an off-axis paraboloid like that in Figure 18.13, whose axis is tilted by an

angle y, and may be considered in a first approximation as a toroidal surface if the

diameter is small compared with its radius of curvature.

From Eq. (18.71) by settingK ¼ �1, wemay see that the tangential curvature cy is

given by

cy ¼ c cos3 y ð18:72Þ
In an analogous manner, the sagittal curvature cx is given by

cx ¼ c cos y ð18:73Þ
The on-axis vertex curvature c of the paraboloid is related to the focal length by

c ¼ 1

2F
ð18:74Þ

where F is the paraboloid focal length.

q
z

y

FIGURE 18.12. Off-axis ellipsoid.
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If the diameter of the off-axis paraboloid is not very small relative to its focal length,

besides the astigmatic component, an additional coma like term has to be considered.

With larger apertures, even a triangular astigmatism or quadratic terms appear

(Malacara, 1990).
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Appendix

Optical Testing Programs

Two computer programs for Windows, coded with National Instruments LabView,

useful for optical testing are included with this book. These programs are:

1. A program to display and save data and images for several types of fringe

patterns and images obtained by simulating some of the optical tests described in this

book.

2. A program to analyze and design algorithms for measuring the phase in phase

shifting interferometry.

A1. INTERFEROGRAM GENERATION

This program displays the test patterns on the computer screen and can also save

them in the hard disc for from the following optical tests:

1. Wavefront plot (isometric).

2. Wavefront profiles (tangential and saggital).

3. Transverse aberrations (TAxð0; yÞ; TAxðx; 0Þ; TAyð0; yÞ;TAyðx; 0ÞÞ.
4. Ronchi pattern.

5. Hartmann pattern.

6. Foucault pattern.

7. Twyman interferogram.

8. Lateral shear interferogram.

9. Radial shear interferogram.

10. Rotational shear interferogram.

Optical Shop Testing, Third Edition Edited by Daniel Malacara
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The interferogram images have a resolution of 512� 512 pixels, in the format

*.bmp. The wavefront data can be specified in three different manners:

(a) A polynomial represented by a sum of monomials.

(b) A polynomial represented by a sum of primary aberration terms plus third and

fifth order spherical aberration terms.

(c) A polynomial represented by a linear combination of Zernike polynomials.

The coefficients in these three cases are those for a normalized pupil with a

unit radius. The advantage of doing so is that the maximum deformation on the edge

of a circular pupil is directly proportional to the value of the coefficient with its

constant of proportionality being equal for all different terms, independently of its

power.

Instead of the wavefront shape, we can define a reflecting surface shape, being

tested at the vertex center of curvature. These are two types of surfaces.

(a) An aspheric surface with rotational symmetry.

(b) An a stigmatic surface, atoroid, an sphero-cylindrical surface, an ellipsoid or

an astigmatic reference surface.

Once a type of data has been specified, the data being used is not modified until

new data is entered. If desired, it can be seen in a screen called View Data.

If the data for a wavefront or surface is saved, it is stored in the folder:

C:\Program Files\Interferogram Generation\Interferograms Data

A2. PHASE SHIFTING ALGORITHMS

The data for this program is a set of coefficients W1 in the numerator and W2 in the

denominator for the expression to find the phase in phase shifting interferometry,

which is

tanf ¼ �

PN

n¼1

W1isðanÞ

PN

n¼1

W2isðanÞ

where sðanÞ is the measured signal at the relative phase, measured with respect to the

initial phase on the interferometer setting. The phase of the N sampling points is

assumed to be equally spaced and the phase of the first sampled point is not

necessarily zero.
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The basic properties of the evaluated algorithm are calculated with the theory by

Freischlad and Koliopoulos (1990). The exact phase error is calculated as described

by Hernández-López and Malacara (2000) with the formula:

tan df ¼ H01 þ H11 cos 2fþ H21 sin 2f

H01 þ H12 cos 2fþ H22 sin 2f

and the coefficients Hij are calculated as described by the authors.

The first step when using this program should be either to enter new data or to

open one of the data sets for an algorithm already stored in the folder:

C:\Program Files\Phase Shifting Algorithms\Algorithms data

When data for a new algorithm is saved, it is stored in the same folder.

A3. INSTALLATION

The installation is simple by just executing the program setup.exe. When installing

these two programs please do not change the default installing directories, which are:

C:\Program Files\Interferogram Generation

for the program for the generation of interferograms and

C:\Program Files\Phase Shifting Algorithms

for the program to design phase shifting algorithms.

A4. SOME SUGGESTIONS FOR THEIR USE

The use of these programs is quite simple by just following the screens and menus.

However, some hints may be useful: When modifying a data number while running

any of these programs, if you do not want to modify the first significant digit, with the

mouse place the vertical cursor line, at the right of the digit you want to modify.

These programs are provided as they are now. Theymay still contain a few bugs. If

you find any, please contact the authors, so that they can be fixed in next versions.

REFERENCES
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testing with sub-Nyquest interferometry,

631

testing with two wavelengths, 488, 635

testing with wavefront stitching, 491, 637

testing methods, 437, 629, 631, 635, 637

Astigmatic surfaces, 841

comparison, 847

testing, 846

Astigmatism

axial, 504

detection, 841

detection with Foucault test, 287

Atomic force microscopes, 678, 683

Autocollimation, 443

Autocollimation test for parabolicmirrors, 363

Autocollimator, 810, 821

Axial astigmatism, 504

Axial coma, 504

Axicon surface, 834

Babinet compensator, 163

Beam splitter, 48, 49, 51, 58

diffraction grating, 79, 80

birefringent, 104

non-polarizing, 55

polarizing, 53

required accuracy, 51

Saunders, 114

Wollaston prism, 106
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Beam walk-off, 269

Bevel gauge, 816

Brewster’s angle, 48

Brown interferometer, 192

Burch compensator, 456

Burch interferometer, 98

Cartesian configuration, 451

Caustic, 300, 837, 838

Circle polynomials, 505

Circular grid test, 347

Cliromatic confocal microscopy, 693

Coddington equations, 311

Coded light projection, 780

Coherence, 123

in radial shear interferometer, 191

requirements, 9, 20, 22, 56, 262

Coma aberration detection, 284, 840

Coma, axial, 504

Commercial interferometers, 25, 735

Common path interferometer, 97, 118

Compensator, 454

adaptive, 471

Burch, 456

Couder, 456

Dall, 458

holographic, 474

Offner, 462

Offner reflection, 462

refractive, 461

reflecting, 466

Ross, 456

Shafer, 464

Computer generated holograms, 478, 483, 485

Concave mirror

astigmatism of, 841

coma of, 840

Confocal microscopy, 668, 689, 693

Confocal cavity, 270, 821

Conic constant, 833

Conic surface

aberration of the normals, 836

definition, 832

parameters for, 835

Contact profilometers, 668, 670

Couder compensator, 456

Couder screen, 293

Cube corner prism, 28, 66

Curvature: measurement, 421

Curvatures, local average, 421

Cyclic radial shear interferometer, 194

Cyclic interferometer, 140

Cylindrical surfaces: testing, 453

Dall compensator, 458

Descartes ellipsoid, 450

Descartes hyperboloid, 450

Detectors, 613, 614

Differential interference contrast

microscope, 736

Diffraction based interferometer, 158

Diffraction ruling, 64

Digital holography, 791, 794

Digital holographic interferometry, 791

Directional shearing interferometer, 166

Displacement measurement, 781

Divided circle, 808

Double-focus interferometer, 112

Double-focus system, 107

Double-pass interferometer, 259

Fizeau, 262, 263, 269

Twyman-Green, 264

radial shear interferometer, 195

Dyson system, 441

Dyson interferometer, 112

Electro-optic holography, 795

Ellipsoidal surface

cross section, 845

definition, 835, 842

testing, 444, 448

Encircled Energy, 402

Equal chromatic order fringes, 220, 232

Equivalent wavelength, 759

ESPI (Electronic speckle pattern

interferometry), 791, 794

Fabry–Perot interferometer, 219, 236

Film and plate thickness measurement, 729,

735

First order parameters for an interferometer,

186

Fitting the wavefront, 498

Fizeau interferometer, 1, 229, 553

Fizeau interferometer, double-pass, 262, 269

Flat surface

and Ritchey-Common test, 310

testing, 4, 40, 237, 442
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Flatness measurement, 4, 40, 237

Flats, 4, 7, 10, 11

absolute testing of, 40

liquid, 23

Focal length measurement, 823

fiber optics, 827

Fourier transforms, 827

microlenses, 827

moiré, 825

nodal slide bench, 823

Talbot autoimages, 826

Focimeters, 824

Foucault test, 275

geometrical theory, 280

physical theory, 289

practical configurations, 280

with Couder screen, 293

with zonal test, 293

Fourier transforms, 422

Fresnel zone plate interferometer, 102

Fringes

equal chromatic order (FECO), 220, 232

projection, 756, 769

stabilization, 77

Tolansky, 241

Gardner-Bennett test, 393

Gates reversal shear interferometer, 214

Gaussian beam, 399, 409

Geneva gauge, 820

Geometric phase shifting, 738

Geometrical theory

of Platzeck-Gaviola test, 298

of wire test, 293

Glass plate, 63

Goniometer, 810

Grazing incidence interferometer, 79, 270,

648

Grazing incidence multipass interferometer,

271

Group refractive index, 61

Haidinger interferometer, 1

Hariharan and Sen Interferometer, 192

Hartmann test, 350

data reduction, 380

helical pattern screen in, 382

implementation, 362

ophthalmic lenses, 379

pattern for hyperboloidal mirror, 368

set up, 362

theory, 362

transverse aberrations, 363

with four holes screen, 376

with radial pattern screen, 380

with rectangular screen, 366

Hartmann-Shack test, 383

concave and convex surfaces test, 389

convergent lenses, 388

crossed cylindrical test, 386

Heteroscopic imaging, 689

Hindle test, 445

Holograms, 474

Holographic compensator, 475

Holographic test, 783

Holographic interferometry

digital, 791

nondestructive testing, 784

static, 784

phase measurement, 783

time average, 787

Holographic radial shear interferometer, 201

Holography: electrooptic, 795

Holography: two angle, 778

Homogeneity testing, 27

Hyperboloidal surface

definition, 835

Foucault test for, 278, 294

Hartmann test for, 362

Platzeck-Gaviola test for, 298

testing, 445, 447, 451

Inhomogeneity testing, 27

Integrating bucket, phase shifting, 561

Interferometers, 83, 638

lateral shear, 168

Twyman-Green, 82, 553

Armitage and Lohmann, 209

Brown, 192

Burch, 98

commercial, 647

common path, 97

compensation, 50

configurations, 3, 82, 168, 650

coupled, 244, 245

cyclic, 140

distance measuring, 649

double-pass, 259
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Interferometers (Continued)

double-pass Fizeau, 263

double-pass radial shear, 195

double-pass Twyman-Green, 264

diffraction based, 158

double focus, 112

Dyson, 112

Fabry-Perot, 219

Fizeau, 1, 17, 229, 553

Fresnel zone plate, 102

fringe stabilization, 77

Gates reversal shear, 214

grazing incidence, 79, 648

Haidinger, 1, 33

Hariharan and Sen, 192

holographic radial shear, 201

Jamin, 137, 215

Koster reversal shear, 213

lateral shear, 108, 122

Linnik or Smartt, 116, 302

Mach-Zehnder, 553

Murty, 150, 152

Murty and Hagerott, 209

multiple beam Fizeau, 224, 259

multiple image, 80, 81, 556

multiple-pass, 259, 266

Mach-Zehnder, 77, 142, 146, 167, 553

Michelson, 139, 143

Newton, 1, 3

oblique incidence, 78

open path, 77

plane parallel, 150, 152

point diffraction, 116

polarization based, 162

phase shifting, 102, 547, 550, 740

polarization, 669, 735

radial shear, 185, 187

reversal shear, 185, 211

rotational shear, 185, 204

Saunders prism, 114

Saunders reversal shear, 214

scatter plates, 98

Shack-Fizeau, 34

series, 244, 246

Steel radial shear, 198, 200

Som radial shear, 199

thick lens radial shear, 202

triangular-path, 79, 140

Twyman-Green, 46

unequal-path, 73

wavelength scanning, 724

wavefront-reversing, 115

Williams, 47

Interferogram analysis, 638

zero crossing, 638

synchronous detection, 639

heterodyne interferometry, 640

phase lock interferometry, 641

spatial synchronous, 642

Fourier methods, 642

computer processing for, 644

Interferometric optical profilometers, 668, 695

grazing incidence, 270

multiple wavelength, 667

multiple beam, 219, 221

multiple pass, 266

Murty radial shear, 195, 199

Static holographic, 785

speckle, 791

two wavelength, 668, 702

white light, 667, 669, 711, 731

Irradiance transport equation, 425

Isophots in Airy pattern, 404, 406

Jamin interferometer, 137, 215

Knife-edge test, 275

Köster reversal shear interferometer, 213

Laplacian, 421

Lateral shearing interferometer, 108, 122

Lateral shearing interferometer

directional, 166

fringe patterns, 168

vectorial, 164

Lateral aberrations, 504

Lens testing, 69, 276

Light sources, 9, 11, 23, 36, 123

Light sources, 80, 74, 149, 207, 413, 650,

724

for star test, 413

infrared laser, 80

laser, 74, 149

size in radial shear, 207

wavelength tunable, 724

Linnik interferometer, 116

Lower test, 349

Lyot test, 305
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Mach-Zehnder interferometer, 77, 142, 146,

167, 553

Meinel tests, 449

Michelson interferometer, 139, 143

Microdisplays, 773

Microscope

atomic force, 678, 686

confocal, 689

differential interference contrast, 736

objectives, 415

scanning probe, 674

scanning tunneling, 676

testing, 71, 439

Moiré, 756

analysis of interferogram, 482

patterns of interferograms, 762

patterns of aberrations, 766

projection, 756

Multiple beam interferometer, 24, 221

fringe interval, 235

holographic, 247

with curved surfaces, 243

Multiple beam interferometer: Fizeau, 224,

268

Multiple image interferometer, 80, 81, 566

Multiple wavelength interferometry, 667,

678, 679

Multiple-pass interferometers, 259, 266

Murty and Hagerott interferometer, 209

Murty interferometer, 150, 152

Murty radial shear interferometer, 195, 199

Newton rings, 2, 3, 5

Newton fringes, 2, 3, 5, 10

Newton interferometer, 1, 3

Nodal slide lens bench, 416, 823

Non-null tests, 420, 439

Nondestructive testing, 784

Null Ronchi rulings, 328

Null test configurations, 442

Null test compensator, 454

Oblate spheroid: definition, 835

Oblate spheroid: testing, 472

Oblique incidence interferometer, 78, 82

Off-axis conicoids, 849

Off-axis paraboloids, 850

Offner compensator, 462

Offner reflection compensator, 468

Opaque surfaces, 17

Open path interferometer, 77

Oprical flats, 4, 7, 10, 12

Optical focus sensor, 668, 687

Optical materials, 12

Optical profilometers, 668, 685

Optical ranging, 669, 741

Optical surfaces: plane, 4, 7, 10, 12

Optical surfaces

aspherical, 15, 102

spherical, 13, 14, 30, 32

Orthonormal coefficients, 535

Orthonormal polynomials, 537

Paraboloidal surface

definition, 832, 835

Foucault test for, 278, 294

Hartmann test for, 362

off-axis paraboloids, 850

Platzeck-Gaviola test for, 298

testing, 443, 444

Parallel plates, 26, 28, 35

Phase conjugating interferometer, 81, 82

Phase grating Ronchi test, 342

Phase modulation test, 302

Phase shifting, 547, 550

geometric, 738

interferometer, 102, 740

methods to produce, 552

point diffraction interferometer, 117

quality functions for, 617

Ronchi test, 348

spatial, 560

temporal, 560

two wavelength, 635

Phase shifting algorithms, 557, 568, 582

2þ1, 580

averaging, 576

Carré, 574

characteristic polynomial, 589

four steps, 558

Fourier description, 586

Hariharan, 577

least squares, 571

Nþ1 bucket, 583

Nþ3 bucket, 584

methods to evaluate, 586

summary of, 591

three steps, 569
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Phase shifting error, 599, 600

detector non linearities, 602

source stability, 605

quantization errors, 606

vibration errors, 607

air turbulence, 610

extraneous fringes, 610

calibration, 596

optical, 611

Phase unwrapping, 623

in one dimension, 623

in two dimensions, 625

temporal, 629

Phase value photogrammetry, 780

Phasogrammetry, 780

Physical theory of Foucault test, 289

Physical theory of wire test, 293

Plane parallel interferometer, 150, 152

Platzeck-Gaviola test, 298

Point diffraction interferometer, 116, 302

Polarization interferometers, 735

Polarization based interferometer, 162, 669

Polarization phase shifter, 557

Polynomials, orthonormal, 537

Porro prism, 67

Primary aberrations, 83, 128, 166, 320, 501

Prism, 64, 39, 812

cube corner, 28

Saunders, 114

Porro, 67

right angle, 816

testing right angle, 816

Wollaston, 106

Profilers, 667

Profilers. stylus, 670, 683

Profilometers

contact, 668, 670

interferometric, 668, 695

optical, 668, 685

stylus, 668

Projection moiré, 777

Protactors, 808

Pyramidal error in prisms, 813

Radial shear interferometer, 185, 187

cyclic, 194

laser, 197

Radial pattern screen for Hartmann test,

366

Radius of curvature measurement, 154, 817

Rayleigh criterion, 61

Reflecting compensators, 466

Refractive compensator, 461

Reversal shear interferometer, 185, 211

Reversing wavefront interferometers,

115

Right angle prism, 34

Rimmer and Wyant method, 135

Ritchey test, 447

Ritchey-Common test, 310

Ronchi test, 317

circular grid, 347

null rulings, 328

patterns, 320

phase grating, 342, 348

physical theory, 337, 343, 344

sideband, 348

Talbot effect in, 341

Ronchi-Hartmann test, 350

Ross compensator, 456

Rotational laser interferometer, 185, 204

Saunders reversal shear interferometer,

214

Saunders method, 134

Saunders prism interferometer, 114

Savart polariscope, 104, 108

Scanning probe microscope, 668, 674

Scanning tunneling microscopes, 676

Scatter plates interferometer, 98

Schwarzschild aberration function, 504

Secondary aberration function, 504

Seidel aberrations, 501

Seidel sums, 503

Separation of aberrations, 259

Shack-Fizeau interferometer, 34

Shadow moiré, 773

Shafer compensator, 464

Shearography, 801

Sideband Ronchi test, 348

Signal analysis, 728

Silvertooth test, 447

Smartt interferometer, 302

Som radial shear interferometer, 199

Source size in rotational shear

interferometers, 211

Spatial coherence requirements, 56

Spatial phase shifting, 564

860 INDEX



Speckle

correlation fringes, 793

interferometry, 791

test, 783

Spherical aberration: and Foucault test, 283

Spherical aberration, 411, 417

Spherical surfaces, 13, 30, 32

absolute testing, 72, 651

definition, 832

Foucault test for, 276

Gardner-Bennett test for, 394

Michelson test for, 393

wire test for, 293

Sphero-cylindrical surface, 844

Spheroid, definition, 833

Spheroid: concave surface testing, 833

Spherometers, 817

Abbe:, 819

Aldis, 817

bar, 820

dial, 820

ring, 819

Steinheil, 819

three leg, 818

precision, 819

optical, 821

Square array screen, in Hartmann test, 376

Star test

aspherical aberrations with, 419

astigmatism with, 419

aberrations field, 406

coma with, 419

distortion measurement with, 420

Star test, 398

light source for, 413

optical arrangement, 413

visual, 410

Static holographic interferometry, 785

Steel radial shear interferometer, 198, 200

Structured light projection, 780

Stylus profilometers, 667, 668, 670, 683

Surface microtopography, 232, 234

Surfaces: aspherical, 327

Synthetic wavelength, 759

Synthetic holograms, 477

Talbot effect in Ronchi test, 341

Telescope objective: testing, 442

Templates, 817

Temporal coherence requirement, 60, 74

Test plates, 14, 817

holographic, 476

Test, Speckle, 783

Test, Holographic, 783

Testing

aspherical surfaces, 444, 452, 491, 631

autocollimation, 443

cylindrical surfaces, 453, 844

flat surfaces, 4, 19, 40, 442

hyperboloidal surfaces, 445, 447, 451

oblate spheroid, 472

spherical surfaces, 72, 276, 393, 293, 651

telescope objectives, 442

with computer generated hologram, 478,

483, 485

paraboloidal surfaces, 443, 444

Thick lens radial shear interferometer,

202

Thickness measurement: film and plate, 729,

735

Thin-film thickness measurements, 236

Time-average holographic interferometry,

787

Tolansky inequality, 228, 245

Tolansky fringes, 241

Toroidal surfaces, 842, 843

Transverse aberrations: and wavefront

deformations, 363

Traveling microscope, 821

Triangular path interferometer, 79, 140

TV Holography, 791, 794

Two-angle holography, 778

Two-wavelength interferometry, 668, 703

Two-wavelength testing, 488

Twyman-Green, 553

aberrations compensation, 72

coherence requirements, 46

interferometer, 46, 62

interferograms, 82

phase conjugating, 81

unequal-path, 73

lens testing, 69

microscope objectives, 71

Unequal-path interferometer, 73, 74

Vectorial lateral shearing interferometer, 164

Vertex power, 824
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Wave aberration, 501

Wavefront, 126, 83, 91

deformations and transverse aberrations,

363

determination with Fourier transforms,

422

fitting, 498

Wavefront retrieval, 134

with Southwell algorithm, 373

with trapezoidal integration, 370

with polynomial fitting, 368

with radial Shear, 189

with curvature measurements, 421

with two defocused images, 426, 430

with Ronchi Test, 331, 333, 335

with a defocused image, 429

Wavefront: tilt and defocus removal, 368

Wavefront: imaging at the pupil, 441, 442

Wavefront: stitching, 491

Wavefront-reversing interferometer, 115

Wavelength, synthetic, 759

Wavelength, equivalent, 759

Wavelength scanning interferometer, 724

Wedge measurement, 26, 28, 35

White light interferometry, 667, 669, 711,

731

Williams interferometer, 47

Wire test, 293, 275

geometrical theory, 297

physical theory, 299

Wollaston prism, 106, 111

Wolter test, 307

Zernike coefficients, 511, 538

Zernike test, 118, 302

Zernike polynomials, 498

annular, 525

circle, 505, 508

orthonormal, 506

primary aberrations, 521

Zonal screen, 293

Zone plate, 764
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